Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T11:55:19.747Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 April 2024

John Stachurski
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Economic Networks
Theory and Computation
, pp. 234 - 241
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acemoglu, D. and Azar, P. D. (2020). Endogenous production networks. Econometrica, 88(1):3382.CrossRefGoogle Scholar
Acemoglu, D., Carvalho, V. M., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5):19772016.Google Scholar
Acemoglu, D., Ozdaglar, A., and Pattathil, S. (2023). Learning, diversity and adaptation in changing environments: The role of weak links. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Acemoglu, D., Ozdaglar, A., and Siderius, J. (2021a). Misinformation: Strategic sharing, homophily, and endogenous echo chambers. Technical report, National Bureau of Economic Research.Google Scholar
Acemoglu, D., Ozdaglar, A., Siderius, J., and Tahbaz-Salehi, A. (2021b). Systemic credit freezes in financial lending networks. Mathematics and Financial Economics, 15(1): 185232.CrossRefGoogle Scholar
Acemoglu, D., Ozdaglar, A., and Tahbaz-Salehi, A. (2016). Networks, shocks, and systemic risk. In The Oxford Handbook of the Economics of Networks. Oxford University Press.Google Scholar
Aggarwal, C. C. (2020). Linear Algebra and Optimization for Machine Learning. Springer.CrossRefGoogle Scholar
Aliprantis, C. D. and Border, , Kim, C. (1999). Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag, 2 edition.CrossRefGoogle Scholar
Allouch, N. (2015). On the private provision of public goods on networks. Journal of Economic Theory, 157:527552.CrossRefGoogle Scholar
Amarasinghe, A., Hodler, R., Raschky, P., and Zenou, Y. (2020). Key players in economic development. Technical report, IZA Discussion Paper.CrossRefGoogle Scholar
Amini, H. and Minca, A. (2020). Clearing financial networks: Impact on equilibrium asset prices and seniority of claims. Tutorials in Operations Research, pages 154175. DOI https://doi.org/10.1287/educ.2020.0221.CrossRefGoogle Scholar
Antràs, P. (2020). Global Production: Firms, Contracts, and Trade Structure. Princeton University Press.Google Scholar
Antràs, P., Chor, D., Fally, T., and Hillberry, R. (2012). Measuring the upstreamness of production and trade flows. American Economic Review, 102(3):412416.CrossRefGoogle Scholar
Ascenzi, E. and Palanza, F. (2021). How to control electric autonomous taxi fleets in an energy efficient way. Technical report, Chalmers University of Technology.Google Scholar
Atalay, E., Hortacsu, A., Roberts, J., and Syverson, C. (2011). Network structure of production. Proceedings of the National Academy of Sciences, 108(13):51995202.CrossRefGoogle ScholarPubMed
Axtell, R. L. (2001). Zipf distribution of US firm sizes. Science, 293(5536):18181820.CrossRefGoogle ScholarPubMed
Azimzadeh, P. (2019). A fast and stable test to check if a weakly diagonally dominant matrix is a nonsingular m-matrix. Mathematics of Computation, 88(316):783800.CrossRefGoogle Scholar
Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. Econometrica, 68(5):11811229.CrossRefGoogle Scholar
Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s who in networks. Wanted: The key player. Econometrica, 74(5):14031417.CrossRefGoogle Scholar
Baqaee, D. R. (2018). Cascading failures in production networks. Econometrica, 86(5): 18191838.CrossRefGoogle Scholar
Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439):509512.CrossRefGoogle ScholarPubMed
Bardoscia, M., Barucca, P., Codd, A. B., and Hill, J. (2019). Forward-looking solvency contagion. Journal of Economic Dynamics and Control, 108:103755.CrossRefGoogle Scholar
Bardoscia, M., Battiston, S., Caccioli, F., and Caldarelli, G. (2015). Debtrank: A microscopic foundation for shock propagation. PloS one, 10(6):e0130406.CrossRefGoogle ScholarPubMed
Barrot, J.-N. and Sauvagnat, J. (2016). Input specificity and the propagation of idiosyncratic shocks in production networks. The Quarterly Journal of Economics, 131(3):15431592.CrossRefGoogle Scholar
Bartle, R. G. and Sherbert, D. R. (2011). Introduction to Real Analysis. Wiley, 4th edition.Google Scholar
Battiston, S., Puliga, M., Kaushik, R., Tasca, P., and Caldarelli, G. (2012). Debtrank: Too central to fail? Financial networks, the Fed and systemic risk. Scientific Reports, 2(1):16.CrossRefGoogle ScholarPubMed
Beiglböck, M., Pammer, G., and Schachermayer, W. (2022). From Bachelier to Dupire via optimal transport. Finance and Stochastics, 26(1):5984.CrossRefGoogle Scholar
Belhaj, M., Bervoets, S., and Deroïan, F. (2016). Efficient networks in games with local complementarities. Theoretical Economics, 11(1):357380.CrossRefGoogle Scholar
Belhaj, M. and Deroïan, F. (2019). Group targeting under networked synergies. Games and Economic Behavior, 118:2946.CrossRefGoogle Scholar
Benhabib, J., Bisin, A., and Luo, M. (2019). Wealth distribution and social mobility in the US: A quantitative approach. American Economic Review, 109(5):16231647.CrossRefGoogle Scholar
Benzi, M. and Klymko, C. (2015). On the limiting behavior of parameter-dependent network centrality measures. SIAM Journal on Matrix Analysis and Applications, 36(2):686706.CrossRefGoogle Scholar
Bernard, A. B., Dhyne, E., Magerman, G., Manova, K., and Moxnes, A. (2019). The origins of firm heterogeneity: A production network approach. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to Linear Optimization. Athena Scientific.Google Scholar
Blanchet, A., Carlier, G., and Nenna, L. (2018). Computation of Cournot–Nash equilibria by entropic regularization. Vietnam Journal of Mathematics, 46(1):1531.CrossRefGoogle Scholar
Board, S. and Meyer-ter-Vehn, M. (2021). Learning dynamics in social networks. Econometrica, 89(6):26012635.CrossRefGoogle Scholar
Bollobás, B. (1999). Linear Analysis: An Introductory Course. Cambridge University Press.CrossRefGoogle Scholar
Borgatti, S. P., Everett, M. G., and Johnson, J. C. (2018). Analyzing Social Networks. Sage.Google Scholar
Borovička, J. and Stachurski, J. (2020). Necessary and sufficient conditions for existence and uniqueness of recursive utilities. The Journal of Finance, 75(3):14571493.CrossRefGoogle Scholar
Bramoullé, Y., Galeotti, A., and Rogers, B. W. (2016). The Oxford Handbook of the Economics of Networks. Oxford University Press.CrossRefGoogle Scholar
Cai, J. and Szeidl, A. (2018). Interfirm relationships and business performance. The Quarterly Journal of Economics, 133(3):12291282.CrossRefGoogle Scholar
Calvó-Armengol, A., Patacchini, E., and Zenou, Y. (2009). Peer effects and social networks in education. The Review of Economic Studies, 76(4):12391267.CrossRefGoogle Scholar
Candogan, O., Bimpikis, K., and Ozdaglar, A. (2012). Optimal pricing in networks with externalities. Operations Research, 60(4):883905.CrossRefGoogle Scholar
Carvalho, V. M. (2014). From micro to macro via production networks. Journal of Economic Perspectives, 28(4):2348.CrossRefGoogle Scholar
Carvalho, V. M. and Grassi, B. (2019). Large firm dynamics and the business cycle. American Economic Review, 109(4):13751425.CrossRefGoogle Scholar
Carvalho, V. M., Nirei, M., Saito, Y. U., and Tahbaz-Salehi, A. (2021). Supply chain disruptions: Evidence from the great east Japan earthquake. The Quarterly Journal of Economics, 136(2):12551321.CrossRefGoogle Scholar
Carvalho, V. M. and Tahbaz-Salehi, A. (2019). Production networks: A primer. Annual Review of Economics, 11:635663.CrossRefGoogle Scholar
Charpentier, A., Galichon, A., and Vernet, L. (2019). Optimal transport on large networks, a practitioner’s guide. arXiv preprint arXiv:1907.02320.Google Scholar
Cheney, W. (2013). Analysis for Applied Mathematics, volume 208. Springer Science & Business Media.Google Scholar
Chetty, R., Jackson, M. O., Kuchler, T., Stroebel, J., Hendren, N., Fluegge, R. B., Gong, S., Gonzalez, F., Grondin, A., and Jacob, M. (2022). Social capital I: Measurement and associations with economic mobility. Nature, 608(7921):108121.CrossRefGoogle ScholarPubMed
Chiu, J., Eisenschmidt, J., and Monnet, C. (2020). Relationships in the interbank market. Review of Economic Dynamics, 35:170191.CrossRefGoogle Scholar
Çınlar, E. (2011). Probability and Stochastics, volume 261. Springer Science & Business Media.CrossRefGoogle Scholar
Cochrane, J. H. (1994). Shocks. In Carnegie-Rochester Conference series on public policy, volume 41, pages 295364. Elsevier. DOI https://doi.org/10.1016/0167-2231(94)00024-7.Google Scholar
Cohen, M. X. (2021). Linear Algebra: Theory, Intuition, Code. sincXpress.Google Scholar
Cook, W. J. (2011). In Pursuit of the Traveling Salesman. Princeton University Press.CrossRefGoogle Scholar
Coscia, M. (2021). The atlas for the aspiring network scientist. arXiv preprint arXiv:2101.00863.Google Scholar
Dantzig, G. B. (1951). Application of the simplex method to a transportation problem. In Koopmans, T. C. (Ed.), Activity Analysis of Production and Allocation, pages 359373. John Wiley and Sons.Google Scholar
Dasaratha, K., Golub, B., and Hak, N. (2022). Learning from neighbors about a changing state. Technical report, Northwestern University.Google Scholar
Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order. Cambridge University Press.CrossRefGoogle Scholar
De Masi, G., Fujiwara, Y., Gallegati, M., Greenwald, B., and Stiglitz, J. E. (2011). An analysis of the Japanese credit network. Evolutionary and Institutional Economics Review, 7(2): 209232.CrossRefGoogle Scholar
DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345):118121.CrossRefGoogle Scholar
Demange, G. (2017). Optimal targeting strategies in a network under complementarities. Games and Economic Behavior, 105:84103.CrossRefGoogle Scholar
Demange, G. (2018). Contagion in financial networks: A threat index. Management Science, 64(2):955970.CrossRefGoogle Scholar
Deplano, D., Franceschelli, M., and Giua, A. (2020). A nonlinear Perron–Frobenius approach for stability and consensus of discrete-time multi-agent systems. Automatica, 118:109025.CrossRefGoogle Scholar
Dew-Becker, I. (2022). Tail risk in production networks. Technical report, Northwestern University.CrossRefGoogle Scholar
Di Giovanni, J., Levchenko, A. A., and Mejean, I. (2014). Firms, destinations, and aggregate fluctuations. Econometrica, 82(4):13031340.Google Scholar
Du, Y. (1990). Fixed points of increasing operators in ordered Banach spaces and applications. Applicable Analysis, 38(01–02):120.CrossRefGoogle Scholar
Du, Y., Lehrer, E., and Pauzner, A. (2015). Competitive economy as a ranking device over networks. Games and Economic Behavior, 91:113.CrossRefGoogle Scholar
Dupor, B. (1999). Aggregation and irrelevance in multi-sector models. Journal of Monetary Economics, 43(2):391409.CrossRefGoogle Scholar
Durrett, R. (2007). Random Graph Dynamics. Cambridge University Press.Google Scholar
Easley, D. and Kleinberg, J., (2010). Networks, Crowds, and Markets, volume 8. Cambridge University Press.CrossRefGoogle Scholar
Eisenberg, L. and Noe, T. H. (2001). Systemic risk in financial systems. Management Science, 47(2):236249.CrossRefGoogle Scholar
Elliott, M. and Golub, B. (2019). A network approach to public goods. Journal of Political Economy, 127(2):730776.CrossRefGoogle Scholar
Elliott, M. and Golub, B. (2022). Networks and economic fragility. Annual Review of Economics, 14:665696.CrossRefGoogle Scholar
Elliott, M., Golub, B., and Jackson, M. O. (2014). Financial networks and contagion. American Economic Review, 104(10):31153153.CrossRefGoogle Scholar
Elliott, M., Golub, B., and Leduc, M. V. (2022). Supply network formation and fragility. American Economic Review, 112(8):270147.CrossRefGoogle Scholar
Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1):1760.Google Scholar
Fajgelbaum, P. D. and Schaal, E. (2020). Optimal transport networks in spatial equilibrium. Econometrica, 88(4):14111452.CrossRefGoogle Scholar
Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., and Vayer, T. (2021). Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):18.Google Scholar
Foss, S., Korshunov, D., and Zachary, S. (2011). An Introduction to Heavy-Tailed and Subexponential Distributions, volume 6. Springer.CrossRefGoogle Scholar
Gabaix, X. (2011). The granular origins of aggregate fluctuations. Econometrica, 79(3): 733772.Google Scholar
Galeotti, A., Golub, B., and Goyal, S. (2020). Targeting interventions in networks. Econometrica, 88(6):24452471.CrossRefGoogle Scholar
Galeotti, A. and Goyal, S. (2010). The law of the few. American Economic Review, 100(4):14681492.CrossRefGoogle Scholar
Galichon, A. (2018). Optimal Transport Methods in Economics. Princeton University Press.Google Scholar
Glynn, P. W. and Desai, P. Y. (2018). A probabilistic proof of the Perron–Frobenious theorem. Technical report, arXiv preprint 1808.04964.Google Scholar
Goebel, K. and Kirk, W. A. (1990). Topics in Metric Fixed Point Theory. Cambridge University Press.CrossRefGoogle Scholar
Golub, B. and Jackson, M. O. (2010). Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1):112149.Google Scholar
Goyal, S. (2023). Networks: An Economics Approach. MIT Press.Google Scholar
Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity. Econometrica, 85(4):10331063.CrossRefGoogle Scholar
Greinecker, M. and Kah, C. (2021). Pairwise stable matching in large economies. Econometrica, 89(6):29292974.CrossRefGoogle Scholar
Guo, D., Cho, Y. J., and Zhu, J. (2004). Partial Ordering Methods in Nonlinear Platforms. Nova Publishers.Google Scholar
Häggström, O. (2002). Finite Markov Chains and Algorithmic Applications. Cambridge University Press.CrossRefGoogle Scholar
Herskovic, B. (2018). Networks in production: Asset pricing implications. The Journal of Finance, 73(4):17851818.CrossRefGoogle Scholar
Hojman, D. A. and Szeidl, A. (2008). Core and periphery in networks. Journal of Economic Theory, 139(1):295309.CrossRefGoogle Scholar
Holme, P. (2019). Rare and everywhere: Perspectives on scale-free networks. Nature Communications, 10(1):13.CrossRefGoogle ScholarPubMed
Huang, W.-Q., Zhuang, X.-T., Yao, S., and Uryasev, S. (2016). A financial network perspective of financial institutions’ systemic risk contributions. Physica A: Statistical Mechanics and Its Applications, 456:183196.CrossRefGoogle Scholar
Jackson, M. O. (2010). Social and Economic Networks. Princeton University Press.CrossRefGoogle Scholar
Jackson, M. O. (2014). Networks in the understanding of economic behaviors. Journal of Economic Perspectives, 28(4):322.CrossRefGoogle Scholar
Jackson, M. O. and Pernoud, A. (2019). Investment incentives and regulation in financial networks. Technical report, SSRN 3311839.Google Scholar
Jackson, M. O. and Pernoud, A. (2020). Credit freezes, equilibrium multiplicity, and optimal bailouts in financial networks. Technical report, arxiv 2012.12861.CrossRefGoogle Scholar
Jackson, M. O. and Pernoud, A. (2021). Systemic risk in financial networks: A survey. Annual Review of Economics, 13:171202.CrossRefGoogle Scholar
Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks. Journal of Economic Theory, 71(1):4474.CrossRefGoogle Scholar
Jänich, K. (1994). Linear Algebra. In Undergraduate Texts in Mathematics. Springer-Verlag.Google Scholar
Kakutani, S. (1941). A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal, 8(3):457459.CrossRefGoogle Scholar
Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1):3943.CrossRefGoogle Scholar
Kepner, J. and Gilbert, J. (2011). Graph Algorithms in the Language of Linear Algebra. SIAM.CrossRefGoogle Scholar
Kikuchi, T., Nishimura, K., Stachurski, J., and Zhang, J. (2021). Coase meets bellman: Dynamic programming for production networks. Journal of Economic Theory, 196:105287.CrossRefGoogle Scholar
Kim, K., Kim, S. Y., and Ha, D.-H. (2007). Characteristics of networks in financial markets. Computer Physics Communications, 177(1–2):184185.CrossRefGoogle Scholar
Klages-Mundt, A. and Minca, A. (2021). Optimal intervention in economic networks using influence maximization methods. European Journal of Operational Research, 300(3): 11361148.CrossRefGoogle Scholar
Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D., and Rohde, G. K. (2017). Optimal mass transport: Signal processing and machine-learning applications. IEEE Signal Processing Magazine, 34(4):4359.CrossRefGoogle ScholarPubMed
Kondo, I. O., Lewis, L. T., and Stella, A. (2020). Heavy tailed, but not zipf: Firm and establishment size in the US. Technical report, Federal Reserve Bank of Minneapolis.Google Scholar
Krasnoselskii, M. (1964). Positive Solutions of Operator Equations. Noordhoff.Google Scholar
Kreyszig, E. (1978). Introductory Functional Analysis with Applications, volume 1. Wiley.Google Scholar
Kumamoto, S.-I. and Kamihigashi, T. (2018). Power laws in stochastic processes for social phenomena: An introductory review. Frontiers in Physics, 6:20.CrossRefGoogle Scholar
La’O, J. and Tahbaz-Salehi, A. (2022). Optimal monetary policy in production networks. Econometrica, 90(3):12951336.Google Scholar
Leontief, W. W. (1941). The Structure of American Economy, 1919–1929. Harvard University Press.Google Scholar
Liu, E. (2019). Industrial policies in production networks. The Quarterly Journal of Economics, 134(4):18831948.CrossRefGoogle Scholar
Liu, E. and Tsyvinski, A. (2020). Dynamical structure and spectral properties of input–output networks. Technical report, National Bureau of Economic Research.CrossRefGoogle Scholar
Ljungqvist, L. and Sargent, T. J. (2018). Recursive Macroeconomic Theory. MIT press, 4th edition.Google Scholar
Lucas, R. and Stokey, N. (1989). Recursive Methods in Dynamic Economics. Harvard University Press.Google Scholar
Marinacci, M. and Montrucchio, L. (2019). Unique Tarski fixed points. Mathematics of Operations Research, 44(4):11741191.CrossRefGoogle Scholar
Martin, T. and Otto, C. A. (2020). The downstream impact of upstream tariffs: Evidence from investment decisions in supply chains. Technical report, SSRN 2872662.Google Scholar
Matousek, J. and Gärtner, B. (2007). Understanding and Using Linear Programming. Springer Science & Business Media.Google Scholar
Menczer, F., Fortunato, S., and Davis, C. A. (2020). A First Course in Network Science. Cambridge University Press.CrossRefGoogle Scholar
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra, volume 71. SIAM.CrossRefGoogle Scholar
Meyer-Nieberg, P. (2012). Banach Lattices. Springer Science & Business Media.Google Scholar
Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability. Cambridge University Press.CrossRefGoogle Scholar
Miller, R. E. and Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions. Cambridge University Press.CrossRefGoogle Scholar
Miranda-Pinto, J. (2021). Production network structure, service share, and aggregate volatility. Review of Economic Dynamics, 39:146173.CrossRefGoogle Scholar
Molavi, P., Tahbaz-Salehi, A., and Jadbabaie, A. (2018). A theory of non-Bayesian social learning. Econometrica, 86(2):445490.CrossRefGoogle Scholar
Nair, J., Wierman, A., and Zwart, B. (2021). The Fundamentals of Heavy Tails: Properties, Emergence, and Estimation. Preprint, California Institute of Technology.Google Scholar
Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1):4849.CrossRefGoogle ScholarPubMed
Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5):323351.CrossRefGoogle Scholar
Newman, M. E. (2018). Networks. Oxford University Press.CrossRefGoogle Scholar
Nikaido, H. (1968). Convex Structures and Economic Theory. Academic Press.Google Scholar
Norris, J. R. (1998). Markov Chains. Cambridge University Press.Google Scholar
Ocampo, S. (2022). A task-based theory of occupations with multidimensional heterogeneity. Technical report, Western University.Google Scholar
Olabisi, M. (2020). Input–output linkages and sectoral volatility. Economica, 87(347):713746.CrossRefGoogle Scholar
Ou, Q., Jin, Y.-D., Zhou, T., Wang, B.-H., and Yin, B.-Q. (2007). Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. Physical Review E, 75(2):021102.CrossRefGoogle ScholarPubMed
Pearce, R. (2017). Triangle counting for scale-free graphs at scale in distributed memory. In 2017 IEEE High Performance Extreme Computing Conference (HPEC), Sept. 2017, Waltham, MA USA. Pages 14. IEEE.Google Scholar
Peyré, G. and Cuturi, M. (2019). Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning, 11(5-6):355607.CrossRefGoogle Scholar
Polovnikov, K., Pospelov, N., and Skougarevskiy, D. (2022). Ownership concentration and wealth inequality in Russia. In Proceedings of the 31st International Joint Conference on Artificial Intelligence, July 2022, Vienna. Pages 51365142.Google Scholar
Privault, N. (2013). Understanding Markov Chains. Examples and Applications. Springer-Verlag Singapore, 357358.CrossRefGoogle Scholar
Punel, A. and Ermagun, A. (2018). Using twitter network to detect market segments in the airline industry. Journal of Air Transport Management, 73:6776.CrossRefGoogle Scholar
Quah, D. (1993). Empirical cross-section dynamics in economic growth. European Economic Review, 37(2-3.):426434.CrossRefGoogle Scholar
Rybski, D., Buldyrev, S. V., Havlin, S., Liljeros, F., and Makse, H. A. (2009). Scaling laws of human interaction activity. Proceedings of the National Academy of Sciences, 106(31):1264012645.CrossRefGoogle ScholarPubMed
Schauder, J. (1930). Der Fixpunktsatz in Funktionalräumen. Studia Math, 2:7180.CrossRefGoogle Scholar
Schrijver, A. (2005). On the history of combinatorial optimization (till 1960). Handbooks in Operations Research and Management Science, 12:168.CrossRefGoogle Scholar
Seneta, E. (2006a). Markov and the creation of Markov chains. In Markov Anniversary Meeting, pages 120. Citeseer.Google Scholar
Seneta, E. (2006b). Non-Negative Matrices and Markov Chains. Springer Science & Business Media.Google Scholar
Sharkey, K. J. (2017). A control analysis perspective on Katz centrality. Scientific reports, 7(1):18.CrossRefGoogle ScholarPubMed
Shiller, R. J. (2020). Narrative Economics: How Stories Go Viral and Drive Major Economic Events. Princeton University Press.Google Scholar
Shin, H. S. (2010). Risk and Liquidity. Oxford University Press.Google Scholar
Simon, C. P. (1994). Mathematics for Economists. Norton & Company, Inc.Google Scholar
Simonetto, A., Monteil, J., and Gambella, C. (2019). Real-time city-scale ridesharing via linear assignment problems. Transportation Research Part C: Emerging Technologies, 101: 208232.CrossRefGoogle Scholar
Stachurski, J. (2016). A Primer in Econometric Theory. MIT Press.Google Scholar
Stachurski, J. (2022a). Economic Dynamics: Theory and Computation. MIT Press, 2nd edition.Google Scholar
Stachurski, J. (2022b). Systemic risk in financial systems: Properties of equilibria. arXiv preprint. arXiv:2202.11183.Google Scholar
Vershik, A. M. (2013). Long history of the Monge–Kantorovich transportation problem. The Mathematical Intelligencer, 35(4):19.CrossRefGoogle Scholar
Villani, C. (2008). Optimal Transport: Old and New, volume 338. Springer Science & Business Media.Google Scholar
Watts, A. (2001). A dynamic model of network formation. Games and Economic Behavior, 34(2):331341.CrossRefGoogle Scholar
Yun, T.-S., Jeong, D., and Park, S. (2019). “Too central to fail” systemic risk measure using Pagerank algorithm. Journal of Economic Behavior & Organization, 162:251272.CrossRefGoogle Scholar
Zenou, Y. (2016). Key Players. Oxford Handbook on the Economics of Networks, pages 244274.Google Scholar
Zhang, Z. (2012). Variational, Topological, and Partial Order Methods with Their Applications, volume 29. Springer.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×