Book contents
- Frontmatter
- Contents
- Preface
- Contributors
- Elastomeric Proteins
- 1 Functions of Elastomeric Proteins in Animals
- 2 Elastic Proteins: Biological Roles and Mechanical Properties
- 3 Elastin as a Self-Assembling Biomaterial
- 4 Ideal Protein Elasticity: The Elastin Models
- 5 Fibrillin: From Microfibril Assembly to Biomechanical Function
- 6 Spinning an Elastic Ribbon of Spider Silk
- 7 Sequences, Structures, and Properties of Spider Silks
- 8 The Nature of Some Spiders' Silks
- 9 Collagen: Hierarchical Structure and Viscoelastic Properties of Tendon
- 10 Collagens with Elastin- and Silk-like Domains
- 11 Conformational Compliance of Spectrins in Membrane Deformation, Morphogenesis, and Signalling
- 12 Giant Protein Titin: Structural and Functional Aspects
- 13 Structure and Function of Resilin
- 14 Gluten, the Elastomeric Protein of Wheat Seeds
- 15 Biological Liquid Crystal Elastomers
- 16 Restraining Cross-Links in Elastomeric Proteins
- 17 Comparative Structures and Properties of Elastic Proteins
- 18 Mechanical Applications of Elastomeric Proteins – A Biomimetic Approach
- 19 Biomimetics of Elastomeric Proteins in Medicine
- Index
17 - Comparative Structures and Properties of Elastic Proteins
Published online by Cambridge University Press: 13 August 2009
- Frontmatter
- Contents
- Preface
- Contributors
- Elastomeric Proteins
- 1 Functions of Elastomeric Proteins in Animals
- 2 Elastic Proteins: Biological Roles and Mechanical Properties
- 3 Elastin as a Self-Assembling Biomaterial
- 4 Ideal Protein Elasticity: The Elastin Models
- 5 Fibrillin: From Microfibril Assembly to Biomechanical Function
- 6 Spinning an Elastic Ribbon of Spider Silk
- 7 Sequences, Structures, and Properties of Spider Silks
- 8 The Nature of Some Spiders' Silks
- 9 Collagen: Hierarchical Structure and Viscoelastic Properties of Tendon
- 10 Collagens with Elastin- and Silk-like Domains
- 11 Conformational Compliance of Spectrins in Membrane Deformation, Morphogenesis, and Signalling
- 12 Giant Protein Titin: Structural and Functional Aspects
- 13 Structure and Function of Resilin
- 14 Gluten, the Elastomeric Protein of Wheat Seeds
- 15 Biological Liquid Crystal Elastomers
- 16 Restraining Cross-Links in Elastomeric Proteins
- 17 Comparative Structures and Properties of Elastic Proteins
- 18 Mechanical Applications of Elastomeric Proteins – A Biomimetic Approach
- 19 Biomimetics of Elastomeric Proteins in Medicine
- Index
Summary
INTRODUCTION
Elastic proteins possess rubber-like elasticity, in that they are capable of undergoing high deformation without rupture, storing the energy involved in deformation, and then returning to their original state when the stress is removed. The latter phase is passive (i.e., does not require an energy input), and the most efficient mechanisms return all (or nearly all) of the energy used in deformation. This latter requirement is not a prerequisite for elastomeric materials, as their biological requirements for energy storage/dissipation may be different.
The ability of proteins to exhibit rubber-like elasticity relates to their structure. Rubber-like materials must satisfy certain criteria: the individual components must be flexible and conformationally free, so that they can respond quickly to the applied stress, and they must be cross-linked to form a network, to distribute the stress throughout the system. These cross-links may be covalent or non-covalent, and examples of both types are found. Thus, the elastic properties of proteins are influenced by the nature of the elastomeric domains, their size, and the degree of cross-linking.
SEQUENCES OF ELASTOMERIC PROTEINS
Elastomeric proteins are widely distributed in the animal kingdom; however, only a few have been characterised in detail. This is due in part to their chemical/physical characteristics (non-globular nature, insolubility, cross-linking etc.) which make detailed characterisation difficult. More recently, gene sequences have become available, which have allowed sequence comparisons to be made and structure–function relationships to be studied.
- Type
- Chapter
- Information
- Elastomeric ProteinsStructures, Biomechanical Properties, and Biological Roles, pp. 338 - 351Publisher: Cambridge University PressPrint publication year: 2003
- 4
- Cited by