Published online by Cambridge University Press: 14 January 2010
Introduction
This thesis studies the problem of designing listing algorithms for families of combinatorial structures. In particular, it studies the problem of designing listing algorithms whose implementations do not use overwhelming quantities of computational resources. The computational resources that are considered are running time and storage space. Using standard terminology from complexity theory, we indicate that the time and space requirements of an algorithm are small by saying that the algorithm is “efficient”.
Section 1 of this chapter introduces our problem by defining the notion of a family of structures. It explains informally what we mean by a listing algorithm for a family of structures without discussing computational details. Section 1.2 motivates the study, describing three reasons that the problem deserves attention. Section 1.3 gives the phrase “listing algorithm” a precise meaning. In this section we specify a deterministic computational machine and a probabilistic machine. We discuss the process of implementing combinatorial listing algorithms on these machines. Section 1.4 establishes criteria which we will use to determine whether or not a given listing algorithm is efficient. The criteria will be sufficiently general that we will be able to change the computational machines that we consider (within a large class of “reasonable” machines) without changing the set of families of combinatorial structures that have efficient listing algorithms. Section 1.5 contains a synopsis of the thesis. Finally, section 1.6 contains some bibliographic remarks.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.