Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-22T19:28:14.278Z Has data issue: false hasContentIssue false

Chapter 15 - Investigation of Recurrent Pregnancy Loss

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Recurrent pregnancy loss (RPL) is a distressing condition affecting around 1-2% of women, with no universally accepted definition and many unanswered questions remaining. Causes associated with RPL include chromosomal abnormalities, anatomical uterine defects, autoimmune disorders and endometrial dysfunction. Nevertheless, around 50% of women with RPL have unexplained aetiology. This results in highly challenging and complex cases for clinicians to manage and a significant psychological impact on the couples experiencing it. Although numerous tests and treatment options have been suggested over the years, the evidence surrounding some of them is weak at best and remain controversial. Here we discuss these investigations in more detail.

Type
Chapter
Information
Early Pregnancy , pp. 153 - 161
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Regan, L., Rai, R., Saravelos, S., Li, T. C., Royal College of Obstetricians and Gynaecologists. Recurrent miscarriage green-top guideline no. 17. BJOG. 2023;130(12):e939. doi.org/10.1111/1471-0528.17515.CrossRefGoogle Scholar
Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.Google Scholar
ESHRE Guideline Group on RPL, Bender Atik, R., Christiansen, O. B., Elson, J., Kolte, A. M., Lewis, S., et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Hum Reprod Open. 2023;2023(1):hoad002.Google ScholarPubMed
Coomarasamy, A., Devall, A. J., Brosens, J. J., Quenby, S., Stephenson, M. D., Sierra, S., et al. Micronized vaginal progesterone to prevent miscarriage: a critical evaluation of randomized evidence. Am J Obstet Gynecol. 2020;223(2):167–76.CrossRefGoogle ScholarPubMed
du Fossé, N. A., van der Hoorn, M. L. P, van Lith, J. M. M., le Cessie, S., Lashley, E. E. L. O.. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(5):650–69.CrossRefGoogle ScholarPubMed
Nielsen, A., Hannibal, C. G., Lindekilde, B. E., Tolstrup, J., Frederiksen, K., Munk, C., et al. Maternal smoking predicts the risk of spontaneous abortion. Acta Obstet Gynecol Scand. 2006;85(9):1057–65.CrossRefGoogle ScholarPubMed
Chen, L. W., Wu, Y., Neelakantan, N., Chong, M. F. F., Pan, A., van Dam, R. M.. Maternal caffeine intake during pregnancy and risk of pregnancy loss: a categorical and dose-response meta-analysis of prospective studies. Public Health Nutr. 2016;19(7):1233–44.CrossRefGoogle Scholar
Kesmodel, U., Wisborg, K., Olsen, S. F., Henriksen, T. B., Secher, N. J.. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002;37(1):8792.CrossRefGoogle ScholarPubMed
Lashen, H., Fear, K., Sturdee, D. W.. Obesity is associated with increased risk of first trimester and recurrent miscarriage: matched case-control study. Hum Reprod. 2004;19(7):1644–46.CrossRefGoogle ScholarPubMed
Metwally, M., Saravelos, S. H., Ledger, W. L., Li, T. C.. Body mass index and risk of miscarriage in women with recurrent miscarriage. Fertil Steril. 2010;94(1):290–5.CrossRefGoogle ScholarPubMed
Ng, K. Y. B., Cherian, G., Kermack, A. J., Bailey, S., Macklon, N., Sunkara, S. K., et al. Systematic review and meta-analysis of female lifestyle factors and risk of recurrent pregnancy loss. Sci Rep. 2021;11(1):7081.CrossRefGoogle ScholarPubMed
Oliver-Williams, C. T., Steer, P. J.. Racial variation in the number of spontaneous abortions before a first successful pregnancy, and effects on subsequent pregnancies. Int J Gynaecol Obstet. 2015;129(3):207–12.CrossRefGoogle ScholarPubMed
Stephenson, M. D., Awartani, K. A., Robinson, W. P.. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod. 2002;17(2):446–51.CrossRefGoogle ScholarPubMed
Carp, H. J. A.. Recurrent miscarriage: genetic factors and assessment of the embryo. Isr Med Assoc J. 2008;10(3):229–31.Google ScholarPubMed
Hyde, K. J., Schust, D. J.. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015;5(3):a023119.CrossRefGoogle ScholarPubMed
Al-Kunani, A. S., Knight, R., Haswell, S. J., Thompson, J. W., Lindow, S. W.. The selenium status of women with a history of recurrent miscarriage. BJOG. 2001;108(10):1094–97.Google ScholarPubMed
Ota, K., Dambaeva, S., Han, A. R., Beaman, K., Gilman-Sachs, A., Kwak-Kim, J.. Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity. Hum Reprod. 2014;29(2):208–19.CrossRefGoogle ScholarPubMed
Creus, M., Deulofeu, R., Peñarrubia, J., Carmona, F., Balasch, J.. Plasma homocysteine and vitamin B12 serum levels, red blood cell folate concentrations, C677T methylenetetrahydrofolate reductase gene mutation and risk of recurrent miscarriage: a case-control study in Spain. Clin Chem Lab Med. 2013;51(3):693–99.CrossRefGoogle ScholarPubMed
Grimbizis, G. F., Gordts, S., Di Spiezio Sardo, A., Brucker, S., De Angelis, C., Gergolet, M., et al. The ESHRE/ESGE consensus on the classification of female genital tract congenital anomalies. Hum Reprod. 2013;28(8):2032–44.CrossRefGoogle ScholarPubMed
Chan, Y. Y., Jayaprakasan, K., Zamora, J., Thornton, J. G., Raine-Fenning, N., Coomarasamy, A.. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum Reprod Update. 2011;17(6):761–71.CrossRefGoogle ScholarPubMed
Saravelos, S. H., Cocksedge, K. A., Li, T. C.. Prevalence and diagnosis of congenital uterine anomalies in women with reproductive failure: a critical appraisal. Hum Reprod Update. 2008;14(5):415–29.CrossRefGoogle ScholarPubMed
Thangaratinam, S., Tan, A., Knox, E., Kilby, M. D., Franklyn, J., Coomarasamy, A.. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ. 2011;342:d2616.CrossRefGoogle ScholarPubMed
van den Boogaard, E., Vissenberg, R., Land, J. A., van Wely, M., van der Post, J. A. M., Goddijn, M., et al. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2011;17(5):605–19.CrossRefGoogle ScholarPubMed
Dhillon-Smith, R. K., Boelaert, K., Jeve, Y. B., Maheshwari, A., Coomarasamy, A., Royal College of Obstetricians and Gynaecologists. Subclinical hypothyroidism and antithyroid autoantibodies in women with subfertility or recurrent pregnancy loss. BJOG. 2022;129(12):e7588.CrossRefGoogle ScholarPubMed
Dhillon-Smith, R. K., Middleton, L. J., Sunner, K. K., Cheed, V., Baker, K., Farrell-Carver, S., et al. Levothyroxine in women with thyroid peroxidase antibodies before conception. N Engl J Med. 2019;380(14):1316–25.CrossRefGoogle ScholarPubMed
van Dijk, M. M., Vissenberg, R., Fliers, E., van der Post, J. A. M., van der Hoorn, M. L. P., Weerd, S. de, et al. Levothyroxine in euthyroid thyroid peroxidase antibody positive women with recurrent pregnancy loss (T4LIFE trial): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10(5):322–29.CrossRefGoogle Scholar
Craig, L. B., Ke, R. W., Kutteh, W. H.. Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss. Fertil Steril. 2002;78(3):487–90.CrossRefGoogle ScholarPubMed
Hirahara, F., Andoh, N., Sawai, K., Hirabuki, T., Uemura, T., Minaguchi, H.. Hyperprolactinemic recurrent miscarriage and results of randomized bromocriptine treatment trials. Fertil Steril. 1998;70(2):246–52.CrossRefGoogle ScholarPubMed
Coomarasamy, A., Williams, H., Truchanowicz, E., Seed, P. T., Small, R., Quenby, S., et al. A randomized trial of progesterone in women with recurrent miscarriages. N Engl J Med. 2015;373(22):2141–48.CrossRefGoogle ScholarPubMed
Coomarasamy, A., Devall, A. J., Cheed, V., Harb, H., Middleton, L. J., Gallos, I. D., et al. A randomized trial of progesterone in women with bleeding in early pregnancy. N Engl J Med. 2019;380(19):1815–24.CrossRefGoogle ScholarPubMed
Miyakis, S., Lockshin, M. D., Atsumi, T., Branch, D. W., Brey, R. L., Cervera, R., et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295306.CrossRefGoogle Scholar
van den Boogaard, E., Cohn, D. M., Korevaar, J. C., Dawood, F., Vissenberg, R., Middeldorp, S., et al. Number and sequence of preceding miscarriages and maternal age for the prediction of antiphospholipid syndrome in women with recurrent miscarriage. Fertil Steril. 2013;99(1):188–92.CrossRefGoogle ScholarPubMed
Wong, L. F., Porter, T. F., Scott, J. R.. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2014;2014(10):CD000112.Google ScholarPubMed
Aruna, M., Nagaraja, T., Andal Bhaskar, S., Tarakeswari, S., Reddy, A. G., Thangaraj, K., et al. Novel alleles of HLA-DQ and -DR loci show association with recurrent miscarriages among South Indian women. Hum Reprod. 2011;26(4):765–74.CrossRefGoogle ScholarPubMed
Beydoun, H., Saftlas, A. F.. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens. 2005;65(2):123–35.CrossRefGoogle ScholarPubMed
Meuleman, T., Lashley, L. E. L. O., Dekkers, O. M., van Lith, J. M. M., Claas, F. H. J., Bloemenkamp, K. W. M.. HLA associations and HLA sharing in recurrent miscarriage: A systematic review and meta-analysis. Hum Immunol. 2015;76(5):362–73.CrossRefGoogle ScholarPubMed
Wegmann, T. G., Lin, H., Guilbert, L., Mosmann, T. R.. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353–56.CrossRefGoogle ScholarPubMed
Wang, N. F., Kolte, A. M., Larsen, E. C., Nielsen, H. S., Christiansen, O. B.. Immunologic abnormalities, treatments, and recurrent pregnancy loss: what is real and what is not? Clin Obstet Gynecol. 2016;59(3):509–23.CrossRefGoogle ScholarPubMed
Mueller-Eckhardt, G., Mallmann, P., Neppert, J., Lattermann, A., Melk, A., Heine, O., et al. Immunogenetic and serological investigations in nonpregnant and in pregnant women with a history of recurrent spontaneous abortions. German RSA/IVIG Study Group. J Reprod Immunol. 1994;27(2):95109.CrossRefGoogle ScholarPubMed
Piosik, Z. M., Goegebeur, Y., Klitkou, L., Steffensen, R., Christiansen, O. B.. Plasma TNF-α levels are higher in early pregnancy in patients with secondary compared with primary recurrent miscarriage. Am J Reprod Immunol. 2013;70(5):347–58.Google ScholarPubMed
Seshadri, S., Sunkara, S. K.. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(3):429–38.CrossRefGoogle ScholarPubMed
Laird, S. M., Mariee, N., Wei, L., Li, T. C.. Measurements of CD56+ cells in peripheral blood and endometrium by flow cytometry and immunohistochemical staining in situ. Hum Reprod. 2011;26(6):1331–37.CrossRefGoogle ScholarPubMed
Clifford, K., Flanagan, A. M., Regan, L.. Endometrial CD56+ natural killer cells in women with recurrent miscarriage: a histomorphometric study. Hum Reprod. 1999;14(11):2727–30.Google ScholarPubMed
Tuckerman, E., Laird, S. M., Prakash, A., Li, T. C.. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod. 2007;22(8):2208–13.CrossRefGoogle ScholarPubMed
Quenby, S., Bates, M., Doig, T., Brewster, J., Lewis-Jones, D. I., Johnson, P. M., et al. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod. 1999;14(9):2386–91.CrossRefGoogle ScholarPubMed
Shimada, S., Kato, E. H., Morikawa, M., Iwabuchi, K., Nishida, R., Kishi, R., et al. No difference in natural killer or natural killer T-cell population, but aberrant T-helper cell population in the endometrium of women with repeated miscarriage. Hum Reprod. 2004;19(4):1018–24.CrossRefGoogle ScholarPubMed
van den Berg, M. M. J., van Maarle, M. C., van Wely, M., Goddijn, M.. Genetics of early miscarriage. Biochim Biophys Acta. 2012;1822(12):1951–59.Google ScholarPubMed
Popescu, F., Jaslow, C. R., Kutteh, W. H.. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–87.CrossRefGoogle ScholarPubMed
Barber, J. C. K., Cockwell, A. E., Grant, E., Williams, S., Dunn, R., Ogilvie, C. M.. Is karyotyping couples experiencing recurrent miscarriage worth the cost? BJOG. 2010;117(7):885–88.CrossRefGoogle ScholarPubMed
Liu, Y., Chen, X., Huang, J., Wang, C. C., Yu, M. Y., Laird, S., et al. Comparison of the prevalence of chronic endometritis as determined by means of different diagnostic methods in women with and without reproductive failure. Fertil Steril. 2018;109(5):832–39.CrossRefGoogle ScholarPubMed
Saxena, P., Misro, M. M., Chaki, S. P., Chopra, K., Roy, S., Nandan, D.. Is abnormal sperm function an indicator among couples with recurrent pregnancy loss? Fertil Steril. 2008;90(5):1854–58.CrossRefGoogle ScholarPubMed
Imam, S. N., Shamsi, M. B., Kumar, K., Deka, D., Dada, R.. Idiopathic recurrent pregnancy loss: role of paternal factors; a pilot study. J Reprod Infertil. 2011;12(4):267–76.Google ScholarPubMed
Bhattacharya, S. M.. Association of various sperm parameters with unexplained repeated early pregnancy loss – which is most important? Int Urol Nephrol. 2008;40(2):391–95.CrossRefGoogle ScholarPubMed
Hill, J. A., Abbott, A. F., Politch, J. A.. Sperm morphology and recurrent abortion. Fertil Steril. 1994;61(4):776–78.CrossRefGoogle ScholarPubMed
Zidi-Jrah, I., Hajlaoui, A., Mougou-Zerelli, S., Kammoun, M., Meniaoui, I., Sallem, A., et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril. 2016;105(1):5864.CrossRefGoogle ScholarPubMed
Zhao, J., Zhang, Q., Wang, Y., Li, Y.. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102(4):9981005.e8.CrossRefGoogle ScholarPubMed
Robinson, L., Gallos, I. D., Conner, S. J., Rajkhowa, M., Miller, D., Lewis, S., et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17.CrossRefGoogle Scholar
Ramasamy, R., Scovell, J. M., Kovac, J. R., Cook, P. J., Lamb, D. J., Lipshultz, L. I.. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103(4):906–9.e1.CrossRefGoogle ScholarPubMed
Brigham, S. A., Conlon, C., Farquharson, R. G.. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum Reprod. 1999;14(11):2868–71.CrossRefGoogle ScholarPubMed
Lund, M., Kamper-Jørgensen, M., Nielsen, H. S., Lidegaard, Ø., Andersen, A. M. N., Christiansen, O. B.. Prognosis for live birth in women with recurrent miscarriage: what is the best measure of success? Obstet Gynecol. 2012;119(1):3743.CrossRefGoogle Scholar
Clifford, K., Rai, R., Regan, L.. Future pregnancy outcome in unexplained recurrent first trimester miscarriage. Hum Reprod. 1997;12(2):387–89.CrossRefGoogle ScholarPubMed
Kolte, A. M., Westergaard, D., Lidegaard, Ø., Brunak, S., Nielsen, H. S.. Chance of live birth: a nationwide, registry-based cohort study. Hum Reprod. 2021;36(4):1065–73.CrossRefGoogle ScholarPubMed
Al-Lamee, H., Hill, C. J., Turner, F., Phan, T., Drakeley, A. J., Hapangama, D. K., et al. The role of endometrial stem/progenitor cells in recurrent reproductive failure. J Pers Med. 2022;12(5):775.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×