Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:12:03.764Z Has data issue: false hasContentIssue false

An aperiodic tiling using a dynamical system and Beatty sequences

Published online by Cambridge University Press:  06 July 2010

Boris Hasselblatt
Affiliation:
Tufts University, Massachusetts
Get access

Summary

Abstract. Wang tiles are square unit tiles with colored edges. A finite set of Wang tiles is a valid tile set if the collection tiles the plane (using an unlimited number of copies of each tile), the only requirements being that adjacent tiles must have common edges with matching colors and each tile can be put in place only by translation. In 1995 Kari and Culik gave examples of tile sets with 14 and 13 Wang tiles respectively, which only tiled the plane aperiodically. Their tile sets were constructed using a piecewise multiplicative function of an interval. The fact the sets tile only aperiodically is derived from properties of the function.

Introduction

There is a vast literature connecting dynamical systems and tilings of the plane. In this paper, we give an exposition of the work of Kari and Culik to show how by starting with a piecewise multiplicative function f, with rational multiplicands defined on a finite interval, we can produce a finite set of Wang tiles which tiles the plane. Further, a choice of multiplicands and interval, so that the dynamical system f has no periodic points, results in a set of Wang tiles that can only tile the plane aperiodically. In this manner, Kari and Culik produce a set of 13 Wang tiles. This is currently, the smallest known set of Wang tiles which only tiles the plane aperiodically.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×