Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:03:53.173Z Has data issue: false hasContentIssue false

Part IV - Heat waves and cold-air outbreaks

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexander, L. (2010). Extreme heat rooted in dry soils. Nature Geosciences, 4(1), 1213. Available at: http://dx.doi.org/10.1038/ngeo1045.CrossRefGoogle Scholar
Avissar, R. and Werth, D. (2005). Global hydroclimatological teleconnections resulting from tropical deforestation. Journal of Hydrometeorology, 6, 134145.CrossRefGoogle Scholar
Barriopedro, D. et al. (2011). The hot summer of 2010: redrawing the temperature record map of Europe. Science (New York, N.Y.), 332(6026), 220224. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21415316 [Accessed July 27, 2012].CrossRefGoogle ScholarPubMed
Bieli, M., Pfahl, S., and Wernli, H. (2014). A Lagrangian investigation of hot and cold temperature extremes in Europe. Q. J. R. Meteorol. Soc.. doi: 10.1002/qj.2339CrossRefGoogle Scholar
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59(8), 217223.CrossRefGoogle Scholar
Black, E. and Sutton, R. T. (2006). The influence of oceanic conditions on the hot Europen summer of 2003. Climate Dynamics, 28. 5366.CrossRefGoogle Scholar
Cassou, C., Terray, L., and Phillips, A. (2005). Tropical Atlantic influence on European heat waves. Journal of Climate, 18, 28052811.CrossRefGoogle Scholar
Chagnon, F. J. F. and Bras, R. L. (2005). Contemporary climate change in the Amazon. Geophysical Research Letters, 32(13), 14. Available at: http://www.agu.org/pubs/crossref/2005/2005GL022722.shtml [Accessed August 21, 2012].CrossRefGoogle Scholar
Chang, F.-C. and Wallace, J. M. (1987). Meteorological conditions during heat waves and droughts in the United States Great Plains. Monthly Weather Review, 115, 12531269.2.0.CO;2>CrossRefGoogle Scholar
Ciais, P. et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529533. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16177786 [Accessed July 25, 2012].CrossRefGoogle ScholarPubMed
Conil, S., Douville, H. and Tyteca, S. (2006). The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dynamics, 28(2–3), 125145. Available at: http://link.springer.com/10.1007/s00382-006-0172-2 [Accessed July 6, 2013].CrossRefGoogle Scholar
COPA COGECA. (2003). Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry. Fact sheets of the Committee of Agricultural Organisations in the European Union and the General Committee for Agricultural Cooperation in the European Union. Available at: http://www.copa-cogeca.com/pdf/pocc 03 78i4 1e.pdf.Google Scholar
D'Andrea, F. et al. (2006). Hot and cool summers: Multiple equilibria of the continental water cycle. Geophysical Research Letters, 33(24). Available at: http://www.agu.org/pubs/crossref/2006/2006GL027972.shtml [Accessed September 14, 2012].CrossRefGoogle Scholar
D'Andrea, F. et al. (1998). Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dynamics, 14(6), 385407. Available at: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003820050230.CrossRefGoogle Scholar
De Bono, A., Peduzzi, P., Kluser, S., and Giuliani, G. (2004). Impacts of Summer 003 Heat Wave in Europe. (333.7–333.9). United Nations Environment Programme. Retrieved from http://archive-ouverte.unige.ch/unige:32255Google Scholar
Della-Marta, P.M. et al. (2007). Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research, 112(D15), p.D15103. Available at: http://doi.wiley.com/10.1029/2007JD008510 [Accessed May 23, 2014].CrossRefGoogle Scholar
Dufresne, J.-L. and Bony, S. (2008). An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. Journal of Climate, 21(19), 51355144. Available at: http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2239.1 [Accessed February 10, 2014].CrossRefGoogle Scholar
Ek, M. B. and Holtslag, A. a. M. (2004). Influence of soil moisture on boundary layer cloud development. Journal of Hydrometeorology, 5, 8699.2.0.CO;2>CrossRefGoogle Scholar
Eltahir, E. A. B. (1998). A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resources Research, 34(4), 765776. Available at: http://doi.wiley.com/10.1029/97WR03499.CrossRefGoogle Scholar
Ferranti, L. and Viterbo, P. (2006). The European summer of 2003: Sensitivity to soil water initial conditions. Journal of Climate, 2005, 36593680.CrossRefGoogle Scholar
Feudale, L. and Shukla, J. (2007). Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophysical Research Letters, 34(3), 25. Available at: http://www.agu.org/pubs/crossref/2007/2006GL027991.shtml [Accessed March 14, 2012].CrossRefGoogle Scholar
Findell, K. L. and Eltahir, E. A. B. (2003). Atmospheric controls on soil moisture – boundary layer interactions. Part I: Framework development. Journal of Hydrometeorology, 4(3), 552569.2.0.CO;2>CrossRefGoogle Scholar
Fink, A. H., Leckebusch, G. C., and Pinto, J. G. (2004). The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts. Weather, 59, 209216.CrossRefGoogle Scholar
Fischer, E. M. et al. (2007). Contribution of land–atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 34(6), 16. Available at: http://www.agu.org/pubs/crossref/2007/2006GL029068.shtml [Accessed March 27, 2012].CrossRefGoogle Scholar
Fischer, E. M. and Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3(6), 398403. Available at: http://www.nature.com/doifinder/10.1038/ngeo866 [Accessed May 23, 2014].CrossRefGoogle Scholar
Fouillet, a et al. (2006). Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health, 80(1), 1624. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950160&tool=pmcentrez&rendertype=abstract [Accessed May 6, 2014].CrossRefGoogle Scholar
Fouillet, a et al. (2008). Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. International Journal of Epidemiology, 37(2), 309317. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2652641&tool=pmcentrez&rendertype=abstract [Accessed May 6, 2014].CrossRefGoogle Scholar
García-Herrera, R. et al. (2010). A review of the European summer heat wave of 2003. Critical Reviews in Environmental Science and Technology, 40(4), 267306. Available at: http://www.tandfonline.com/doi/abs/10.1080/10643380802238137 [Accessed July 27, 2012].CrossRefGoogle Scholar
Gentine, P. et al. (2013). Surface and atmospheric controls on the onset of moist convection over land. Journal of Hydrometeorology, p.130211131121003. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-12-0137.1 [Accessed June 24, 2013].Google Scholar
Ghil, M. and Robertson, A. W. (2002). “Waves” vs. “particles” in the atmosphere’ s phase space: A pathway to long-range forecasting ? Proceedings of the National Academy of Sciences of the United States of America, 99, 24932500.CrossRefGoogle ScholarPubMed
Grotjahn, R. and Faure, G. (2008). Composite predictor maps of extraordinary weather events in the Sacramento California region. Weather and Forecasting, 23, 313335.CrossRefGoogle Scholar
Guo, Z., Dirmeyer, P. a., and DelSole, T. (2011). Land surface impacts on subseasonal and seasonal predictability. Geophysical Research Letters, 38(24), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2011GL049945 [Accessed June 17, 2013].CrossRefGoogle Scholar
Held, I. M. et al. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 1789117896.CrossRefGoogle ScholarPubMed
Hirschi, M., Seneviratne, S. I., and Schär, C. (2006a). Seasonal variations in terrestrial water storage for major mid-latitude river basins. J. Hydrometeorol., 7, 3960.CrossRefGoogle Scholar
Hirschi, M., Viterbo, P., and Seneviratne, S. I. (2006b). Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis data. Geophys. Res. Lett., 33, L21401.CrossRefGoogle Scholar
Hoerling, M. et al. (2013). Anatomy of an extreme event. Journal of Climate, 26(9), 28112832. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00270.1 [Accessed December 14, 2013].CrossRefGoogle Scholar
Huang, J. and van den Dool, H. M. (1992). Monthly precipitation–temperature prediction over the United States, J. Clim., 13, 11111132.Google Scholar
Hulme, M. (2001). Climatic perspectives on Sahelian dessication: 1973–1998. Global Environmental Change 11, 1929.CrossRefGoogle Scholar
Jung, T., Ferranti, L., and Tompkins, A. M. (2006). Response to the summer of 2003 Mediterranean SST anomalies over Europe and Africa. Journal of Climate, 3, 54395455.CrossRefGoogle Scholar
Kanae, S. et al. (2006). Influence of “realistic” land surface wetness on predictability of seasonal precipitation in boreal summer. Journal of Climate 19, 14501460.CrossRefGoogle Scholar
Khatiwala, S., Shaw, B. E., and Cane, M. a. (2001). Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Geophysical Research Letters, 28(13), 26332636. Available at: http://doi.wiley.com/10.1029/2000GL012773.\CrossRefGoogle Scholar
Klein Tank, A. M. G. et al. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int. J. Climatol. 22 14411453.CrossRefGoogle Scholar
Koster, R. D. et al. (2010). Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophysical Research Letters, 37(2), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2009GL041677 [Accessed July 21, 2013].CrossRefGoogle Scholar
Laaidi, K., Zeghnoun, A., Dousset, B., et al. (2012). The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental Health Perspectives, 120(2), 254.CrossRefGoogle ScholarPubMed
Lorenz, R. et al. (2013). How important is vegetation phenology for European climate and heat waves? Journal of Climate, 26(24), 1007710100. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00040.1 [Accessed May 27, 2014].CrossRefGoogle Scholar
Lovejoy, S. (2014). Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Clim. Dyn., 42, 23392351.CrossRefGoogle Scholar
Meehl, G. a and Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science (New York, N.Y.), 305(5686), 994997. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15310900 [Accessed May 23, 2014].CrossRefGoogle Scholar
Michelangeli, P.-A., Vautard, R., and Legras, B. (1995). Weather regimes: recurrence and quasi stationarity. Journal of the Atmospheric Sciences 52(8), 12371256.2.0.CO;2>CrossRefGoogle Scholar
Mueller, B. and Seneviratne, S. I. (2012). Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 1239812403. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3411978&tool=pmcentrez&rendertype=abstract [Accessed May 28, 2014].CrossRefGoogle ScholarPubMed
Pielke, R. A. et al. (1998). Interactions between the atmosphere and terrestrial ecosystems : influence on weather and climate. Global Change Biology, 4, 461475.CrossRefGoogle Scholar
Pitman, A. J. et al. (2012). Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth System Dynamics Discussions, 3(2), 597641. Available at: http://www.earth-syst-dynam-discuss.net/3/597/2012/ [Accessed May 28, 2014].Google Scholar
Quesada, B. et al. (2012). Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nature Climate Change, 2(10), 736741. Available at: http://www.nature.com/doifinder/10.1038/nclimate1536 [Accessed December 16, 2013].CrossRefGoogle Scholar
Rahmstorf, S. and Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 1790517909. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3207670&tool=pmcentrez&rendertype=abstract [Accessed May 23, 2014].CrossRefGoogle Scholar
Rex, D. R. (1950). Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus 2, 169211.Google Scholar
Schär, C. et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(January), 39263928.CrossRefGoogle ScholarPubMed
Schubert, S. D. et al. (2014). Northern Eurasian heat waves and droughts. Journal of Climate, 27(9), 31693207. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00360.1 [Accessed May 7, 2014].CrossRefGoogle Scholar
Sellers, P. J. et al. (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299), 502509. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.275.5299.502 [Accessed May 23, 2014].CrossRefGoogle ScholarPubMed
Seneviratne, S. I. et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125161. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0012825210000139 [Accessed March 2, 2012].CrossRefGoogle Scholar
Seneviratne, S. I. et al. (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), 205209. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16971947 [Accessed May 22, 2013].CrossRefGoogle ScholarPubMed
Seneviratne, S. I., Donat, M. G., Mueller, B., and Alexander, L. V. (2014). No pause in the increase of hot temperature extremes. Nature, 4(March), 161164.Google Scholar
Sherwood, S. C., Bony, S., and Dufresne, J.-L. (2014). Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505(7481), 3742. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24380952 [Accessed January 20, 2014].CrossRefGoogle ScholarPubMed
Shukla, J. and Mintz, Y. (1982). Influence of land–surface evapotranspiration on the Earth's climate, Science, 215, 14981501.CrossRefGoogle ScholarPubMed
Skamarock, W. C., Klemp, J. B., Dudhia, J., et al. (2008). A description of the advanced research WRF version 3. Technical Report, NCAR.Google Scholar
Simons, A., Uppala, S., Dee, D., and Kobayashi, S. (2007). Era-interim: new ecmwf reanalysis products from 1989 onwards. ECMWF Newslett. 110, 2535.Google Scholar
Smirnova, T. G., Brown, J. M., and Benjamin, S. G. (1997). Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev. 125, 18701884.2.0.CO;2>CrossRefGoogle Scholar
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kim, D. (2000). Parameter-ization of cold season processes in the maps land-surface scheme. J. Geophys. Res. 105, 40774086.CrossRefGoogle Scholar
Stéfanon, M., D'Andrea, F., and Drobinski, P. (2012a). Heatwave classification over Europe and the Mediterranean region. Environmental Research Letters, 7.CrossRefGoogle Scholar
Stéfanon, M., D'Andrea, F., Drobinski, Ph., and de Noblet-Ducoudré, N. (2012b). Effects of interactive vegetation phenology on the 2003 summer heat waves. Journal of Geophysical Research, 117(October), 115.CrossRefGoogle Scholar
Stéfanon, M. et al. (2013). Soil moisture–temperature feedbacks at meso-scale during summer heat waves over Western Europe. Climate Dynamics. Available at: http://link.springer.com/10.1007/s00382-013-1794-9 [Accessed June 12, 2013].Google Scholar
Stéfanon, M., Schindler, S., Drobinski, P., de Noblet-Ducoudré, N., and D'Andrea, F. (2014). Simulating the impact of anthropogenic vegetation land cover on temperature over central France in summer 2003 heatwaves. Climate Research, (Lmd). doi:10.3354/cr01230CrossRefGoogle Scholar
Sutton, C., Hamill, T. M. and Warner, T. T. (2006). Will perturbing soil moisture improve warm-season ensemble forecasts ? A proof of concept. Monthly Weather Review 134, 31743189.CrossRefGoogle Scholar
Taylor, C. M. et al. (2012). Afternoon rain more likely over drier soils. Nature, 489(7416), 423426. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22972193 [Accessed August 15, 2013].CrossRefGoogle ScholarPubMed
Vautard, R. et al. (2007). Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters, 34(7), p.L07711. Available at: http://doi.wiley.com/10.1029/2006GL028001 [Accessed November 19, 2013].CrossRefGoogle Scholar
Vautard, R., Honore, C., Beekmann, M., and Rouil, L. (2005). Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmospheric Environment, 39, 29572967.CrossRefGoogle Scholar
Weisheimer, A. et al. (2011). On the predictability of the extreme summer 2003 over Europe. Geophysical Research Letters, 38(5), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2010GL046455 [Accessed May 28, 2014].CrossRefGoogle Scholar
Westra, D., Steeneveld, G. J. and Holtslag, A. a. M. (2012). Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. Journal of Hydrometeorology, 13(4), 13471358. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-0136.1 [Accessed November 30, 2012].CrossRefGoogle Scholar
Yiou, P. et al. (2007). Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophysical Research Letters, 34(21), 17. Available at: http://www.agu.org/pubs/crossref/2007/2007GL031981.shtml [Accessed March 14, 2012].CrossRefGoogle Scholar
Zaitchik, B. F., Macalady, A. K., Bonneau, L. R., and Smith, R. B. (2006). Europe's 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26, 743769, doi:10.1002/joc.1280.CrossRefGoogle Scholar
Zampieri, M. et al. (2010). Hot European summers and the role of soil moisture in the propagation of Mediterranean drought, Journal of Climate, 22, 135.Google Scholar

References

Black, R. X. and Evans, K. J. (1998). The statistics and horizontal structure of anomalous weather regimes in the Community Climate Model. Monthly Weather Review, 126, 841859.2.0.CO;2>CrossRefGoogle Scholar
Bumbaco, K. A., Dello, K. D., and Bond, N. A. (2013). History of Pacific Northwest heat waves: synoptic pattern and trends. Journal of Applied Meteorology and Climatology, 52, 16181631.doi: http://dx.doi.org/10.1175/JAMC-D-12-094.1CrossRefGoogle Scholar
Dole, R. M. and Black, R. X. (1990). Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Monthly Weather Review, 118, 824846.2.0.CO;2>CrossRefGoogle Scholar
Gent, P. R., Danabasoglu, G., Donner, L. J., et al. (2011). The Community Climate System Model Version 4. Journal of Climate, 24, 49734991. doi: http://dx.doi.org/10.1175/2011JCLI4083.1CrossRefGoogle Scholar
Gershunov, A., Cayan, D. R., and Iacobellis, S. F. (2009). The great 2006 heat wave over California and Nevada: Signal of an increasing trend. Journal of Climate 22, 61816203.CrossRefGoogle Scholar
Grotjahn, R. (2011). Identifying extreme hottest days from large scale upper air data: a pilot scheme to find California Central Valley summertime maximum surface temperatures. Climate Dynamics 37, 587604. DOI 10.1007/s00382-011-0999-zCrossRefGoogle Scholar
Grotjahn, R. and Faure, G. (2008). Composite predictor maps of extraordinary weather events in the Sacramento, California, region. Weather and Forecasting, 23, 313335. doi: http://dx.doi.org/10.1175/2007WAF2006055.1CrossRefGoogle Scholar
Grotjahn, R. (2013). Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern. Climate Dynamics 41, 11871197. doi:10.1007/s00382-013-1668-1CrossRefGoogle Scholar
Grotjahn, R., Black, R., Leung, R., et al. (2015). North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics doi:10.1007/s00382-015-2638-6.CrossRefGoogle Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J., et al. (2002). NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society, 83, 16311643.CrossRefGoogle Scholar
Karl, T. R. and Quayle, R. G. (1981). The 1980 summer heat wave and drought in historical perspective. Monthly Weather Review, 109, 20552073. doi: http://dx.doi.org/10.1175/1520-0493(1981)109<2055:TSHWAD>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Moss, R., Babiker, M., Brinkman, S., et al. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.Google Scholar
Namias, J. (1982). Anatomy of Great Plains protracted heat waves (especially the 1980 U.S. summer drought). Monthly Weather Review, 110, 824838. doi: http://dx.doi.org/10.1175/1520-0493(1982)110<0824:AOGPPH>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. (1986). An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. Journal of the Atmospheric Sciences, 43, 20702087.2.0.CO;2>CrossRefGoogle Scholar

References

Alexander, L. (2010). Extreme heat rooted in dry soils. Nat. Geosci., 3, 12.Google Scholar
Chen, W. Y. (1982). Fluctuations in Northern Hemisphere 700 mb height field associated with southern oscillation. Mon. Wea. Rev. 110, 808832.2.0.CO;2>CrossRefGoogle Scholar
Ding, Y. H. (1992). Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 397421.CrossRefGoogle Scholar
Ding, Y. H., Ren, G. Y., Zhao, Z. C., et al. (2007). Detection, causes and projection of climate change over China: An overview of recent progresses. Adv. Atmos. Sci., 24(6), 954971.CrossRefGoogle Scholar
Ding, Y. H., Wang, Z. Y., and Sun, Y. (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Inter J Climatol, 28(9), 11391161.CrossRefGoogle Scholar
Ding, Y. H., Sun, Y., Wang, Z. Y., Zhu, Y. X., and Song, Y. F. (2009). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. II: Possible causes. Inter. J. Climatol., 29(13), 19261944.CrossRefGoogle Scholar
Duan, A. M., Li, F., Wang, M. R., and Wu, G.X. (2011). Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Clim., 24, 56715682.CrossRefGoogle Scholar
Easterling, D. R., Evans, J. L., Groisman, P. Y., et al. (2000). Observed variability and trends in extreme climate events: a brief review. Bull. Amer. Meteor. Soc., 81, 417425.2.3.CO;2>CrossRefGoogle Scholar
Fu, C. B. (2003). Potential impacts of human-induced land cover change on East Asia monsoon. Global Planet Change, 37, 219229.Google Scholar
Fischer, E. M. and Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403.CrossRefGoogle Scholar
Garcia-Herrera, R., Diaz, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M. (2010). A review of the European summer heatwave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306.CrossRefGoogle Scholar
Hall, N. M. J. (2000). A simple GCM based on dry dynamics and constant forcing. J. Atmos. Sci., 57, 15571572.2.0.CO;2>CrossRefGoogle Scholar
Hirschi, M., Seneviratne, S. I., Alexandrov, V., et al. (2010). Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci, 3, doi: 10.1038/NGEO1032.Google Scholar
Hu, Z. Z. (1997). Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J. Geophys. Res., 102(D16), 1940319412.CrossRefGoogle Scholar
Hu, Z. Z., Yang, S., and Wu, R. (2003). Long-term climate variations in China and global warming signals. J. Geophys. Res., 108(19), 4614, doi: 10.1029/2003JD003651.CrossRefGoogle Scholar
Hu, K. M., Huang, G., and Huang, R. H. (2011). The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Clim., 24, 53655377.CrossRefGoogle Scholar
Ito, H., Johnson, N. C., and Xie, S. P. (2013). Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia. J. Clim., 26, 90269042.CrossRefGoogle Scholar
Kalnay, E., Kanamitus, M., and Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437471.2.0.CO;2>CrossRefGoogle Scholar
Li, J., Yu, R. C., Zhou, T. J., and Wang, B. (2005). Why is there an early spring cooling shift downstream of the Tibetan Plateau? J. Clim., 18, 46604668.CrossRefGoogle Scholar
Li, J. P., Wu, Z. W., Jiang, Z. H., and He, J. H. (2010). Can global warming strengthen the East Asian summer monsoon? J. Clim., 23, 66966705.CrossRefGoogle Scholar
Liu, J. and Chen, R. (2011). Studying the spatiotemporal variation of snow-covered days over China based on combined use of MODIS snow-covered days and in situ observations. Theo. Appl. Climatol., doi: 10.1007/s00704-011-0441-9.CrossRefGoogle Scholar
Massimo, B. and Benedict, S. (2004). The role of the Himalayas and the Tibetan Plateau within the Asian monsoon system. Bull. Amer. Meteor. Soc., 85, 10011004.Google Scholar
Meehl, G. A., et al. (2007). Global climate projections, in Climate Change 2007: The Physical Science Basis: Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., et al., Cambridge University Press, Cambridge, UK.Google Scholar
Meehl, G. A., et al. (2009). Decadal prediction. Bull. Amer. Meteor. Soc., 90, 14671485.CrossRefGoogle Scholar
Nitta, T. and Hu, Z. Z. (1996). Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74(4), 425445.CrossRefGoogle Scholar
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.2.0.CO;2>CrossRefGoogle Scholar
Ose, T. (1996). The comparison of the simulated response to the regional snow mass anomalies over Tibet, eastern Europe, and Siberia. J. Meteor. Soc. Japan, 74, 845866.CrossRefGoogle Scholar
Pu, Z. X., Xu, L., and Salomonson, V. V. (2007). MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett., 34, L06706, doi: 10.1029/2007GL029262.CrossRefGoogle Scholar
Qian, Y. F., Zheng, Y. Q., Zhang, Y., and Miao, M. Q. (2003). Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau. Inter. J. Climatol., 23, 593613.CrossRefGoogle Scholar
Seol, K. H. and Hong, S. Y. (2009). Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: A global and regional modeling study. J. Clim., 22, 20952110.CrossRefGoogle Scholar
Sutton, R. T. and Hodson, D. (2005). Atlantic Ocean forcing of North American and European summer climate science. Science, 309, 115118.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al. (2007). Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M., et al. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Uppala, S. M., Kallberg, P. W., Simmons, A. J., et al. (2005). The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.CrossRefGoogle Scholar
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y. (2008a). Tibetan Plateau warming and precipitation change in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.CrossRefGoogle Scholar
Wang, B. and Ding, Q. (2006). Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, doi:10.1029/2005GL025347.CrossRefGoogle Scholar
Wang, B., Wu, Z. W., Li, J. P., et al. (2008b). How to measure the strength of the East Asian summer monsoon. J. Clim., 17, 44494462.CrossRefGoogle Scholar
Wang, B., Wu, Z. W., Chang, C. P., et al. (2010). Another look at interannual to interdecadal variations of the East Asian winter monsoon. J. Clim., 23, 14951512.CrossRefGoogle Scholar
Wu, G. X. and Coauthors. (2007). The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789.CrossRefGoogle Scholar
Wu, R. and Kirtman, B. P. (2007). Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Clim., 20, 12851304.CrossRefGoogle Scholar
Wu, R., Wen, Z. P., Yang, S., and Li, Y. Q. (2010). An interdecadal change in southern China summer rainfall around 1992–93. J. Clim., 23, 23892403.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., He, J. H., and Jiang, Z. H. (2006). Occurrence of droughts and floods during the normal monsoons in the mid- and lower reaches of the Yangtze River. Geophys. Res. Lett., 33, L05813, doi:10.1029/2005GL024487.CrossRefGoogle Scholar
Wu, Z. W., Wang, B., Li, J. P., and Jin, F. F. (2009). An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi: 10.1029/2009JD011733.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., Jiang, Z. H., and Ma, T. T. (2012a). Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Clim., 25, 24812489.CrossRefGoogle Scholar
Wu, Z. W., Jiang, Z. H., Li, J. P., Zhong, S. S., and Wang, L. J. (2012b). Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of Northern China heatwave frequency. Clim. Dyn., 39, 23932402.CrossRefGoogle Scholar
Yu, R. C., Wang, B., and Zhou, T. J. (2004). Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Clim., 17, 27022713.2.0.CO;2>CrossRefGoogle Scholar
Zhai, P. M., Sun, A. J., Ren, F. M., et al. (1999). Changes of climate extremes in China. Clim. Change, 42, 203218.CrossRefGoogle Scholar
Zhang, Y., Li, T., and Wang, B. (2004). Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the East Asian summer monsoon. J. Clim., 17, 27802793.2.0.CO;2>CrossRefGoogle Scholar
Zhao, P., Zhou, Z. J., and Liu, J. P. (2007). Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Clim., 20, 39423955.CrossRefGoogle Scholar
Zhao, P., Yang, S., and Yu, R. C. (2010). Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Clim., 23, 15441562.CrossRefGoogle Scholar
Zhu, X. Y., He, J. H., and Wu, Z. W. (2007). Meridional seesaw-like distribution of the Meiyu rainfall over the Changjiang-Huaihe River Valley and characteristics in the anomalous climate years. Chin. Sci. Bull., 52(17), 24202428.CrossRefGoogle Scholar

References

Brabson, B. B., Lister, D. H., Jones, P. D., and Palutikof, J. P. (2005). Soil moisture and predicted spells of extreme temperatures in Britain, J. Geophys. Res., 110, D05104.CrossRefGoogle Scholar
Clark, R., T., Murphy, J. M., and Brown, S. J., (2010). Do global warming targets limit heat wave risk? GRL, 37, L17703CrossRefGoogle Scholar
Collins, M., Booth, B. B., Bhaskaran, B., Harris, G. R., Murphy, J. M., Sexton, D. M. H., and Webb, M. J. (2011). Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim. Dyn. 36, 17371766.CrossRefGoogle Scholar
Collins, M., Booth, B. B., Harris, G. R., et al. (2006). Towards quantifying uncertainty in transient climate change Clim. Dyn. 27, 127147.CrossRefGoogle Scholar
IPCC, (2007): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. et al (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp.Google Scholar
Murphy, J.M., Sexton, D. M. H., Barnett, D. N., et al. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768772.CrossRefGoogle Scholar
Reichler, T. and Kim, J. (2008). How well do coupled models simulate today’s climate? Bull. Am. Met. Soc. 89, 303311.CrossRefGoogle Scholar
Rougier, J., Sexton, D. M. H., Murphy, J. M., and Stainforth, D. (2009). Analysing the climate sensitivity of the HadSM3 climate model using ensembles from different but related experiments. J. Clim. 22, 35403557.CrossRefGoogle Scholar
Sutton, R. T., Dong, B., and Gregory, J. M. (2007). Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701CrossRefGoogle Scholar

References

Barnston, A. G. and Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115, 10831126.2.0.CO;2>CrossRefGoogle Scholar
Barriopedro, D., García-Herrera, R., Lupo, A. R., and Hernández, E. (2006). A climatology of Northern Hemisphere blocking. Journal of Climate, 19, 10421063.CrossRefGoogle Scholar
Blackmon, M. L., Wallace, J. M., Lau, N.-C., and Mullen, S. L. (1977). An observational study of the Northern Hemisphere wintertime circulation. Journal of the Atmospheric Sciences, 34, 10401053.2.0.CO;2>CrossRefGoogle Scholar
Boyle, J. S. and Chen, T.-J. (1987). Synoptic aspects of the wintertime East Asian monsoon. In Monsoon Meteorology, Chang, C.-P. and Krishnamurti, T. N., Eds., Oxford University Press, 125160.Google Scholar
Branstator, G. (1987). A striking example of the atmosphere’s leading traveling pattern. Journal of the Atmospheric Sciences, 44, 23102323.2.0.CO;2>CrossRefGoogle Scholar
Bueh, C. and Nakamura, H. (2007). Scandinavian pattern and its climatic impact. Q. Journal of the Royal Meteorological Society, 133, 21172131.CrossRefGoogle Scholar
Chen, W., Yang, S., and Huang, R.H. (2005). Relationship between stationary planetary wave activity and the East Asian winter monsoon. Journal of Geophysical Research, 110, D14110, doi:10.1029/2004JD005669.CrossRefGoogle Scholar
Christiansen, B. (2003). Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16, 36813690.2.0.CO;2>CrossRefGoogle Scholar
Clark, M. P., Serreze, M. C., and Robinson, D. A. (1999). Atmospheric controls on Eurasian snow extent. International Journal of Climatology, 19, 2740.3.0.CO;2-N>CrossRefGoogle Scholar
Ding, Y. and Krishnamurti, T. N. (1987). Heat budget of the Siberian high and the winter monsoon. Mon. Weather Review, 115, 24282449.2.0.CO;2>CrossRefGoogle Scholar
Dörnbrack, A., Pitts, M.C., Poole, L.R., et al. (2012). The 2009–2010 Arctic stratospheric winter – General evolution, mountain waves and predictability of an operational weather forecast model. Atmospheric Chemistry and Physics, 12, 36593675.CrossRefGoogle Scholar
Ficker, H. V. (1911). Das Fortschreiten der Erwärmungen (der Wärmewellen) in Rußland und Nordasien, Sitz. ber. Wiener Akad. Wiss., Abt. 2a, 120, 745835.Google Scholar
Gill, A. E. (1982). Atmosphere–Ocean Dynamics, 662 pp., Academic Press, London.Google Scholar
Gong, D.-Y., Wang, S.-W., and Zhu, J.-H. (2001). East Asian winter monsoon and Arctic oscillation. Geophysical Research Letters, 28, 20732076.CrossRefGoogle Scholar
Gong, D.-Y. and Ho, C.-H. (2004). Intra-seasonal variability of wintertime temperature over East Asia. International Journal of Climatology, 24, 131144.CrossRefGoogle Scholar
Higuchi, K., Lin, C. A., Shabbar, A., and Knox, J. L. (1991). Interannual variability of the January tropospheric meridional eddy sensible heat transport in the Northern Hemisphere. Journal of the Meteorological Society of Japan, 69, 459472.Google Scholar
Honda, M., Inoue, J., and Yamane, S. (2009). Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36, L08707, doi:10.1029/2008GL037079.CrossRefGoogle Scholar
Horel, J. D. and Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813829.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J. and Valdes, P. J. (1990). On the existence of storm tracks. Journal of the Atmospheric Sciences, 47, 18541864.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111, 877946.CrossRefGoogle Scholar
Hsu, H.-H. and Wallace, J. M. (1985). Vertical structure of wintertime teleconnection patterns, Journal of the Atmospheric Sciences, 42, 16931710.2.0.CO;2>CrossRefGoogle Scholar
Hung, C.-W. and Kao, P.-K. (2010). Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern Taiwan and southern China in the early 1980s. Journal of Climate, 23, 23572367.CrossRefGoogle Scholar
Hurwitz, M. M., Newman, P. A., and Garfinkel, C. I. (2012). On the influence of North Pacific sea surface temperature on the Arctic winter climate. Journal of Geophysical Research, 117, D19110, doi:10.1029/2012JD017819.CrossRefGoogle Scholar
Inoue, J., Hori, M. E., and Takaya, K. (2012). The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate, 25, 25612568.CrossRefGoogle Scholar
Jeong, J.-H. and Ho, C.-H. (2005). Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophysical Research Letters, 32, L14704, doi:10.1029/2005GL023024.CrossRefGoogle Scholar
Jeong, J.-H., Kim, B. M., Ho, C. H., and Noh, Y. H. (2008). Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. Journal of Climate, 21, 788801.CrossRefGoogle Scholar
Jhun, J.-G. and Lee, E.-J. (2004). A new East Asian winter monsoon index and associated characteristics of the winter monsoon. Journal of Climate, 17, 711726.2.0.CO;2>CrossRefGoogle Scholar
Joung, C.H. and Hitchman, M.H. (1982). On the role of successive downstream development in East Asian polar air outbreaks. Monthly Weather Review, 110, 12241237.2.0.CO;2>CrossRefGoogle Scholar
Lau, N.-C. and Lau, K.-M. (1984). The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia. Monthly Weather Review, 112, 13091327.2.0.CO;2>CrossRefGoogle Scholar
Kodera, K., Mukougawa, H., and Fujii, A. (2013). Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. Journal of Geophysical Research, 118, 83338345.CrossRefGoogle Scholar
Kolstad, E., Breiteig, T. and Scaife, A. A. (2010). The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society, 136, 886893.CrossRefGoogle Scholar
Kushnir, Y. (1987). Retrograding wintertime low-frequency disturbance over the North Pacific Ocean. Journal of the Atmospheric Sciences, 44, 27272742.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, H. (1992). Midwinter suppression of baroclinic wave activity in the Pacific. Journal of the Atmospheric Sciences, 49, 16291642.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, H., Izumi, T., and Sampe, T. (2002). Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. Journal of Climate, 15, 18551874.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, H., Miyasaka, T., Kosaka, Y., Takaya, K., and Honda, M. (2010). Northern Hemisphere extratropical tropospheric planetary waves and their low-frequency variability: Their vertical structure and interaction with transient eddies and surface thermal contrasts. Climate Dynamics: Why Does Climate Vary? Sun, D. and Bryan, F., Eds., Geophysical Monograph, 189, American Geophysical Union, 149179.Google Scholar
Nishii, K., Nakamura, H., and Orsolini, Y.J. (2010). Cooling of the wintertime Arctic stratosphere induced by the Western Pacific teleconnection pattern. Geophysical Research Letters, 37, L13805, doi:10.1029/ 2010GL043551.CrossRefGoogle Scholar
Nishii, K., Nakamura, H., and Orsolini, Y. J. (2011). Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. Journal of Climate, 24, 64086423.CrossRefGoogle Scholar
Nitta, T. and Yamada, S. (1989). Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. Journal of the Meteorological Society of Japan, 67, 375383.Google Scholar
Orsolini, Y. J., Karpechko, A. Y., and Nikulin, G. (2009). Variability of the Northern Hemisphere polar stratospheric cloud potential: The role of North Pacific disturbances. Quarterly Journal of the Royal Meteorological Society, 135, 10201029.CrossRefGoogle Scholar
Panagiotopoulos, F., Shahgedanova, M., Hannachi, A., and Stephenson, D. B. (2005). Observed trends and teleconnections of the Siberian High: A recently declining center of action. Journal of Climate, 18, 14111422.CrossRefGoogle Scholar
Pavan, V., Tibaldi, S., and Brankovic, C. (2000). Seasonal prediction of blocking frequency: Results from winter ensemble experiments. Quarterly Journal of the Royal Meteorological Society, 126, 21252142.CrossRefGoogle Scholar
Rivière, G. (2010). Role of Rossby wave breaking in the west Pacific teleconnection. Geophysical Research Letters, 37, L11802.CrossRefGoogle Scholar
Rossby, C.-G. and collaborators, (1939). Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research, 2, 3855.CrossRefGoogle Scholar
Schneider, N. and Cournuelle, B.D. (2005). The forcing of the Pacific Decadal Oscillation. Journal of Climate, 18, 43554373.CrossRefGoogle Scholar
Shi, N. (1996). Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate. Journal of Applied Meteorological and Climatology, 7, 175182.Google Scholar
Suda, K. (1957). The mean pressure field characteristic to persistent cold waves in the Far East. Journal of the Meteorological Society of Japan, 35, 192198.Google Scholar
Swanson, K. L. (2000). Stationary wave accumulation and the generation of low-frequency variability of zonally varying flows. Journal of the Atmospheric Sciences, 57, 22622280.2.0.CO;2>CrossRefGoogle Scholar
Swanson, K. L. (2001). Blocking as a local instability to zonally varying flows. Quarterly Journal of the Royal Meteorological Society, 127, 13411355.CrossRefGoogle Scholar
Taguchi, B., Nakamura, H., Nonaka, M., et al. (2012), Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific Subarctic Frontal Zone: Observations and a coupled model simulation. Journal of Climate, 25, 111139.CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2001). A formulation of a phase-independent wave-activity flux of stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58, 608627.2.0.CO;2>CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2005a). Mechanisms of intraseasonal amplification of the cold Siberian High. Journal of the Atmospheric Sciences, 62, 44234440.CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2005b). Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian High. Journal of the Atmospheric Sciences, 62, 44414449.CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2008). Precursory changes in planetary wave activity for midwinter surface pressure anomalies over the Arctic. Journal of the Meteorological Society of Japan, 86, 415427.Google Scholar
Takaya, K. and Nakamura, H. (2013). Interannual variability of the East Asian winter monsoon and related modulations of the planetary waves. Journal of Climate, 26, 94459461.CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 12971300.CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, 13, 10001016.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J. and Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589.CrossRefGoogle ScholarPubMed
Trenberth, K. E. and Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9, 303319.CrossRefGoogle Scholar
Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784812.2.0.CO;2>CrossRefGoogle Scholar
Wang, L., Chen, W., Zhou, W., et al. (2010). Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. International Journal of Climatology, 30, 153158.CrossRefGoogle Scholar
Wang, L. and Chen, W. (2014a). The East Asian winter monsoon: Re-amplification in the mid-2000s. Chinese Science Bulletin, 59, 430436.CrossRefGoogle Scholar
Wang, L. and Chen, W. (2014b). An intensity index for the East Asian winter monsoon. Journal of Climate, 27, 23612374.CrossRefGoogle Scholar
Wang, L. and Feng, J. (2011). Two major modes of the wintertime precipitation over China. Chinese Journal of the Atmospheric Sciences, 35, 11051116.Google Scholar
Wang, L., Huang, R.H., Gu, L., Chen, W., and Kang, L.H. (2009). Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. Journal of Climate, 22, 48604872.CrossRefGoogle Scholar
Woollings, T., Charlton-Perez, A. J., Ineson, S., Marshall, A. G., and Masato, G. (2010). Associations between stratospheric variability and tropospheric blocking. Journal of Geophysical Research, 115, D06108, doi:10.1029/ 2009JD012742.CrossRefGoogle Scholar
Wu, B. and Wang, J. (2002). Winter Arctic Oscillation, Siberian high and East Asian winter. Geophysical Research Letters, 29, doi:10.1029/2002GL015357.CrossRefGoogle Scholar
Wu, M. C. and Chan, J. C. L. (1997). Upper-level features associated with winter monsoon surges over south China. Monthly Weather Review, 125, 317340.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×