Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:51:21.671Z Has data issue: false hasContentIssue false

17 - Comparative Structures and Properties of Elastic Proteins

Published online by Cambridge University Press:  13 August 2009

Peter R. Shewry
Affiliation:
University of Bristol
Arthur S. Tatham
Affiliation:
University of Bristol
Allen J. Bailey
Affiliation:
University of Bristol
Get access

Summary

INTRODUCTION

Elastic proteins possess rubber-like elasticity, in that they are capable of undergoing high deformation without rupture, storing the energy involved in deformation, and then returning to their original state when the stress is removed. The latter phase is passive (i.e., does not require an energy input), and the most efficient mechanisms return all (or nearly all) of the energy used in deformation. This latter requirement is not a prerequisite for elastomeric materials, as their biological requirements for energy storage/dissipation may be different.

The ability of proteins to exhibit rubber-like elasticity relates to their structure. Rubber-like materials must satisfy certain criteria: the individual components must be flexible and conformationally free, so that they can respond quickly to the applied stress, and they must be cross-linked to form a network, to distribute the stress throughout the system. These cross-links may be covalent or non-covalent, and examples of both types are found. Thus, the elastic properties of proteins are influenced by the nature of the elastomeric domains, their size, and the degree of cross-linking.

SEQUENCES OF ELASTOMERIC PROTEINS

Elastomeric proteins are widely distributed in the animal kingdom; however, only a few have been characterised in detail. This is due in part to their chemical/physical characteristics (non-globular nature, insolubility, cross-linking etc.) which make detailed characterisation difficult. More recently, gene sequences have become available, which have allowed sequence comparisons to be made and structure–function relationships to be studied.

Type
Chapter
Information
Elastomeric Proteins
Structures, Biomechanical Properties, and Biological Roles
, pp. 338 - 351
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×