Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T13:19:57.048Z Has data issue: false hasContentIssue false

23 - A quasi-geostrophic baroclinic model

Published online by Cambridge University Press:  05 June 2012

Wilford Zdunkowski
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Andreas Bott
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

Introduction

So far we have treated the so-called primitive equations of baroclinic systems which, in addition to typical meteorological effects, automatically include horizontally propagating sound waves as well as external and internal gravity waves. These waves produce high-frequency oscillations in the numerical solutions of the baroclinic systems, which are of no interest to the meteorologist. Thus, the tendencies of the various field variables are representative only of small time intervals of the order of minutes while the predicted weather tendencies should be representative of much longer time intervals.

In order to obtain meteorologically significant tendencies we are going to eliminate the meteorological noise from the primitive equations b y modifying the predictive system so that a longer time step in the numerical solution becomes possible. We recall that the vertically propagating sound waves are no longer a part of the solution since they are removed by the hydrostatic approximation. The noise filtering is accomplished by a diagnostic coupling of the horizontal wind field and the mass field while in reality at a given time these fields are independent of each other. The simplest coupling of the wind and mass field is the geostrophic wind relation. The mathematical systems resulting from the artificial inclusion of filter conditions are called quasi-geostrophic systems or, more generally, filtered systems. For such systems at the initial time t0 = 0 only one variable, usually the geopotential, is specified without any restriction.

Type
Chapter
Information
Dynamics of the Atmosphere
A Course in Theoretical Meteorology
, pp. 591 - 618
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×