Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:18:51.010Z Has data issue: false hasContentIssue false

7 - Competence for genetic transformation

Published online by Cambridge University Press:  06 August 2009

Irena Draskovic
Affiliation:
Public Health Research Institute
David Dubnau
Affiliation:
Public Health Research Institute
Peter Mullany
Affiliation:
University College London
Get access

Summary

Competence for genetic transformation is a physiological state that enables the uptake of exogenous DNA. Although competence is widespread in nature (Lorenz and Wackernagel, 1994), it appears to be a variable phenotype because natural isolates of a given species may or may not be transformable, and genome sequencing has revealed the presence of competence genes in isolates that are not known to be transformable.

WHAT USE IS COMPETENCE?

In this chapter, we consider three disputed hypotheses that have been advanced for the biological role of competence: DNA uptake for new genetic information, DNA uptake for repair, and DNA uptake for nutrition.

DNA for genetic diversity

The evolutionary pressure for the maintenance of competence genes may be explained by the advantages gained from the acquisition of fitness-enhancing genes; competence may expand the repertoire of genes available to improve the chances of survival in harsh conditions. Several examples of the acquisition by transformation of new genes that confer a selective advantage have been suggested. For instance, in Neisseria gonorrhoeae, in which transformation is the only known mode of DNA transfer, the expression of new allelic variants may facilitate antigenic variation, which presumably plays a role in the evasion of the host immune response. Thus, although new pilin variants may be formed by intracellular recombination between a silent gene segment and an expressed pilin gene, the intercellular exchange of pilin alleles may also occur by transformation (Gibbs et al., 1989; Seifert et al., 1988).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albano, M., Breitling, R., and Dubnau, D. A. (1989) Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol 171: 5386–5404CrossRefGoogle ScholarPubMed
Albano, M., and Dubnau, D. A. (1989) Cloning and characterization of a cluster of linked Bacillus subtilis late competence mutations. J Bacteriol 171: 5376–5385CrossRefGoogle ScholarPubMed
Albano, M., and Dubnau, D. (1999) Unpublished data
Alloing, G., Martin, B., Granadel, C., and Claverys, J. P. (1998) Development of competence in Streptococcus pneumoniae: Pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol Microbiol 29: 75–83CrossRefGoogle ScholarPubMed
Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., and Dubnau, D. (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 44: 1561–1573CrossRefGoogle ScholarPubMed
Bacon Schneider, K., Palmer, T. M., and Grossman, A. D. (2002) Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 184: 410–419CrossRefGoogle ScholarPubMed
Becskei, A., Seraphin, B., and Serrano, L. (2001) Positive feedback in eukaryotic gene networks: Cell differentiation by graded to binary response conversion. EMBO J 20: 2528–2535CrossRefGoogle ScholarPubMed
Berka, R. M., Hahn, J., Albano, M., Draskovic, I., Persuh, M., Cui, X.. (2002) Microarray analysis of the Bacillus subtilis K-state: Genome-wide expression changes dependent on ComK. Mol Microbiol 43: 1331–1345CrossRefGoogle ScholarPubMed
Burkholder, W. F., and Grossman, A. D. (2000) Regulation of the initiation of endospore formation in Bacillus subtilis. In Shimkets, L. J. (ed). Prokaryotic development. Washington, DC: ASM Press, pp. 151–166Google Scholar
Campbell, E. A., Choi, S. Y., and Masure, H. R. (1998) A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27: 929–939CrossRefGoogle ScholarPubMed
Chandler, M. S. (1992) The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci U S A 89: 1626–1630CrossRefGoogle ScholarPubMed
Chen, I., and Dubnau, D. (2001) Unpublished data
Chen, I., and Dubnau, D. (2003) DNA transport during transformation. Front Biosci 8: 544–56Google ScholarPubMed
Chen, I., and Gotschlich, E. C. (2001) ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183: 3160–3168CrossRefGoogle ScholarPubMed
Claverys, J. P., Prudhomme, M., Mortier-Barriere, I., and Martin, B. (2000) Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity?Mol Microbiol 35: 251–259CrossRefGoogle ScholarPubMed
Clifton, S. W., McCarthy, D., and Roe, B. A. (1994) Sequence of the rec-2 locus of Hemophilus influenzae: Homologies to comE-ORF3 of Bacillus subtilis and msbA of Escherichia coli. Gene 146: 95–100CrossRefGoogle ScholarPubMed
Cohan, F. M., Roberts, M. S., and King, E. C. (1991) The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45: 1383–1421CrossRefGoogle ScholarPubMed
D'Souza, C., Nakano, M. M., and Zuber, P. (1994) Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91: 9397–9401CrossRefGoogle ScholarPubMed
Dahl, M. K., Msadek, T., Kunst, F., and Rapoport, G. (1992) The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267: 14509–14514Google ScholarPubMed
Danner, D. B., Deich, R. A., Sisco, K. L., and Smith, H. O. (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11: 311–318CrossRefGoogle ScholarPubMed
Davies, J. (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375–382CrossRefGoogle ScholarPubMed
Dorocicz, I. R., Williams, P. M., and Redfield, R. J. (1993) The Haemophilus influenzae adenylate cyclase gene: Cloning, sequence, and essential role in competence. J Bacteriol 175: 7142–7149CrossRefGoogle Scholar
Drake, S. L., and Koomey, M. (1995) The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol Microbiol 18: 975–986CrossRefGoogle ScholarPubMed
Drake, S. L., Sandstedt, S. A., and Koomey, M. (1997) PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol Microbiol 23: 657–668CrossRefGoogle ScholarPubMed
Dubnau, D. (1999) DNA uptake in bacteria. Annu Rev Microbiol 53: 217–244CrossRefGoogle ScholarPubMed
Dubnau, D., and Lovett, C. M. Jr., C. M. L. (2001) Transformation and recombination. In Hoch, J. A., Losick, R., and Sonenshein, A. L. (eds). Bacillus subtilis and its relatives: From genes to cells. Washington, DC: American Society for Microbiology, pp. 453–472Google Scholar
Dubnau, D., and Roggiani, M. (1990) Growth medium-independent genetic competence mutants of Bacillus subtilis. J Bacteriol 172: 4048–4055CrossRefGoogle ScholarPubMed
Dworkin, J., and Losick, R. (2001) Linking nutritional status to gene activation and development. Genes Dev 15: 1051–1054CrossRefGoogle ScholarPubMed
Elkins, C., Thomas, C. E., Seifert, H. S., and Sparling, P. F. (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173: 3911–3913CrossRefGoogle ScholarPubMed
Facius, D., and Meyer, T. F. (1993) A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae. Mol Microbiol 10: 699–712CrossRefGoogle ScholarPubMed
Ferrell, J. E. Jr. (2002) Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14: 140–148CrossRefGoogle ScholarPubMed
Finkel, S. E., and Kolter, R. (2001) DNA as a nutrient: Novel role for bacterial competence gene homologs. J Bacteriol 183: 6288–6293CrossRefGoogle ScholarPubMed
Gibbs, C. P., Reimann, B. Y., Schultz, E., Kaufmann, A., Haas, R., and Meyer, T. F. (1989) Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651–652CrossRefGoogle ScholarPubMed
Guenzi, E., Gasc, A. M., Sicard, M. A., and Hakenbeck, R. (1994) A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12: 505–515CrossRefGoogle ScholarPubMed
Gwinn, M. L., Yi, D., Smith, H. O., and Tomb, J. F. (1996) Role of the two-component signal transduction and the phosphoenolpyruvate: Carbohydrate phosphotransferase systems in competence development of Haemophilus influenzae Rd. J Bacteriol 178: 6366–6368CrossRefGoogle ScholarPubMed
Hahn, J., Bylund, J., Haines, M., Higgins, M., and Dubnau, D. (1995) Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis. Mol Microbiol 18: 755–767CrossRefGoogle ScholarPubMed
Hahn, J., and Dubnau, D. (1991) Growth stage signal transduction and the requirements for srfA induction in development of competence. J Bacteriol 173: 7275–7282CrossRefGoogle ScholarPubMed
Hahn, J., and Dubnau, D. (2001) Unpublished data
Hahn, J., Inamine, G., Kozlov, Y., and Dubnau, D. (1993) Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol 10: 99–111CrossRefGoogle ScholarPubMed
Hahn, J., Kong, L., and Dubnau, D. (1994) The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J Bacteriol 176: 5753–5761CrossRefGoogle ScholarPubMed
Hahn, J., Luttinger, A., and Dubnau, D. (1996) Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol Microbiol 21: 763–775CrossRefGoogle ScholarPubMed
Haijema, B. J., Sinderen, D., Winterling, K., Kooistra, J., Venema, G., and Hamoen, L. W. (1996) Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol Microbiol 22: 75–85CrossRefGoogle ScholarPubMed
Haijema, B. J., Hahn, J., Haynes, J., and Dubnau, D. (2001) A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40: 52–64CrossRefGoogle ScholarPubMed
Hamoen, L. W., Eshuis, H., Jongbloed, J., Venema, G., and Sinderen, D. (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15: 55–63CrossRefGoogle ScholarPubMed
Hamoen, L. W., Haijema, B., Bijlsma, J. J., Venema, G., and Lovett, C. M. (2001) The Bacillus subtilis competence transcription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J Biol Chem 276: 42901–7CrossRefGoogle ScholarPubMed
Hamoen, L. W., Kausche, D., Marahiel, M. A., Sinderen, D. V., Venema, G., and Serror, P.The Bacillus subtilis transition state regulator AbrB binds to the –35 promoter region of comK. FEMS Microbiol Lett 218: 299–304CrossRef
Hamoen, L. W., Smits, W. K., Jong Ad, A., Holsappel, S., and Kuipers, O. P. (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30: 5517–5528CrossRefGoogle ScholarPubMed
Hamoen, L. W., Werkhoven, A. F., Bijlsma, J. J. E., Dubnau, D., and Venema, G. (1998) The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev 12: 1539–1550CrossRefGoogle Scholar
Hamoen, L. W., Werkhoven, A. F., Venema, G., and Dubnau, D. (2000) The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc Natl Acad Sci U S A 97: 9246–9251CrossRefGoogle ScholarPubMed
Håvarstein, L. S., Coomaraswamy, G., and Morrison, D. A. (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92: 11140–11144CrossRefGoogle ScholarPubMed
Håvarstein, L. S., Gaustad, P., Nes, I. F., and Morrison, D. A. (1996) Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21: 863–869CrossRefGoogle ScholarPubMed
Håvarstein, L. S., Hakenbeck, R., and Gaustad, P. (1997) Natural competence in the genus Streptococcus: Evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179: 6589–6594CrossRefGoogle ScholarPubMed
Håvarstein, L. S., and Morrison, D. A. (1999) Quorum sensing and peptide pheromones in streptococcal competence for genetic transformation. In Winans, S. C. (ed). Cell–cell signaling in bacteria. Washington, DC: American Society for Microbiology, pp. 9–26Google Scholar
Healy, J., Weir, J., Smith, I., and Losick, R. (1991) Post-transcriptional control of a sporulation regulatory gene encoding transcription factor sigma H in Bacillus subtilis. Mol Microbiol 5: 477–487CrossRefGoogle Scholar
Herriott, R. M., Meyer, E. M., and Vogt, M. (1970) Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J. Bacteriol. 101: 517–524Google ScholarPubMed
Hoa, T. T., and Dubnau, D. (2001) Unpublished data
Hoa, T. T., Tortosa, P., Albano, M., and Dubnau, D. (2002) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43: 15–26CrossRefGoogle ScholarPubMed
Hoelzer, M. A., and Michod, R. E. (1991) DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA. Genetics 128: 215–23Google ScholarPubMed
Hofreuter, D., Odenbreit, S., and Haas, R. (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41: 379–391CrossRefGoogle ScholarPubMed
Hofreuter, D., Odenbreit, S., Henke, G., and Haas, R. (1998) Natural competence for DNA transformation in Helicobacter pylori: Identification and genetic characterization of the comB locus. Mol Microbiol 28: 1027–1038CrossRefGoogle ScholarPubMed
Hofreuter, D., Odenbreit, S., Puls, J., Schwan, D., and Haas, R. (2000) Genetic competence in Helicobacter pylori: Mechanisms and biological implications. Res Microbiol 151: 487–491CrossRefGoogle ScholarPubMed
Horwich, A. L., Weber-Ban, E. U., and Finley, D. (1999) Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A 96: 11033–11040CrossRefGoogle ScholarPubMed
Hui, F. M., and Morrison, D. A. (1991) Genetic transformation in Streptococcus pneumoniae: Nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of a bacterial ATP-dependent transport protein family. J Bacteriol 173: 372–381CrossRefGoogle ScholarPubMed
Ikawa, S., Shibata, T., Ando, T., and Saito, H. (1980) Genetic studies on site-specific endodeoxyribonucleases in Bacillus subtilis: Multiple modification and restriction systems in transformants of Bacillus subtilis. Mol Gen Genet 177: 359–368CrossRefGoogle ScholarPubMed
Inamine, G. S., and Dubnau, D. (1995) ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 177: 3045–3051CrossRefGoogle ScholarPubMed
Karudapuram, S., and Barcak, G. J. (1997) The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol 179: 4815–4820CrossRefGoogle ScholarPubMed
Kong, L., and Dubnau, D. (1994) Regulation of competence-specific gene expression by Mec-mediated protein–protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 91: 5793–5797CrossRefGoogle ScholarPubMed
Kong, L., Siranosian, K. J., Grossman, A. D., and Dubnau, D. (1993) Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis. Mol Microbiol 9: 365–373CrossRefGoogle ScholarPubMed
Kroll, J. S., Wilks, K. E., Farrant, J. L., and Langford, P. R. (1998) Natural genetic exchange between Haemophilus and Neisseria: Intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A 95: 12381–12385CrossRefGoogle ScholarPubMed
Lacks, S., Greenberg, B., and Neuberger, M. (1975) Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. J Bacteriol 123: 222–232Google ScholarPubMed
Lacks, S., and Neuberger, M. (1975) Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J Bacteriol 124: 1321–1329Google ScholarPubMed
Lacks, S. A. (1999) DNA uptake by transformable bacteria. In Broome-Smith, J. K., Baumberg, S., Stirling, C. J., and Ward, F. B. (eds). Transport of molecules across microbial membranes. Cambridge: Cambridge University Press, pp. 138–168Google Scholar
Lacks, S. A., and Greenberg, B. (2001) Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol Microbiol 42: 1035–1045CrossRefGoogle ScholarPubMed
Lazazzera, B. A. (2000) Quorum sensing and starvation: Signals for entry into stationary phase. Curr Opin Microbiol 3: 177–182CrossRefGoogle ScholarPubMed
Lazazzera, B. A., and Grossman, A. D. (1998) The ins and outs of peptide signaling. Trends Microbiol 6: 288–294CrossRefGoogle ScholarPubMed
Lazazzera, B. A., Kurtser, I. G., McQuade, R. S., and Grossman, A. D. (1999a) An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181: 5193–5200Google Scholar
Lazazzera, B. A., Palmer, T., Quisel, J., and Grossman, A. D. (1999b) Cell density control of gene expression and development in Bacillus subtilis. In Dunny, G. M., and Winans, S. C. (eds). Cell–cell signaling in bacteria. Washington, DC: American Society of Microbiology Press, pp. 27–46Google Scholar
Lazazzera, B. A., Solomon, J. M., and Grossman, A. D. (1997) An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89: 917–925CrossRefGoogle ScholarPubMed
Lee, M. S., and Morrison, D. A. (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181: 5004–5016Google ScholarPubMed
Liu, J., and Zuber, P. (1998) A molecular switch controlling competence and motility: Competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 180: 4243–4251Google ScholarPubMed
Liu, L., Nakano, M., Lee, O. H., and Zuber, P. (1996) Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 178: 5144–5152CrossRefGoogle ScholarPubMed
Londono-Vallejo, J. A., and Dubnau, D. (1993) comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 9: 119–131CrossRefGoogle ScholarPubMed
Londono-Vallejo, J. A., and Dubnau, D. (1994a) Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol 176: 4642–4645CrossRefGoogle Scholar
Londono-Vallejo, J. A., and Dubnau, D. (1994b) Membrane association and role in DNA uptake of the Bacillus subtilis PriA analogue ComF1. Mol Microbiol 13: 197–205CrossRefGoogle Scholar
Lorenz, M. G., and Wackernagel, W. (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58: 563–602Google ScholarPubMed
Love, P. E., Lyle, M. J., and Yasbin, R. E. (1985) DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc Natl Acad Sci U S A 82: 6201–6205CrossRefGoogle ScholarPubMed
Lovett, C. M. Jr., O'Gara, T. M., and Woodruff, J. N. (1994) Analysis of the SOS inducing signal in Bacillus subtilis using Escherichia coli LexA as a probe. J Bacteriol 176: 4914–4923CrossRefGoogle ScholarPubMed
Lunsford, R. D., and Roble, A. G. (1997) comYA, a gene similar to comGA of Bacillus subtilis, is essential for competence-factor-dependent DNA transformation in Streptococcus gordonii. J Bacteriol 179: 3122–3126CrossRefGoogle ScholarPubMed
Luo, P., and Morrison, D. A. (2003) Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J Bacteriol 185: 349–358CrossRefGoogle ScholarPubMed
Luttinger, A., Hahn, J., and Dubnau, D. (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19: 343–356CrossRefGoogle ScholarPubMed
Ma, C., and Redfield, R. J. (2000) Point mutations in a peptidoglycan biosynthesis gene cause competence induction in Haemophilus influenzae. J Bacteriol 182: 3323–3330CrossRefGoogle Scholar
Macfadyen, L. P., Dorocicz, I. R., Reizer, J., Saier, M. H. Jr., and Redfield, R. J. (1996) Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol Microbiol 21: 941–952CrossRefGoogle ScholarPubMed
Macfadyen, L. P. (2000) Regulation of competence development in Haemophilus influenzae. J Theor Biol 207: 349–359CrossRefGoogle ScholarPubMed
MacFadyen, L. P., Chen, D., Vo, H. C., Liao, D., Sinotte, R., and Redfield, R. J. (2001) Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40: 700–707CrossRefGoogle ScholarPubMed
Magnuson, R., Solomon, J., and Grossman, A. D. (1994) Biochemical and genetic characterization of a competence pheromone. Cell 77: 207–216CrossRefGoogle ScholarPubMed
Martin, B., Garcia, P., Castanie, M. P., and Claverys, J. P. (1995) The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 15: 367–379CrossRefGoogle ScholarPubMed
Mascher, T., Zahner, D., Merai, M., Balmelle, N., Saizieu, A. B., and Hakenbeck, R. (2003) The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185: 60–70CrossRefGoogle ScholarPubMed
McQuade, R. S., Comella, N., and Grossman, A. D. (2001) Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J Bacteriol 183: 4905–4909CrossRefGoogle ScholarPubMed
Mejean, V., and Claverys, J. P. (1988) Polarity of DNA entry in transformation of Streptococcus pneumoniae. Mol Gen Genet 213: 444–448CrossRefGoogle ScholarPubMed
Mejean, V., and Claverys, J. P. (1993) DNA processing during entry in transformation of Streptococcus pneumoniae. J Biol Chem 268: 5594–5599Google ScholarPubMed
Mongold, J. A. (1992) DNA repair and the evolution of transformation in Haemophilus influenzae. Genetics 132: 893–898Google ScholarPubMed
Msadek, T., Kunst, F., and Rapoport, G. (1994) MecB of Bacillus subtilis is a pleiotropic regulator of the ClpC ATPase family, controlling competence gene expression and survival at high temperature. Proc Natl Acad Sci U S A 91: 5788–5792CrossRefGoogle Scholar
Msadek, T., Kunst, F., and Rapoport, G. (1995) A signal transduction network in Bacillus subtilis includes the DegS/DegU and ComP/ComA two-component systems. In Hoch, J. A., and Silhavy, T. J. (eds). Two-component signal transduction. Washington, DC: ASM PressGoogle Scholar
Nakano, M. M., Hajarizadeh, F., Zhu, Y., and Zuber, P. (2001) Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol 42: 383–394CrossRefGoogle ScholarPubMed
Nakano, M. M., Nakano, S., and Zuber, P. (2002a) Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Mol Microbiol 44: 1341–1349CrossRefGoogle Scholar
Nakano, M. M., Xia, L., and Zuber, P. (1991) Transcription initiation region of the srfA operon which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 173: 5487–5493CrossRefGoogle ScholarPubMed
Nakano, S., Zheng, G., Nakano, M. M., and Zuber, P. (2002b) Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis. J Bacteriol 184: 3664–3670CrossRefGoogle Scholar
Neuwald, A. F., Aravind, L., Spouge, J. L., and Koonin, E. V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9: 27–43Google ScholarPubMed
Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497–1500CrossRefGoogle ScholarPubMed
Ogura, M., Liu, L., Lacelle, M., Nakano, M. M., and Zuber, P. (1999) Mutational analysis of ComS: Evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol 32: 799–812CrossRefGoogle ScholarPubMed
Ogura, M., Yamaguchi, H., Kobayashi, K., Ogasawara, N., Fujita, Y., and Tanaka, T. (2002) Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184: 2344–2351CrossRefGoogle ScholarPubMed
Palmen, R., Vosman, B., Buijsman, P., Breek, C. K., and Hellingwerf, K. J. (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139: 295–305CrossRefGoogle ScholarPubMed
Pan, Q., Garsin, D. A., and Losick, R. (2001) Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol Cell 8: 873–883CrossRefGoogle ScholarPubMed
Pearce, B. J., Naughton, A. M., Campbell, E. A., and Masure, H. R. (1995) The rec locus, a competence-induced operon in Streptococcus pneumoniae. J Bacteriol 177: 86–93CrossRefGoogle ScholarPubMed
Perego, M. (1999) Self-signaling by Phr peptides modulates Bacillus subtilis development. In Dunny, G. M., and Winans, S. C. (eds). Cell–cell signaling in bacteria. Washington, DC: American Society of Microbiology Press, pp. 243–258
Perego, M., Higgins, C. F., Pearce, S. R., Gallagher, M. P., and Hoch, J. A. (1991) The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5: 173–185CrossRefGoogle Scholar
Perego, M., Spiegelman, G. B., and Hoch, J. A. (1988) Structure of the gene for the transition state regulator abrB: Regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis. Mol Microbiol 2: 689–699CrossRefGoogle Scholar
Persuh, M., Dubnau, D. (2000) Unpublished data
Persuh, M., Dubnau, D. (2001) Unpublished data
Persuh, M., Mandic-Mulec, I., and Dubnau, D. (2002) A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J Bacteriol 184: 2310–2313CrossRefGoogle ScholarPubMed
Persuh, M., Turgay, K., Mandic-Mulec, I., and Dubnau, D. (1999) The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol 33: 886–894CrossRefGoogle Scholar
Pestova, E. V., Håvarstein, L. S., and Morrison, D. A. (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21: 853–862CrossRefGoogle Scholar
Pestova, E. V., and Morrison, D. A. (1998) Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J Bacteriol 180: 2701–2710Google ScholarPubMed
Peterson, S., Cline, R. T., Tettelin, H., Sharov, V., and Morrison, D. A. (2000) Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182: 6192–6202CrossRefGoogle ScholarPubMed
Piazza, F., Tortosa, P., and Dubnau, D. (1999) Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J Bacteriol 181: 4540–4548Google ScholarPubMed
Porstendorfer, D., Drotschmann, U., and Averhoff, B. (1997) A novel competence gene, comP, is essential for natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 63: 4150–4157Google ScholarPubMed
Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594Google Scholar
Pozzi, G., Masala, L., Iannelli, F., Manganelli, R., Håvarstein, L. S., Piccoli, L.. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: Two allelic variants of the peptide pheromone. J Bacteriol 178: 6087–6090CrossRefGoogle ScholarPubMed
Provvedi, R., Chen, I., and Dubnau, D. (2001) NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol Microbiol 40: 634–644CrossRefGoogle ScholarPubMed
Provvedi, R., and Dubnau, D. (1999) ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol Microbiol 31: 271–280CrossRefGoogle ScholarPubMed
Puyet, A., Greenberg, B., and Lacks, S. A. (1990) Genetic and structural characterization of EndA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J Mol Biol 213: 727–738CrossRefGoogle Scholar
Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W., and Sonenshein, A. L. (2001) Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15: 1093–1103CrossRefGoogle ScholarPubMed
Redfield, R. J. (1991) sxy-1, A Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J Bacteriol 173: 5612–5618CrossRefGoogle ScholarPubMed
Redfield, R. J. (1993) Evolution of natural transformation: Testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133: 755–761Google ScholarPubMed
Rimini, R., Jansson, B., Feger, G., Roberts, T. C., Francesco, M., Gozzi, A.. (2000) Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol Microbiol 36: 1279–1292CrossRefGoogle ScholarPubMed
Roberts, M. S., and Cohan, F. M. (1993) The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134: 401–408Google ScholarPubMed
Roberts, M. S., and Cohan, F. M. (1995) Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49: 1081–1094CrossRefGoogle ScholarPubMed
Roggiani, M., and Dubnau, D. (1993) ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J Bacteriol 175: 3182–3187CrossRefGoogle ScholarPubMed
Roggiani, M., Hahn, J., and Dubnau, D. (1990) Suppression of early competence mutations in Bacillus subtilis by mec mutations. J Bacteriol 172: 4056–4063CrossRefGoogle ScholarPubMed
Rosenthal, A. L., and Lacks, S. D. (1980) Complex structure of the membrane nuclease of Streptococcus pneumoniae revealed by two dimensional electrophoresis. J Mol Biol 141: 133–146CrossRefGoogle ScholarPubMed
Rudner, D. Z., LeDeaux, J. R., Ireton, K., and Grossman, A. D. (1991) The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 173: 1388–1398CrossRefGoogle ScholarPubMed
Schirmer, E. C., Glover, J. R., Singer, M. A., and Lindquist, S. (1996) HSP100/Clp proteins: A common mechanism explains diverse functions. Trends Biochem Sci 21: 289–296CrossRefGoogle ScholarPubMed
Schlothauer, T., Nogk, A., Dougan, D., Bukau, B., and Turgay, K. (2003) MecA, an adapter protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100: 2306–11CrossRefGoogle Scholar
Seifert, H. S., Ajioka, R. S., Marchal, C., Sparling, P. F., and So, M. (1988) DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336: 392–395CrossRefGoogle ScholarPubMed
Seifert, H. S., Ajioka, R. S., Paruchuri, D., Heffron, F., and So, M. (1990) Shuttle mutagenesis of Neisseria gonorrhoeae: Pilin null mutations lower DNA transformation competence. J Bacteriol 172: 40–46CrossRefGoogle ScholarPubMed
Serror, P., and Sonenshein, A. L. (1996) CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178: 5910–5915CrossRefGoogle ScholarPubMed
Smeets, L. C., and Kusters, J. G. (2002) Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 10: 159–162CrossRefGoogle Scholar
Smith, H. O., Gwinn, M. L., and Salzberg, S. L. (1999) DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150: 603–616CrossRefGoogle ScholarPubMed
Solomon, J., Magnuson, R., Srivastava, A., and Grossman, A. D. (1995) Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 9: 547–558CrossRefGoogle ScholarPubMed
Solomon, J. M., Lazazzera, B. A., and Grossman, A. D. (1996) Purification and characterization of an extracellular peptide factor that affects two developmental pathways in Bacillus subtilis. Genes Dev 10: 2014–2024CrossRefGoogle ScholarPubMed
Strauch, M., Webb, V., Spiegelman, G., and Hoch, J. A. (1990) The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc Natl Acad Sci U S A 87: 1801–1805CrossRefGoogle ScholarPubMed
Suerbaum, S., Smith, J. M., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I.. (1998) Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95: 12619–12624CrossRefGoogle ScholarPubMed
Tomasz, A., and Hotchkiss, R. D. (1964) Regulation of the transformability of pneumococcal cell cultures by macromolecular cell products. Proc Natl Acad Sci U S A 51: 480–486CrossRefGoogle Scholar
Tomasz, A., and Mosser, J. L. (1966) On the nature of the pneumococcal activator substance. Proc Natl Acad Sci U S A 55: 58–66CrossRefGoogle ScholarPubMed
Tomb, J.-F., El-Hajj, H., and Smith, H. O. (1991) Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae RD. Gene 104: 1–10CrossRefGoogle ScholarPubMed
Tønjum, T., Freitag, N. E., Namork, E., and Koomey, M. (1995) Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 16: 451–464CrossRefGoogle ScholarPubMed
Tortosa, P., Logsdon, L., Kraigher, B., Itoh, Y., Mandic-Mulec, I., and Dubnau, D. (2000) Specificity and genetic polymorphism of the Bacillus competence quorum-sensing system. J Bacteriol 183: 451–460CrossRefGoogle Scholar
Tran, L.-S. P., Nagai, T., and Itoh, Y. (2000) Divergent structure of the ComQXPA quorum sensing components: Molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 37: 1159–1171CrossRefGoogle ScholarPubMed
Trautner, T. A., Pawlek, B., Bron, S., and Anagnostopoulos, C. (1974) Restriction and modification in B. subtilis. Biological aspects. Mol Gen Genet 131: 181–191CrossRefGoogle Scholar
Turgay, K., Hamoen, L. W., Venema, G., and Dubnau, D. (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11: 119–128CrossRefGoogle ScholarPubMed
Turgay, K., Hahn, J., Burghoorn, J., and Dubnau, D. (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17: 6730–6738Google ScholarPubMed
Turgay, K., Persuh, M., Hahn, J., and Dubnau, D. (2001) Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Mol Microbiol 42: 717–727CrossRefGoogle ScholarPubMed
Sinderen, D., Luttinger, A., Kong, L., Dubnau, D., Venema, G., and Hamoen, L. (1995) comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15: 455–462CrossRefGoogle ScholarPubMed
Sinderen, D., ten Berge, A., Hayema, B. J., Hamoen, L., and Venema, G. (1994) Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol Microbiol 11: 695–703CrossRefGoogle ScholarPubMed
Sinderen, D., and Venema, G. (1994) comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 176: 5762–5770CrossRefGoogle ScholarPubMed
Vosman, B., Kooistra, J., Olijve, J., and Venema, G. (1987) Cloning in Escherichia coli of the gene specifying the DNA-entry nuclease of Bacillus subtilis. Gene 52: 175–183CrossRefGoogle ScholarPubMed
Vosman, B., Kuiken, G., and Venema, G. (1988) Transformation in Bacillus subtilis: Involvement of the 17-kilodalton DNA-entry nuclease and the competence-specific 18-kilodalton protein. J Bacteriol 170: 3703–3710CrossRefGoogle ScholarPubMed
Ween, O., Gaustad, P., and Håvarstein, L. S. (1999) Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33: 817–827CrossRefGoogle ScholarPubMed
Weinrauch, Y., Msadek, T., Kunst, F., and Dubnau, D. (1991) Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 173: 5685–5693CrossRefGoogle ScholarPubMed
Weinrauch, Y., Penchev, R., Dubnau, E., Smith, I., and Dubnau, D. (1990) A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev 4: 860–872CrossRefGoogle ScholarPubMed
Wolfgang, M., Lauer, P., Park, H. S., Brossay, L., Hebert, J., and Koomey, M. (1998) PiIT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29: 321–330CrossRefGoogle Scholar
Zulty, J. J., and Barcak, G. J. (1995) Identification of a DNA transformation gene required for com101A+ expression and supertransformer phenotype in Haemophilus influenzae. Proc Natl Acad Sci U S A 92: 3616–3620CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×