Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T18:19:11.588Z Has data issue: false hasContentIssue false

9 - The North Atlantic and Arctic Oscillations: climate variability, extremes, and stratosphere–troposphere interaction

from Part II - High-impact weather in mid latitudes

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arribas, A., Glover, M., Maidens, A., et al. (2011). The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910.CrossRefGoogle Scholar
Barnston, A. G. and Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126.2.0.CO;2>CrossRefGoogle Scholar
Boer, G. and Hamilton, K. (2008). QBO influence on extratropical predictive skill, Clim. Dyn., 31, 9871000.Google Scholar
Brönnimann, S. (2007). Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, doi: 10.1029/2006RG000199CrossRefGoogle Scholar
Cassou, C. (2008). Intraseasonal interaction between the Madden Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527.CrossRefGoogle ScholarPubMed
Cohen, J. and Entekhabi, D. (1999). Eurasian snow cover variability and Northern Hemisphere climate predictability, GRL, 26, 345348.CrossRefGoogle Scholar
Eade, R., Smith, D., Scaife, A.A., and Wallace, E. (2014). Do seasonal to decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., DOI: 10.1002/2014GL061146.CrossRefGoogle Scholar
Ebdon, R. A. (1975). The quasi-biennial oscillation and its association with tropospheric circulation patterns. Meteorol. Mag., 104, 282297.Google Scholar
Fereday, D., Maidens, A., Arribas, A., Scaife, A. A., and Knight, J. R. (2012). Seasonal forecasts of Northern Hemisphere Winter 2009/10. Env. Res. Lett., 7, doi:10.1088/1748-9326/7/3/034031.CrossRefGoogle Scholar
Franzke, C., Lee, S., and Feldstein, S. B. (2004). Is the North Atlantic Oscillation a breaking wave?. J. Atmos. Sci., 61, 145160.2.0.CO;2>CrossRefGoogle Scholar
Gray, L. J. et al. (2010). Solar influences on climate. Rev. Geophys. 48, RG4001.CrossRefGoogle Scholar
Graystone, P., (1959). Meteorological office discussion on tropical meteorology. Met. Magazine, 88, 117.Google Scholar
Hanna, E., Cropper, T. E., Jones, P. D., Scaife, A. A., and Allan, R. (2014). Recent seasonal asymmetric changes in the NAO: a marked summer decline and increased winter variability. Int. J. Clim., DOI: 10.1002/joc.4157.CrossRefGoogle Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M. (eds.) (2003). The North Atlantic Oscillation: Climatic Significance and Environmental Impact, American Geophysical Union, Washington, DC, 279 pp.CrossRefGoogle Scholar
Ilkka, J., Heikki, T., and Väinö, N. (2012). The variability of winter temperature, its impacts on society, and the potential use of seasonal forecasts in Finland. Weather 67, 328332.CrossRefGoogle Scholar
Ineson, S. and Scaife, A. A. (2009). The role of the stratosphere in the European climate response to El Nino. Nat. Geosci., 2, 3236.CrossRefGoogle Scholar
Ineson, S., Scaife, A. A., Knight, J. R., et al. (2011), Solar forcing of winter climate variability in the Northern Hemisphere, Nat. Geosci., 4, 753757, doi:10.1038/GEO1282.Google Scholar
Johansson, Å. (2007): Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20, 19571975. doi:10.1175/JCLI4072.1CrossRefGoogle Scholar
Jones, P. D., Jόnsson, T, and Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 14331450.3.0.CO;2-P>CrossRefGoogle Scholar
Kang, D., Lee, M. I., Im, J., et al. (2014). Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 10, 35773585, doi:10.1002/2014GL060011.CrossRefGoogle Scholar
Karpechko, A. Y. and Manzini, E. (2012). Stratospheric influence on tropospheric climate change in the Northern Hemisphere, J. Geophys. Res., 117, D05133, doi:10.1029/2011JD017036.CrossRefGoogle Scholar
Keeley, S. P. E., Sutton, R.T., and Shaffrey, L. C. (2009). Does the North Atlantic Oscillation show unusual persistence on intraseasonal timescales? Geophys. Res. Lett., 36, L22706, doi:10.1029/2009GL040367.CrossRefGoogle Scholar
Kim, H-M., Webster, P., and Curry, J. (2012). Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim. Dyn., 23, doi:10.1007/s00382-012-1364-6.Google Scholar
Koenigk, T. and Mikolajewicz, U. (2009). Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Clim. Dyn. 32, 783798, doi:10.1007/s00382-008-0419-1CrossRefGoogle Scholar
Labitzke, K. (1987). Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett. 14, 535537.CrossRefGoogle Scholar
Li, J. and Wang, J. X. L. (2003). A modified zonal index and its physical sense. Geophys. Res. Lett., 30(12), 1632, doi: 10.1029/2003GL017441.CrossRefGoogle Scholar
Marshall, A. and Scaife, A.A. (2009). Impact of the Quasi-Biennial Oscillation on 321 seasonal forecasts. J. Geophys. Res., 114, D18110, doi:10.1029/2009JD011737.Google Scholar
Marshall, A. and Scaife, A.A. (2010). Improved predictability of stratospheric sudden warming events in an AGCM with enhanced stratospheric resolution. J. Geophys. Res., vol.115, D16114, doi:10.1029/2009JD012643.CrossRefGoogle Scholar
Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. 111, D06108.CrossRefGoogle Scholar
Morgenstern, O. et al. (2010). Review of the formulation of present generation stratospheric chemistry-climate models and associated external forcing. J Geophys Res 115, D00M02. doi: 10.1029/2009JD013728CrossRefGoogle Scholar
Ouzeau, G., Cattiaux, J., Douville, H., Ribes, A., and Saint‐Martin, D. (2011). European cold winter 2009–2010: How unusual in the instrumental record and how reproducible in the ARPEGE‐Climat model? Geophys. Res. Lett., 38, L11706, doi:10.1029/2011GL047667.CrossRefGoogle Scholar
Pascoe, C. L., Gray, L. J., and Scaife, A. A. (2006). A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings, Geophys. Res. Lett., 33, L06825, doi:10.1029/2005GL024715.CrossRefGoogle Scholar
Renggli, D., Leckebusch, G. C., Ulbrich, U., Gleixner, S. N., and Faust, E. (2011). The skill of seasonal ensemble prediction systems to forecast wintertime windstorm frequency over the North Atlantic and Europe. Mon. Wea. Rev. 139, 30523068.CrossRefGoogle Scholar
Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L., and Kumar, A., (2013). CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 10991116, doi:10.1007/s00382-013-1850-5.CrossRefGoogle Scholar
Riviere, G. and Orlanski, I. (2007). Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation, J. Atm. Sci., 64, 241266.CrossRefGoogle Scholar
Scaife, A. A., Folland, C. K., Alexander, L., Moberg, A., and Knight, J. R. (2008). European climate extremes and the North Atlantic Oscillation. J. Clim., 21, 7283.CrossRefGoogle Scholar
Scaife, A. A., Spangehl, T., Fereday, D., et al. (2012). Climate change and stratosphere-troposphere interaction. Clim. Dyn., 38, 20892097, doi:10.1007/s00382-011-1080-7.CrossRefGoogle Scholar
Scaife, A. A., Arribas, A., Blockley, E., et al. (2014). Skilful long range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.CrossRefGoogle Scholar
Schmidt, H., Kieser, J., Misios, S., and Gruzdev, A. N. (2013). The atmospheric response to solar variability: Simulations with a general circulation and chemistry model for the entire atmosphere, in: Luebken, F.-J. (ed.): Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a priority program, Springer, Dordrecht, the Netherlands.Google Scholar
Shabbar, A., Huang, J., and Higuchi, K. (2001). The relationship between the wintertime north Atlantic oscillation and blocking episodes in the north Atlantic. Int. J. Climatol., 21, 355369. doi: 10.1002/joc.612CrossRefGoogle Scholar
Stenchikov, G., Robock, A., Ramaswamy, V., et al. (2002). Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107 (D24), 4803, doi:10.1029/2002JD002090.CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 12971300.CrossRefGoogle Scholar
Vallis, G. and Gerber, E. (2008). Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn. Atmos. Oceans, 44, 184212.CrossRefGoogle Scholar
Walker, G. T. and Bliss, E. W. (1932). World weather V. Mem. Roy. Meteor. Soc., 4, 5384.Google Scholar
Wu, Z., Wang, B., Li, J., and Jin, F. (2009). An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×