Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T22:40:59.222Z Has data issue: false hasContentIssue false

5 - Rossby wave breaking: climatology, interaction with low-frequency climate variability, and links to extreme weather events

from Part II - High-impact weather in mid latitudes

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenhoff, A., Martius, O., and Croci-Maspoli, M. (2008). Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis. Tellus 60, 10531063.CrossRefGoogle Scholar
Appenzeller, C. and Davies, H. C. (1992). Structure of stratospheric intrusions into the troposphere. Nature 358, 570572.CrossRefGoogle Scholar
Barnes, E. A. and Hartmann, D. L. (2012). Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res. 117, D09117, doi:10.1029/2012JD017469.CrossRefGoogle Scholar
Benedict, J. J., Lee, S., and Feldstein, S. B. (2004). Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci. 61, 121144.2.0.CO;2>CrossRefGoogle Scholar
Berrisford, P., Hoskins, B. J., and Tyrlis, E. (2007). Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci. 64, 28812898.CrossRefGoogle Scholar
Cai, M. (2003). Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett. 30, doi:10.1029/2002GL015926.CrossRefGoogle Scholar
Cassou, C. (2008). Intraseasonal interaction between the MaddenJulian Oscillation and the North Atlantic Oscillation. Nature 455, doi:10.1038/nature07286.CrossRefGoogle ScholarPubMed
Davies, H. C. (1999). Theories of frontogenesis, pp. 215238. In The Life Cycles of Extratropical Cyclones. Shapiro, M. A. and Groenas, S. (eds.). American Meteorological Society.CrossRefGoogle Scholar
Davies, H. C., Schaer, C., and Wernli, H. (1991). The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci. 48, 16661689.2.0.CO;2>CrossRefGoogle Scholar
Davis, C. A. and Bosart, L. F. (2006). The formation of hurricane Humberto (2001): The importance of extra-tropical precursors. Quart. J. Roy. Meteor. Soc. 132, 20552085.CrossRefGoogle Scholar
Dee, D. P., Uppala, S. M., Simmons, A. J., et al. (2011). The Era-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 137, 553597.CrossRefGoogle Scholar
Doswell, C. A., Ramis, C., Romero, R., and Alonso, S. (1998). A diagnostic study of three heavy precipitation episodes in the western mediterranean region. Weather Forecast 13, 102124.2.0.CO;2>CrossRefGoogle Scholar
Engel, C. B., Lane, T. P., Reeder, M. J., and Rezny, M. (2013). The meteorology of black saturday. Quart. J. Roy. Meteor. Soc. 139, 585599.CrossRefGoogle Scholar
Enomoto, T., Ohfuchi, W., Nakamura, H., and Shapiro, M. A. (2007). Remote effects of tropical storm Cristobal upon a cut-off cyclone over Europe in August 2002. Met. Atmos. Phys. 96, 2942.CrossRefGoogle Scholar
Fita, L., Romero, R., and Ramis, C. (2007). Objective quantification of perturbations produced with a piecewise pv inversion technique. Ann. Geophys. 25, 23352349.CrossRefGoogle Scholar
Franzke, C., Lee, S., and Feldstein, S. B. (2004). Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci. 61, 145160.2.0.CO;2>CrossRefGoogle Scholar
Funatsu, B. M. and Waugh, D.W. (2008). Connections between potential vorticity intrusions and convection in the eastern tropical Pacific. J. Atmos. Sci. 65, 9871002.CrossRefGoogle Scholar
Gerber, E. P. and Vallis, G. K. (2009). On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci. 66, 332352.CrossRefGoogle Scholar
Grams, C. M., Wernli, H., Boettcher, M., et al. (2011). The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. Quart. J. Roy. Meteor. Soc. 137, 21742193.CrossRefGoogle Scholar
Hanley, J. and Caballero, R. (2012). The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys. Res. Lett. 39, L21708, doi:10.1029/2012GL053408.CrossRefGoogle Scholar
Hitchman, M. H. and Huesmann, A. S. (2007). A seasonal climatology of Rossby wave breaking in the 320-2000-K layer. J. Atmos. Sci. 64, 19221940.CrossRefGoogle Scholar
Hoskins, B. J., James, I. N., and White, G. H. (1983). The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci. 40, 15951612.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc. 111, 877946.CrossRefGoogle Scholar
Isotta, F., Martius, O., Sprenger, M., and Schwierz, C. (2008). Long-term trends of synoptic-scale breaking Rossby waves in the northern hemisphere between 1958 and 2001. Int. J. Clim. 28, 15511562.CrossRefGoogle Scholar
Kiladis, G. N. and Weickmann, K. M. (1992). Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev. 120, 19001923.2.0.CO;2>CrossRefGoogle Scholar
Knippertz, P. (2005). Tropical-extratropical interactions associated with an Atlantic tropical plume and subtropical jet streak. Mon. Wea. Rev. 133, 27592776.CrossRefGoogle Scholar
Knippertz, P. (2007). Tropical-extratropical interactions related to upper-level troughs at low latitudes. Dynam. Atmos. Oceans 43, 3662.CrossRefGoogle Scholar
Leroux, M. D., Plu, M., Barbary, D., Roux, F., and Arbogast, P. (2013). Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci. 70, 25472565.CrossRefGoogle Scholar
Martius, O., Schwierz, C., and Davies, H. C. (2007). Breaking waves at the Tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci. 64, 25762592.CrossRefGoogle Scholar
Martius, O., Sodemann, H., Joos, H., et al. (2013). The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc. 139, 17801797.CrossRefGoogle Scholar
Masato, G., Hoskins, B., and Woollings, T. (2012). Wave-breaking characteristics of mid-latitude blocking. Quart. J. Roy. Meteor. Soc. 138, 12851296. doi: 10.1002/qj.990CrossRefGoogle Scholar
Massacand, A., Wernli, H., and Davies, H. (1998). Heavy precipitation on the Alpine southside: An upper-level precursor. Geophys. Res. Lett. 25, 14351438.CrossRefGoogle Scholar
Matthews, A. J. and Kiladis, G. N. (1999). Interaction between ENSO, transient circulation, and tropical convection over the Pacific. J. Clim. 12, 30623086.2.0.CO;2>CrossRefGoogle Scholar
McIntyre, M. E. and Palmer, T. N. (1984). The 'surf zone’ in the stratosphere. Atmos. Terr. Phys. 46, 825849.CrossRefGoogle Scholar
McTaggart-Cowan, R., Deane, G. D., Bosart, L. F., Davis, C. A., and Galarneau, T. J. (2008). Climatology of tropical cyclogenesis in the North Atlantic (1948-2004). Mon. Wea. Rev. 136, 12841304.CrossRefGoogle Scholar
McTaggart-Cowan, R., Galarneau, T. J., Bosart, L. F., Moore, R. W., and Martius, O. (2013). A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev. 141, 19631989.CrossRefGoogle Scholar
Michel, C. and Riviere, G. (2011). The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci. 68, 17301748.CrossRefGoogle Scholar
Michel, C., Riviere, G., Terray, L., and Joly, B. (2012). The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys. Res. Lett. 39, L10806.CrossRefGoogle Scholar
Moore, R. W., Martius, O., and Davies, H. C. (2008). Downstream development and Kona low genesis. Geophys. Res. Lett. L20814.CrossRefGoogle Scholar
Moore, R. W., Martius, O., and Spengler, T. (2010). The modulation of the subtropical and extratropical atmosphere in the pacific basin in response to the Madden-Julian Oscillation. Mon. Wea. Rev. 138, 27612779.CrossRefGoogle Scholar
Nakamura, H., Nakamura, M., and Andreason, J. L. (1997). The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, DOI: 10.1175/1520-04932.0.CO;2>CrossRefGoogle Scholar
Nakamuara, H. and Fukamachi, T. (2004). Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc. 130, 12131233.CrossRefGoogle Scholar
Ndarana, T. and Waugh, D. (2011). A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci. 68, 798811.CrossRefGoogle Scholar
Nuissier, O., Ducrocq, V., Ricard, D., Lebeaupin, C., and Anquetin, S. (2008). A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Quart. J. Roy. Meteor. Soc. 134, 111130.CrossRefGoogle Scholar
Pelly, J. L. and Hoskins, B. J. (2003). A new perspective on blocking. J. Atmos. Sci. 60, 743755.2.0.CO;2>CrossRefGoogle Scholar
Porcu, F., Carrassi, A., Medaglia, C. M., Prodi, F., and Mugnai, A. (2007). A study on cut-off low vertical structure and precipitation in the Mediterranean region. Meteorol. Atmos. Phys. 96, 121140.CrossRefGoogle Scholar
Postel, G. A. and Hitchman, M. H. (1999). A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci. 56, 359373.2.0.CO;2>CrossRefGoogle Scholar
Rivière, G. (2009). Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592. doi: http://dx.doi.org/10.1175/2008JAS2919.1CrossRefGoogle Scholar
Rivière, G. (2011). A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci. 68, 12531266.CrossRefGoogle Scholar
Rivière, G., Laine, A., Lapeyre, G., Salas-Melia, D., and Kageyama, M. (2010). Links between Rossby wave breaking and the North Atlantic Oscillation-Arctic Oscillation in present-day and last glacial maximum climate simulations. J. Clim. 23, 29873008.CrossRefGoogle Scholar
Rivière, G. and Orlanski, I. (2007). Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci. 64, 241266.CrossRefGoogle Scholar
Schlemmer, L., Martius, O., Sprenger, M., Schwierz, C., and Twitchett, A. (2010). Disentangling the forcing mechanisms of a heavy precipitation event along the alpine south side using potential vorticity. Mon. Wea. Rev. 138, 23362353.CrossRefGoogle Scholar
Shapiro, M. A., Wernli, H., Bond, N. A., and Langland, R. (2001). The influence of the 1997–99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quart. J. Roy. Meteor. Soc. 127, 331342.Google Scholar
Slingo, J. M. (1998). Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc. 124, 2751.CrossRefGoogle Scholar
Sprenger, M., Martius, O., and Arnold, J. (2013). Cold surge episodes over southeastern brazil – a potential vorticity perspective. Int. J. Climatol. 33, 27582767.CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2005). Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440.doi: http://dx.doi.org/10.1175/JAS3629.1CrossRefGoogle Scholar
Thorncroft, C. D., Hoskins, B. J., and McIntyre, M. F. (1993). Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc. 119, 1755.Google Scholar
Ulbrich, U., Bruecher, T., Fink, A., et al. (2003). The central European floods of August 2002: Part 2 Synoptic causes and considerations with respect to climatic change. Weather 58, 434442.CrossRefGoogle Scholar
Waugh, D. W. and Polvani, L. M. (2000). Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett. 27, 38573860.CrossRefGoogle Scholar
Wernli, H. and Sprenger, M. (2007). Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci. 64, 15691586.CrossRefGoogle Scholar
Woollings, T., Hoskins, B., Blackburn, M., and Berrisford, P. (2008). A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 65, 609626.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×