Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T09:59:00.577Z Has data issue: false hasContentIssue false

3 - Thermodynamic approaches to ecosystem behaviour: fundamental principles with case studies from forest succession and management

Published online by Cambridge University Press:  05 June 2012

Paul C. Stoy
Affiliation:
School of GeoSciences, University of Edinburgh
David G. Raffaelli
Affiliation:
University of York
Christopher L. J. Frid
Affiliation:
Griffith University, Queensland
Get access

Summary

Introduction

Ecosystems and organisms must obey physical laws. This statement, perhaps due to its obviousness, is extremely powerful. It forms the basis of how we model systems, living or otherwise, to understand their dynamics and behaviour. Mass and energy must be conserved, but many physical configurations can satisfy the conservation of mass or energy. Ecosystems follow the laws of thermodynamics, and the ways in which ecosystems obey these laws determine their behaviour.

This chapter discusses how classic and contemporary ideas from physics (via thermodynamics) and statistics (via information theory) have influenced the study of ecology. After reviewing the history of the thermodynamic approach in biology, basic physical and statistical concepts are reviewed, and their practical application demonstrated, and debated, using case studies of temperate forest succession in the south-eastern United States and global forest management for atmospheric CO2 mitigation after the Kyoto and Bali accords. Throughout, the different viewpoints of community ecology and ecosystem ecology are contrasted to place thermodynamic principles in a broader ecological context, and to explore ways to improve existing ecological theories.

Historical development and motivation

The thermodynamic approach to understanding biological systems was articulated most elegantly in a series of lectures by Erwin Schrödinger, recapitulated in a book entitled What is Life (1944). Schrödinger describes living systems as those that dissipate energy, or pass entropy to their surroundings, to maintain an ordered state that is far from thermodynamic equilibrium.

Type
Chapter
Information
Ecosystem Ecology
A New Synthesis
, pp. 40 - 64
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari, M., Murphy, S., Kay, J. J, and Swanton, C.. 1999. Energy-based indicators of (agro) ecosystem health. In Quattrochi, D. A and Luvall, J. C (editors), Thermal remote sensing in land surface processes. Ann Arbor Press, Ann Arbor, Michigan.Google Scholar
Baldocchi, D., Falge, E., Gu, L. H, Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H, Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, U. K., Schmid, H. P, Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82:2415–34.2.3.CO;2>CrossRefGoogle Scholar
Baldocchi, D. D. 2008. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurements systems, Turner Review. Australian Journal of Botany 56:1–26.CrossRefGoogle Scholar
Brillouin, L. 1953. Negentropy principle of information. Journal of Applied Physics 24:1152–63.CrossRefGoogle Scholar
Carey, E. V., Sala, A., Keane, R., and Callaway, R. M. 2001. Are old forests underestimated as global carbon sinks?Global Change Biology 7:339–44.CrossRefGoogle Scholar
Caspersen, J. P. and Pacala, S. W. 2001. Successional diversity and forest ecosystem function. Ecological Research 16:895–903.CrossRefGoogle Scholar
Clark, J. S. 2003. Uncertainty and variability in demography and population growth: a hierarchical approach. Ecology 84:1370–81.CrossRefGoogle Scholar
Clark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8:2–14.CrossRefGoogle Scholar
Clark, J. S. and Gelfand, A. E. 2006. Hierarchical modelling for the environmental sciences. Oxford University Press, Oxford.Google Scholar
Clements, F. E. 1936. Nature and structure of the climax. Journal of Ecology 24:252–84.CrossRefGoogle Scholar
Crutzen, P. J., Mosier, A. R, Smith, K. A, and Winiwarter, W.. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics 8:389–95.CrossRefGoogle Scholar
Davidson, E. A. and Janssens, I. A.. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.CrossRefGoogle ScholarPubMed
Wit, R. 2005. Do all ecosystems maximize their distance with respect to thermodynamic equilibrium? A comment on the Ecological Law of Thermodynamics (ELT) proposed by Sven Erik Jørgensen. Scientia Marina 69:427–34.CrossRefGoogle Scholar
Dewar, R. 2003. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. Journal of Physics A: Mathematical and General 36:631–41.CrossRefGoogle Scholar
Easterling, D. R., Meehl, G. A, Parmesan, C., Cahangnon, S. A, Karl, T. R, and Mearns, L. O. 2000. Climate extremes: Observations, modeling, and impacts. Science 289:2068–74.CrossRefGoogle ScholarPubMed
Ekblad, A. and Högberg, P.. 2001. Natural abundance of 13C reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–8.CrossRefGoogle ScholarPubMed
Elsasser, W. M. 1998. Reflections on a theory of organisms. The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
Engel, V., Jobbágy, E. G., Stieglitz, M., Williams, M., and Jackson, R. B.. 2005. Hydrological consequences of eucalyptus afforestation in the Argentine pampas. Water Resources Research 41:W10409.CrossRefGoogle Scholar
Evans, D. J. and Searles, D. J.. 1994. Equilibrium microstates which generate second law violating steady states. Physical Review E 50:1645–8.CrossRefGoogle ScholarPubMed
George, R. J., Nulsen, R. A, Ferdowsian, R., and Raper, G. P.. 1999. Interactions between trees and groundwaters in recharge and discharge areas – A survey of Western Australian sites. Agricultural Water Management 39:91–113.CrossRefGoogle Scholar
Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:7–26.CrossRefGoogle Scholar
Gunderson, L. H. and Holling, C. S, (eds). 2002. Panarchy: understanding transformations in human and natural systems. Island Press, Washington DC.
Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C, Diemer, M., Dimitrakopoulos, P. G, Finn, J. A, Freitas, H., Giller, P. S, Good, J., Harris, R., Högberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., Korner, C., Leadley, P. W, Loreau, M., Minns, A., Mulder, C. P. H., O'Donovan, G., Otway, S. J, Pereira, J. S, Prinz, A., Read, D. J, Scherer-Lorenzen, M., Schulze, E. D, Siamantziouras, A. S. D., Spehn, E. M, Terry, A. C, Troumbis, A. Y, Woodward, F. I, Yachi, S., and Lawton, J. H. 1999. Plant diversity and productivity experiments in European grasslands. Science 286:1123–7.CrossRefGoogle ScholarPubMed
Hedin, L. O., Fischer, J. C., Ostrom, N. E, Kennedy, B. P, Brown, M. G, and Robertson, G. P. 1998. Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil–stream interfaces. Ecology 79:684–703.Google Scholar
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Högberg, M. N., Nyberg, G., Ottoson-Löfvenius, M., and Read, D. J. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–92.CrossRefGoogle ScholarPubMed
,IPCC. 2007. Climate change 2007 – the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press.Google Scholar
Jackson, R., Jobbágy, E.G., Avissar, R., Roy, S. Baidya, Barrett, D., Cook, C.W., Farley, K.A., Maitre, D.C., McCarl, B.A., and Murray, B.C., 2005. Trading water for carbon with biological carbon sequestration. Science 310:1944–7.CrossRefGoogle ScholarPubMed
Jackson, R. B., Banner, J. L, Jobbágy, E. G., Pockman, W. T, and Wall, D. H.. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–6.CrossRefGoogle ScholarPubMed
Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review 106:620–30.CrossRefGoogle Scholar
Jaynes, E. T. 2003. Probability theory: the logic of science. Cambridge University Press.CrossRefGoogle Scholar
Jørgensen, S. E. 1997. Integration of ecosystem theories: a pattern. 2nd edition. Kluwer Academic Publishers, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Jørgensen, S. E., Marques, J. C, Müller, F., Nielsen, S. N, Patten, P. C, Tiezzi, E., and Ulanowicz, R. E.. 2007. A new ecology: systems perspective. p. 275. Elsevier, Amsterdam, The Netherlands.Google Scholar
Juang, J.-Y., Katul, G. G, Siqueira, M. B. S., Stoy, P. C, and Novick, K. A. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern US. Geophysical Research Letters 34:doi:10.1029/2007GL031296.CrossRefGoogle Scholar
Kay, J. J., Allen, T. F. H., Fraser, R., Luvall, J. C, and Ulanowicz, R. E. 2001. Can we use energy based indicators to characterize and measure the status of ecosystems, human, disturbed and natural? pp. 121–33 in Proceedings of the international workshop: Advances in energy studies: exploring supplies, constraints and strategies, Porto Venere, Italy, 23–27 May, 2000.
Kerner, E. 1957. A statistical mechanics of interacting biological species. Bulletin of Mathematical Biophysics 19:121–46.CrossRefGoogle Scholar
Kira, T. and Shidei, T.. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Japanese Journal of Ecology 17:70–87.Google Scholar
Kleidon, A. In press. Global energy balance. In Jørgensen, S. E. (editor), Encyclopedia of Ecology. Elsevier, Amsterdam, The Netherlands.
Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.. 2003. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural and Forest Meteorology 118:151–67.CrossRefGoogle Scholar
Körner, C. 2003. Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300:1242–3.CrossRefGoogle Scholar
Krivov, S., Ulanowicz, R. E, and Dahiya, A.. 2003. Quantitative measures of organization for multiagent systems. Biosystems 69:39–54.CrossRefGoogle ScholarPubMed
LaDeau, S. and Clark, J. S. 2001. Rising CO2 levels and the fecundity of forest trees. Science 292:95–8.CrossRefGoogle ScholarPubMed
Lehinger, A. 1971. Bioenergetics – the molecular basis for biological energy transformations. The Benjamin/Cummings Publishing Company, London.Google Scholar
Lotka, A. J. 1922a. Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences of the United States of America 8:147–51.CrossRefGoogle Scholar
Lotka, A. J. 1922b. Natural selection as a physical principle. Proceedings of the National Academy of Sciences of the United States of America 8:151–4.CrossRefGoogle ScholarPubMed
Luvall, J. C. and Holbo, H. R.. 1991. Thermal remote sensing methods in landscape ecology. In Turner, M. G and Gardner, R. H (editors), Quantitative methods in landscape ecology. Springer-Verlag Heidelberg.Google Scholar
Luyssaert, S., Schulze, E. D, Borner, A., Knohl, A., Hessenmoller, D., Law, B. E, Ciais, P., and Grace, J.. 2008. Old-growth forests as global carbon sinks. Nature 455:213–15.CrossRefGoogle ScholarPubMed
Magnani, F., Mencuccini, M., and Grace, J.. 2000. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell and Environment 23:251–63.CrossRefGoogle Scholar
McCarthy, H. R., Oren, R., Johnsen, K. H, Pritchard, S. G, Davis, M. A, Maier, C., and Kim, H.-S.. 2006. Ice storms and management practices interact to affect current carbon sequestration in forests with potential mitigation under future CO2 atmosphere. Journal of Geophysical Research-Atmospheres 111:doi:10.1029/2005JD006428.CrossRefGoogle Scholar
Moorcroft, P. R. 2003. Recent advances in ecosystem–atmosphere interactions: an ecological perspective. Proceedings of the Royal Society of London Series B-Biological Sciences 270:1215–27.CrossRefGoogle Scholar
Moorcroft, P. R., Hurtt, G. C, and Pacala, S. W. 2001. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71:557–86.CrossRefGoogle Scholar
Naiman, R. J. and Décamps, H.. 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28:621–58.CrossRefGoogle Scholar
Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262–70.CrossRefGoogle ScholarPubMed
Odum, E. P. 1971. Fundamentals of Ecology. W. B. Saunders, Philadelphia.Google Scholar
Odum, H. T. 1994. Ecological and general systems: an introduction to systems ecology. Colorado University Press, Niwot, Colorado.Google Scholar
Ogle, K. and Barber, J. J.. 2008. Bayesian data-model integration in plant physiological and ecosystem ecology. In Lüttge, U., Beyschlag, W., and Murata, J. (editors), Progress in Botany. Springer, Berlin, Heidelberg.Google Scholar
Ollinger, S. V., Richardson, A. D, Martin, M. E, Hollinger, D. Y, Frolking, S., Reich, P. B, Plourde, L. C, Katul, G. G, Munger, J. W, Oren, R., Smith, M.-L., Paw, K. T. U, Bolstad, P. V, Cook, B. D, Day, M. C, Martin, T. A, Monson, R. K, and Schmid, H. P. 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences of the United States of America 105: 19336–41.CrossRefGoogle ScholarPubMed
Plantinga, A. J. and Wu, J.. 2003. Co-benefits from carbon sequestration in forests: evaluating reductions in agricultural externalities from an afforestation policy in Wisconsin. Land Economics 79:74–85.CrossRefGoogle Scholar
Porporato, A., D'Odorico, P., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I.. 2002. Ecohydrology of water-controlled ecosystems. Advances in Water Resources 25:1335–48.CrossRefGoogle Scholar
Prigogine, I. 1961. Introduction to thermodynamics of irreversible processes. 2nd edition. Interscience Publishers New York.Google Scholar
Quattrochi, D. A. and Luvall, J. C. 1999. Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape Ecology 14:577–98.CrossRefGoogle Scholar
Reichstein, M., Papale, D., Valentini, R., Aubinet, M., Bernhofer, C., Knohl, A., Laurila, T., Lindroth, A., Moors, E., Pilegaard, K., and Seufert, G.. 2007. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters 34:doi:10.1029/2006GL027780.CrossRefGoogle Scholar
Röser, C., Montagnani, L., Schulze, E. D, Mollicone, D., Kolle, O., Meroni, M., Papale, D., Marchesini, L. B, Federici, S., and Valentini, R.. 2002. Net CO2 exchange rates in three different successional stages of the ‘Dark Taiga’ of central Siberia. Tellus B 54:642–54.Google Scholar
Schneider, E. D. and Kay, J. J. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19:25–48.CrossRefGoogle Scholar
Schneider, E. D. and Sagan, D.. 2006. Into the cool: energy flow, thermodynamics, and life. University of Chicago Press, Chicago.Google Scholar
Schrödinger, E. 1944. What is life? – The physical aspect of the living cell. Cambridge University Press.Google Scholar
Schulze, E.-D., Wirth, C., and Heimann, M.. 2000. Managing forests after Kyoto. Science 289:2058–9.CrossRefGoogle ScholarPubMed
Schulze, E. D., Valentini, R., and Sanz, M. J. 2002. The long way from Kyoto to Marrakesh: Implications of the Kyoto Protocol negotiations for global ecology. Global Change Biology 8:505–18.CrossRefGoogle Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379–423 and 623–56.CrossRefGoogle Scholar
Stoy, P. C., Katul, G. G, Siqueira, M. B. S., Juang, J.-Y., McCarthy, H. R, Oishi, A. C, Uebelherr, J. M, Kim, H.-S., and Oren, R.. 2006a. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S. Global Change Biology 12:2115–35.CrossRefGoogle Scholar
Stoy, P. C., Katul, G. G, Siqueira, M. B. S., Juang, J.-Y., Novick, K., McCarthy, H. R, Oishi, A. C, and Oren, R.. 2008. The role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biology 14:1409–27.CrossRefGoogle Scholar
Stoy, P. C., Katul, G. G, Siqueira, M. B. S., Juang, J.-Y., Novick, K. A, and Oren, R.. 2006b. An evaluation of methods for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology 141:2–18.CrossRefGoogle Scholar
Tilman, D. and Downing, J. A. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.CrossRefGoogle Scholar
Ulanowicz, R. E. 1980. An hypothesis on the development of natural communities. Journal of Theoretical Biology 85:223–45.CrossRefGoogle ScholarPubMed
Ulanowicz, R. E. 1986. Growth & Development: Ecosystems Phenomenology. Springer Verlag, New York.CrossRefGoogle Scholar
Ulanowicz, R. E., Goerner, S. J, Lietaer, B., and Gomez, R.. In press. Quantifying sustainability: resilience, efficiency and the return of information theory. Ecological Complexity 6: 27–36.
Ulanowicz, R. E. and Hannon, B. M. 1987. Life and the production of entropy. Proceedings of the Royal Society of London Series B, Biological Sciences 232:181–92.CrossRefGoogle Scholar
Vilá, M., Vayreda, J., Gracia, C., and Ibáñez, J. J.. 2003. Does tree diversity increase wood production in pine forests?Oecologia 135:299–303.CrossRefGoogle ScholarPubMed
Wagendorp, T., Gulinck, H., Coppin, P., and Muys, B.. 2005. Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy 31:112–25.CrossRefGoogle Scholar
Wang, G. M., Sevick, E. M, Mittag, E., Searles, D. J, and Evans, D. J. 2002. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Physical Review Letters 89:050601.CrossRefGoogle ScholarPubMed
Zhou, G., Liu, S., Li, Z., Shang, D., Tang, X., Zhou, C., Yan, J., and Mo, J.. 2006. Old-growth forests can accumulate carbon in soils. Science 314:1417.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×