Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T01:50:57.573Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  03 November 2016

Dzmitry Badziahin
Affiliation:
University of Durham
Alexander Gorodnik
Affiliation:
University of Bristol
Norbert Peyerimhoff
Affiliation:
University of Durham
Get access

Summary

This book is devoted to some of the interesting recently discovered interactions between Analytic Number Theory and the Theory of Dynamical Systems. Analytical Number Theory has a very long history. Many people associate its starting point with the work of Dirichet on L-functions in 1837, where he proved his famous result about infinitely many primes in arithmetic progressions. Since then, analytical methods have played a crucial role in proving many important results in Number Theory. For example, the study of the Riemann zeta function allowed to uncover deep information about the distribution of prime numbers. Hardy and Littlewood developed their circle method to establish first explicit general estimates for the Waring problem. Later, Vinogradov used the idea of the circle method to create his own method of exponential sums which allowed him to solve, unconditionally of the Riemann hypothesis, the ternary Goldbach conjecture for all but finitely many natural numbers. Roth also used exponential sums to prove the existence of three-term arithmetic progressions in subsets of positive density. One of the fundamental questions which arise in the investigation of exponential sums, as well as many other problems in Number Theory, is how rational numbers/vectors are distributed and how well real numbers/vectors can be approximated by rationals. Understanding various properties of sets of numbers/vectors that have prescribed approximational properties, such as their size, is the subject of the metric theory of Diophantine approximation, which involves an interesting interplay between Arithmetic and Measure Theory. While these topics are now considered as classical, the behaviour of exponential sums is still not well understood today, and there are still many challenging open problems in Diophantine approximation. On the other hand, in the last decades there have been several important breakthroughs in these areas of Number Theory where progress on long-standing open problems has been achieved by utilising techniques which originated from the Theory of Dynamical Systems. These developments have uncovered many profound and very promising connections between number-theoretic and dynamical objects that are at the forefront of current research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×