Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T07:08:50.781Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 June 2022

Tao Xiang
Affiliation:
Chinese Academy of Sciences, Beijing
Congjun Wu
Affiliation:
Westlake University, Hangzhou
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bednorz, J. G. and Müller, K. A.. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B , 64:189193, 1986.CrossRefGoogle Scholar
[2] Tinkham, M.. Introduction to Superconductivity . McGraw-Hill, 2nd ed., New York, 1996.Google Scholar
[3] Schrieffer, J. R.. Theory of Superconductivity . Benjamin/Cummings, New York, 1964.Google Scholar
[4] Ketterson, J. B. and Song, S. N.. Superconductivity . Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
[5] Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H.. Iron-based layered super-conductor La(O1−x F x )FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. , 130:32963297, 2008.CrossRefGoogle Scholar
[6] Mahan, G. D.. Many-Particle Physics . Plenum Press, New York, 2nd ed., 1981.Google Scholar
[7] Xiang, T.. D-wave Superconductivity . Science Press, Beijing, 1st ed., 2007.Google Scholar
[8] Onnes, H. K.. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden , 120b, 1911.Google Scholar
[9] Onnes, H. K.. The disappearance of the resistivity of mercury. Commun. Phys. Lab. Univ. Leiden , 122b, 1911.Google Scholar
[10] Onnes, H. K.. On the sudden change in the rate at which the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden , 124c, 1911.Google Scholar
[11] Meissner, W. and , R. Ochsenfeld. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften , 21:787788, 1933.CrossRefGoogle Scholar
[12] Hsu, F. C., Luo, J. Y., Yeh, K. W., et al. Superconductivity in the PbO-type structure-FeSe. Proc. Nat. Acad. Sci. , 105:1426214264, 2008.CrossRefGoogle Scholar
[13] Ashcroft, N. W.. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. , 21:17481749, 1968.CrossRefGoogle Scholar
[14] Ashcroft, N. W.. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. , 92:187002, 2004.Google Scholar
[15] Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V., and Shilin, S. I.. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature , 569:528, 2015.CrossRefGoogle Scholar
[16] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.. Superconductivity at 39K in magnesium diboride. Nature , 410:6364, 2001.CrossRefGoogle Scholar
[17] Schilling, A., Cantoni, M., Guo, J., and Ott, H.. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature , 363:5658, 1993.CrossRefGoogle Scholar
[18] Snider, E., Dasenbrock-Gammon, N., McBride, R., et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature , 586:373377, Dec 2020.CrossRefGoogle Scholar
[19] Yang, C. N.. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. , 34:694704, Oct 1962.CrossRefGoogle Scholar
[20] Gorter, C. J. and Casimir, H. B. G.. On superconductivity I. Physica , 1:30320, 1934.CrossRefGoogle Scholar
[21] London, F. and London, H.. The electromagnetic equations of the supraconductor. Proc. Royal Soc. London. Series A: Math. Phys. Sci. , 149:7188, 1935.Google Scholar
[22] Cooper, L. N.. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. , 104: 11891190, 1956.CrossRefGoogle Scholar
[23] Bardeen, J., Cooper, L. N., and Schrieffer, J. R.. Theory of superconductivity. Phys. Rev. , 108:11751204, 1957.Google Scholar
[24] De Gennes, P. G.. Superconductivity of Metals and Alloys (Advanced Book Classics). Addison-Wesley Publ. Company Inc, Boston, 1999.Google Scholar
[25] Hohenberg, P. C.. Existence of long-range order in one and two dimensions. Phys. Rev. , 158:383386, 1967.CrossRefGoogle Scholar
[26] Anderson, P. W.. Coherent excited states in the theory of superconductivity: Gauge invariance and the Meissner effect. Phys. Rev. , 110:827835, 1958.Google Scholar
[27] Ginzburg, V. L. and Landau, L. D.. On the theory of superconductivity. Zh. Eksperim. i. Teor. Fiz. , 20:1064, 1950.Google Scholar
[28] Gorkov, L. P.. Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. Sov. Phys. JETP , 9:13641367, 1959.Google Scholar
[29] Deaver, B. S. and Fairbank, W. M.. Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett. , 7:4346, 1961.Google Scholar
[30] Doll, R. and Näbauer, M.. Experimental proof of magnetic flux quantization in a superconducting ring. Phys. Rev. Lett. , 7:5152, Jul. 1961.CrossRefGoogle Scholar
[31] Pippard, A. B. and Bragg, W. L.. An experimental and theoretical study of the relation between magnetic field and current in a superconductor. Proc. Royal Soc. London. Series A: Math. Phys. Sci. , 216:547568, 1953.Google Scholar
[32] Emery, V. J. and Kivelson, S. A.. Importance of phase fluctuations in superconductors with small superfluid density. Nature , 374:434437, 1995.Google Scholar
[33] Uemura, Y. J., Luke, G. M., Sternlieb, B. J., et al. Universal correlations between Tc and ns/m * (carrier density over effective mass) in high-T c cuprate superconductors. Phys. Rev. Lett. , 62:23172320, 1989.Google Scholar
[34] McMillan, W. L.. Transition temperature of strong-coupled superconductors. Phys. Rev. , 167:331344, 1968.CrossRefGoogle Scholar
[35] Scalapino, D. J.. Antiferromagnetic fluctuations and -pairing in the cuprates. Phys. C: Supercond. , 235–240:107112, 1994.CrossRefGoogle Scholar
[36] de la Cruz, C., Huang, Q., Lynn, J. W., et al. Magnetic order close to superconductivity in the iron-based layered LaO1−x F x FeAs systems. Nature , 453:899, 2008.CrossRefGoogle Scholar
[37] Anderson, P. W.. The resonating valence bond state in La2CuO4 and superconductivity. Science , 235:11961198, 1987.Google Scholar
[38] Mackenzie, A. P. and Maeno, Y.. The superconductivity of Sr 2 RuO 4 and the physics of spin-triplet pairing. Rev. Mod. Phys. , 75:657712, 2003.Google Scholar
[39] Kotliar, G. and Liu, J. L.. Superexchange mechanism and d-wave superconductivity. Phys. Rev. B , 38:51425145, 1988.Google Scholar
[40] Bickers, N. E., Scalapino, D. J., and White, S. R.. Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Lett. , 62:961964, 1989.Google Scholar
[41] Moriya, T., Takahashi, Y., and Ueda, K.. Antiferromagnetic spin fluctuations and superconductivity in two-dimensional metals – A possible model for high Tc oxides. J. Phys. Soc. Jpn. , 59:29052915, 1990.Google Scholar
[42] Monthoux, P., Balatsky, A. V., and Pines, D.. Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. Phys. Rev. B , 46:1480314817, 1992.Google Scholar
[43] Yamashita, T., Kawakami, A., Nishihara, T., Hirotsu, Y., and Takata, M.. AC Josephson effect in point-contacts of Ba-Y-Cu-O ceramics. Jpn. J. Appl. Phys. , 26:L635, 1987.Google Scholar
[44] Yamashita, T., Kawakami, A., Nishihara, T., Takata, M., and Kishio, K.. RF power dependence of AC Josephson current in point contacts of BaY (Tm) CuO ceramics. Jpn. J. Appl. Phys. , 26:L671, 1987.Google Scholar
[45] Witt, T. J.. Accurate determination of in Y-Ba-Cu-O Josephson junctions. Phys. Rev. Lett. , 61:14231426, 1988.CrossRefGoogle ScholarPubMed
[46] Hoevers, H. F. C., Van Bentum, P. J. M., Van De Leemput, L. E. C., et al. Determination of the energy gap in a thin YBa2Cu3O7−x film by Andreev reflection and by tunneling. Phys. C: Supercond. , 152:105110, 1988.CrossRefGoogle Scholar
[47] Van Bentum, P. J. M., Hoevers, H. F. C., Van Kempen, H., et al. Determination of the energy gap in YBa2Cu3O7−δ by tunneling, far infrared reflection and Andreev reflection. Phys. C: Supercond. , 153:17181723, 1988.CrossRefGoogle Scholar
[48] Gough, C. E., Colclough, M. S., Forgan, E. M., Jordan, R. G., and Keene, M.. Flux quantization in a high-Tc superconductor. Nature , 326:855, 1987.CrossRefGoogle Scholar
[49] Koch, R. H., Umbach, C. P., Clark, G. J., Chaudhari, P., and Laibowitz, R. B.. Quantum interference devices made from superconducting oxide thin films. Appl. Phys. Lett. , 51:200202, 1987.Google Scholar
[50] Gammel, P. L., Polakos, P. A., Rice, C. E., Harriott, L. R., and Bishop, D. J.. Little-Parks oscillations of Tc in patterned microstructures of the oxide superconductor YBa2Cu3O7: Experimental limits on fractional-statistics-particle theories. Phys. Rev. B , 41:25932596, 1990.CrossRefGoogle ScholarPubMed
[51] Campuzano, J. C., Ding, H., Norman, M. R., et al. Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission. Phys. Rev. B , 53:R14737R14740, 1996.CrossRefGoogle ScholarPubMed
[52] Takigawa, M., Hammel, P. C., Heffner, R. H., and Fisk, Z.. Spin susceptibility in superconducting YBa2Cu3O7 from 63Cu Knight shift. Phys. Rev. B , 39:73717374, Apr 1989.Google Scholar
[53] Barrett, S. E., Durand, D. J., Pennington, C. H., et al. 63Cu Knight shifts in the superconducting state of YBa2Cu3O7−δ (Tc = 90K). Phys. Rev. B , 41:62836296, 1990.Google Scholar
[54] Xiang, T.. Physical properties of d-wave superconductors and pairing symmetry of high temperature superconducting electrons, in Fundamental Research in High-Tc superconductivity, ed. Zhou, W. Z. and Liang, W. Y.. Shanghai Science and Technology Press, Shanghai, 1999.Google Scholar
[55] Ma, F., Ji, W., Hu, J., Lu, Z. Y., and Xiang, T.. First-principles calculations of the electronic structure of tetragonal alpha-FeTe and alpha-FeSe crystals: Evidence for a bicollinear antiferromagnetic order. Phys. Rev. Lett. , 102, 2009.Google Scholar
[56] Bao, W., Huang, Q. Z., Chen, G. F., et al. A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chin. Phys. Lett. , 28:86104, 2011.Google Scholar
[57] Ma, F., Lu, Z. Y., and Xiang, T.. Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO. Phys. Rev. B. , 78:224517, 2008.Google Scholar
[58] Yan, X. W., Gao, M., Lu, Z. Y., and Xiang, T.. Electronic structures and magnetic order of ordered-Fe-vacancy ternary iron selenides TlFe1.5Se2 and AFe1.5Se2 (A = K, Rb, or Cs). Phys. Rev. Lett. , 106:087005, 2011.Google Scholar
[59] Yildirim, T.. Origin of the 150-K anomaly in LaFeAsO: Competing antiferromagnetic interactions, frustration, and a structural phase transition. Phys. Rev. Lett. , 101:057010, 2008.Google Scholar
[60] Yi, M., Lu, D. H., Yu, R., et al. Observation of temperature-induced crossover to an orbital-selective Mott phase in A x Fe2−y Se2 (A=K, Rb) superconductors. Phys. Rev. Lett. , 110:067003, 2013.Google Scholar
[61] Grafe, H.-J., Paar, D., Lang, G., et al. 75As NMR studies of superconducting LaFeAsO0.9F0.1 . Phys. Rev. Lett. , 101:047003, 2008.Google Scholar
[62] Ning, F., Ahilan, K., Imai, T., et al. 59Co and 75As NMR investigation of electron-doped high-T c superconductor BaFe1.8Co0.2As2 (T c = 22 K). J. Phys. Soc. Jpn. , 77:103705, 2008.Google Scholar
[63] Liu, D., Li, C., Huang, J., et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys. Rev. X , 8:031033, 2018.Google Scholar
[64] Mazin, I. I., Singh, D. J., Johannes, M. D., and Du, M. H.. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−x F x . Phys. Rev. Lett. , 101:057003, 2008.CrossRefGoogle Scholar
[65] Seo, K., Bernevig, B. A., and Hu, J.. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. , 101:206404, 2008.Google Scholar
[66] Wang, F., Zhai, H., Ran, Y., Vishwanath, A., and Lee, D. H.. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based hightemperature superconductor. Phys. Rev. Lett. , 102:047005, 2009.CrossRefGoogle ScholarPubMed
[67] Kuroki, K., Usui, H., Onari, S., Arita, R., and Aoki, H.. Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors. Phys. Rev. B , 79:224511, 2009.Google Scholar
[68] Onari, S. and Kontani, H.. Violation of Anderson’s theorem for the sign-reversing s-wave state of iron-pnictide superconductors. Phys. Rev. Lett. , 103:177001, 2009.Google Scholar
[69] Maier, T. A. and Scalapino, D. J.. Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides. Phys. Rev. B , 78:020514, 2008.Google Scholar
[70] Korshunov, M. M. and Eremin, I.. Theory of magnetic excitations in iron-based layered superconductors. Phys. Rev. B , 78:140509, 2008.CrossRefGoogle Scholar
[71] Christianson, A. D., Goremychkin, E. A., Osborn, R., et al. Unconventional super-conductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature , 456:930, 2008.Google Scholar
[72] Inosov, D. S., Park, J. T., Bourges, P., et al. Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2 . Nat. Phys. , 6:178181, 2010.Google Scholar
[73] Li, S., Zhang, C., Wang, M., et al. Normal-state hourglass dispersion of the spin excitations in FeSe x Te1−x . Phys. Rev. Lett. , 105:157002, 2010.Google Scholar
[74] Hanaguri, T., Niitaka, S., Kuroki, K., and Takagi, H.. Unconventional s-wave super-conductivity in Fe(Se,Te). Science , 328:474476, 2010.CrossRefGoogle Scholar
[75] Grothe, S., Chi, S., Dosanjh, P., et al. Bound states of defects in superconducting LiFeAs studied by scanning tunneling spectroscopy. Phys. Rev. B , 86:174503, 2012.Google Scholar
[76] Song, C. L., Wang, Y. L., Jiang, Y. P., et al. Suppression of superconductivity by twin boundaries in FeSe. Phys. Rev. Lett. , 109:137004, 2012.CrossRefGoogle ScholarPubMed
[77] Yang, H., Wang, Z., Fang, D. L., Deng, Q., et al. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy. Nat. Commun. , 4:2749, 2013.CrossRefGoogle Scholar
[78] Yin, J. X., Wu, Z., Wang, J. H., et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. , 11:543, 2015.Google Scholar
[79] Fernandes, R. M. and Schmalian, J.. Competing order and nature of the pairing state in the iron pnictides. Phys. Rev. B , 82:014521, 2010.Google Scholar
[80] Laplace, Y., Bobroff, J., Rullier-Albenque, F., Colson, D., and Forget, A.. Atomic coexistence of superconductivity and incommensurate magnetic order in the pnictide Ba(Fe1−x Co x )2As2 . Phys. Rev. B , 80:140501, 2009.CrossRefGoogle Scholar
[81] Nandi, S., Kim, M. G., Kreyssig, A., et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−x Co x )2As2 single crystals. Phys. Rev. Lett. , 104:057006, 2010.Google Scholar
[82] Reid, J.-Ph., Tanatar, M. A., Juneau-Fecteau, A., et al. Universal heat conduction in the iron arsenide superconductor KFe2As2: Evidence of a d-wave state. Phys. Rev. Lett. , 109:087001, 2012.Google Scholar
[83] Song, C. L., Wang, Y. L., Cheng, P., et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science , 332:14101413, 2011.Google Scholar
[84] Tafti, F. F., Juneau-Fecteau, A., Delage, M-É, et al. Sudden reversal in the pressure dependence of T c in the iron-based superconductor KFe2As2 . Nat. Phys. , 9:349, 2013.CrossRefGoogle Scholar
[85] Damascelli, A., Hussain, Z., and Shen, Z. X.. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. , 75:473541, Apr 2003.Google Scholar
[86] Anderson, P. W.. Hall effect in the two-dimensional Luttinger liquid. Phys. Rev. Lett. , 67:20922094, 1991.Google Scholar
[87] Chien, T. R., Wang, Z. Z., and Ong, N. P.. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3−x Zn x O7−δ . Phys. Rev. Lett. , 67:20882091, 1991.Google Scholar
[88] Timusk, T. and Statt, B.. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. , 62:61, 1999.CrossRefGoogle Scholar
[89] Zhou, F., Hor, P. H., Dong, X. L., and Zhao, Z. X.. Anomalies at magic charge densities in under-doped La2−x Sr x CuO4 superconductor crystals prepared by floating-zone method. Sci. Tech. Adv. Mater. , 6:873, 2005.Google Scholar
[90] Xu, Z. A., Ong, N. P., Wang, Y. Y., Kakeshita, T., and Uchida, S.. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−x Sr x CuO4 . Nature , 406:486488, 2000.Google Scholar
[91] Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y., and Uchida, S.. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature , 375:561563, 1995.Google Scholar
[92] Tallon, J. L. and Loram, J. W.. The doping dependence of T* – what is the real high-Tc phase diagram? Phys. C , 349:5368, 2001.Google Scholar
[93] Panagopoulos, C., Tallon, J. L., Rainford, B. D., et al. Evidence for a generic quantum transition in high-Tc cuprates. Phys. Rev. B , 66:064501, 2002.CrossRefGoogle Scholar
[94] Yang, C. N. and Zhang, S. C.. SO4 symmetry in a Hubbard model. Mod. Phys. Lett. , 04:759766, 1990.Google Scholar
[95] Zaanen, J., Sawatzky, G. A., and Allen, J. W.. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. , 55:418421, 1985.Google Scholar
[96] Emery, V. J.. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett. , 58:27942797, 1987.Google Scholar
[97] Zhang, F. C. and Rice, T. M.. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B , 37:37593761, 1988.Google Scholar
[98] Lieb, E. H. and Wu, F. Y.. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. , 20:14451448, 1968.Google Scholar
[99] Xiang, T. and Wheatley, J. M.. c-axis superfluid response of copper oxide superconductors. Phys. Rev. Lett. , 77:46324635, 1996.Google Scholar
[100] Xiang, T., Panagopoulos, C., and Cooper, J. R.. Low temperature superfluid response of high-Tc superconductors. Int. J. Mod. Phys. B , 12:10071032, 1998.Google Scholar
[101] Feng, D. L., Armitage, N. P., Lu, D. H., et al. Bilayer splitting in the electronic structure of heavily overdoped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. , 86:55505553, 2001.CrossRefGoogle Scholar
[102] Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P., and Balicas, L.. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature , 425:814817, 2003.Google Scholar
[103] Xiang, T., Su, Y. H., Panagopoulos, C., Su, Z. B., and Yu, L.. Microscopic Hamiltonian for Zn- or Ni-substituted high-temperature cuprate superconductors. Phys. Rev. B , 66:174504, 2002.Google Scholar
[104] Wheatley, J. and Xiang, T.. Stability of d-wave pairing in two dimensions. Solid State Commun. , 88:593595, 1993.Google Scholar
[105] Liang, W. Y., Loram, J. W., Mirza, K. A., Athanassopoulou, N., and Cooper, J. R.. Specific heat and susceptibility determination of the pseudogap in YBCO7−δ . Phys. C: Supercond. , 263:277281, 1996. Proceedings of the International Symposium on Frontiers of High-T c Superconductivity.Google Scholar
[106] Momono, N. and Ido, M.. Evidence for nodes in the superconducting gap of La2−x Sr x CuO4 . T 2 dependence of electronic specific heat and impurity effects. Phys. C , 264:311318, 1996.Google Scholar
[107] Mahan, G. D.. Theory of photoemission in simple metals. Phys. Rev. B , 2:43344350, 1970.Google Scholar
[108] Schaich, W. L. and Ashcroft, N. W.. Model calculations in the theory of photoemission. Phys. Rev. B , 3:24522465, 1971.Google Scholar
[109] Berglund, C. N. and Spicer, W. E.. Photoemission studies of copper and silver: Theory. Phys. Rev. , 136:A1030A1044, 1964.Google Scholar
[110] Feibelman, P. J. and Eastman, D. E.. Photoemission spectroscopy – correspondence between quantum theory and experimental phenomenology. Phys. Rev. B , 10:49324947, 1974.CrossRefGoogle Scholar
[111] Dessau, D. S., Wells, B. O., Shen, Z.-X., et al. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. , 66:21602163, 1991.Google Scholar
[112] Renner, Ch. and Fischer, O.. Vacuum tunneling spectroscopy and asymmetric density of states of Bi2Sr2CaCu2O8+δ . Phys. Rev. B , 51:92089218, Apr 1995.Google Scholar
[113] Kordyuk, A. A., Borisenko, S. V., Kim, T. K., et al. Origin of the peak-dip-hump line shape in the superconducting-state (π,0) photoemission spectra of Bi2Sr2CaCu2O8 . Phys. Rev. Lett. , 89:077003, 2002.Google Scholar
[114] Norman, M. R., Ding, H., Campuzano, J. C., et al. Unusual dispersion and line shape of the superconducting state spectra of Bi2Sr2CaCu2 O 8+δ . Phys. Rev. Lett. , 79:35063509, 1997.Google Scholar
[115] Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E., and Armstrong, T.. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. , 70:34903493, 1993.CrossRefGoogle ScholarPubMed
[116] Campuzano, J. C., Norman, M. R., and Randeira, M.. Physics of Superconductors , volume II. ed. Bennemann, K. H. and Ketterson, J. B., Springer, Berlin 2003.Google Scholar
[117] Cuk, T., Lu, D. H., Zhou, X. J., et al. A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES). Phys. Stat. Sol. B , 242:1129, 2005.CrossRefGoogle Scholar
[118] Luttinger, J. M. and Ward, J. C.. Ground-state energy of a many-fermion system. II. Phys. Rev. , 118:14171427, 1960.Google Scholar
[119] Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinski, I. E.. Quantum Field Theoretical Methods in Statistical Physics , volume 4. Pergamon, Oxford, 1965.Google Scholar
[120] Marshall, D. S., Dessau, D. S., Loeser, A. G., et al. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ : Angle-resolved photoemission results. Phys. Rev. Lett. , 76:48414844, 1996.Google Scholar
[121] Norman, M. R., Ding, H., Randeria, M., et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature , 392:157160, 1998.Google Scholar
[122] Ding, H., Norman, M. R., Campuzano, J. C., et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x . Phys. Rev. B , 54:R9678R9681, 1996.Google Scholar
[123] Shen, Z. X., Dessau, D. S., Wells, B. O., et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. , 70:15531556, 1993.Google Scholar
[124] Titov, M. L., Yashenkin, A. G., and Aristov, D. N.. Quasiparticle damping in two-dimensional superconductors with unconventional pairing. Phys. Rev. B , 52:1062610632, 1995.Google Scholar
[125] Walker, M. B. and Smith, M. F.. Quasiparticle-quasiparticle scattering in high-Tc superconductors. Phys. Rev. B , 61:1128511288, 2000.Google Scholar
[126] Valla, T., Kidd, T. E., Rameau, J. D., et al. Fine details of the nodal electronic excitations in Bi2Sr2CaCu2O8+δ . Phys. Rev. B , 73:184518, 2006.Google Scholar
[127] Duffy, D., Hirschfeld, P. J., and Scalapino, D. J.. Quasiparticle lifetimes in a superconductor. Phys. Rev. B , 64:224522, 2001.Google Scholar
[128] Dahm, T., Hirschfeld, P. J., Scalapino, D. J., and Zhu, L.. Nodal quasiparticle lifetimes in cuprate superconductors. Phys. Rev. B , 72:214512, 2005.CrossRefGoogle Scholar
[129] Hosseini, A., Harris, R., Kamal, S., et al. Microwave spectroscopy of thermally excited quasiparticles in YBa2Cu3O6.99 . Phys. Rev. B , 60:13491359, 1999.Google Scholar
[130] Andreev, A. F.. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP , 19:1228, 1964.Google Scholar
[131] Hu, C. R.. Midgap surface states as a novel signature for -wave superconductivity. Phys. Rev. Lett. , 72:15261529, 1994.Google Scholar
[132] Tanaka, Y. and Kashiwaya, S.. Theory of tunneling spectroscopy of d-wave superconductors. Phys. Rev. Lett. , 74:34513454, 1995.Google Scholar
[133] Kashiwaya, S., Tanaka, Y., Koyanagi, M., and Kajimura, K.. Theory for tunneling spectroscopy of anisotropic superconductors. Phys. Rev. B , 53:26672676, 1996.Google Scholar
[134] Blonder, G. E., Tinkham, M., and Klapwijk, T. M.. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B , 25:45154532, 1982.Google Scholar
[135] Sinha, S. and Ng, K. W.. Zero bias conductance peak enhancement in Bi2Sr2CaCu2 O 8 /Pb tunneling junctions. Phys. Rev. Lett. , 80:12961299, 1998.Google Scholar
[136] Aubin, H., Greene, L. H., Jian, S., and Hinks, D. G.. Andreev bound states at the onset of phase coherence in Bi2Sr2CaCu2O8 . Phys. Rev. Lett. , 89:177001, 2002.Google Scholar
[137] Covington, M., Aprili, M., Paraoanu, E., et al. Observation of surface-induced broken time-reversal symmetry in YBa2Cu3 O 7 tunnel junctions. Phys. Rev. Lett. , 79:277280, 1997.Google Scholar
[138] Wei, J. Y. T., Yeh, N. C., Garrigus, D. F., and Strasik, M.. Directional tunneling and Andreev reflection on YBa2Cu3O7−δ single crystals: Predominance of d-wave pairing symmetry verified with the generalized Blonder, Tinkham, and Klapwijk theory. Phys. Rev. Lett. , 81:25422545, 1998.Google Scholar
[139] Aprili, M., Badica, E., and Greene, L. H.. Doppler shift of the Andreev bound states at the YBCO surface. Phys. Rev. Lett. , 83:46304633, 1999.Google Scholar
[140] Krupke, R. and Deutscher, G.. Anisotropic magnetic field dependence of the zero-bias anomaly on in-plane oriented [100] Y1Ba2Cu3O7−x /In tunnel junctions. Phys. Rev. Lett. , 83:46344637, 1999.Google Scholar
[141] Bardeen, J.. Tunnelling from a many-particle point of view. Phys. Rev. Lett. , 6:5759, 1961.Google Scholar
[142] Harrison, W. A.. Tunneling from an independent-particle point of view. Phys. Rev. , 123:8589, 1961.Google Scholar
[143] Franz, M. and Millis, A. J.. Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B , 58:1457214580, 1998.Google Scholar
[144] Walker, M. B. and Luettmer-Strathmann, J.. Josephson tunneling in high-Tc superconductors. Phys. Rev. B , 54:588601, 1996.Google Scholar
[145] Sigrist, M. and Rice, T. M.. Paramagnetic effect in high Tc superconductors-a hint for d-wave superconductivity. J. Phys. Soc. Jpn. , 61:42834286, 1992.Google Scholar
[146] Tsuei, C. C., Kirtley, J. R., Chi, C. C., et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−δ . Phys. Rev. Lett. , 73:593596, 1994.Google Scholar
[147] Van Harlingen, D. J.. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors – evidence for symmetry. Rev. Mod. Phys. , 67:515535, 1995.Google Scholar
[148] Tsuei, C. C. and Kirtley, J. R.. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. , 72:9691016, 2000.Google Scholar
[149] Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M., and Leggett, A. J.. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDS. Phys. Rev. Lett. , 71:21342137, 1993.Google Scholar
[150] Wollman, D. A., Van Harlingen, D. J., Giapintzakis, J., and Ginsberg, D. M.. Evidence for pairing from the magnetic field modulation of YBa2Cu3O7-Pb Josephson junctions. Phys. Rev. Lett. , 74:797800, 1995.Google Scholar
[151] Tsuei, C. C. and Kirtley, J. R.. d-wave pairing symmetry in cuprate superconductors. Phys. C , 341:16251628, 2000.Google Scholar
[152] Tsuei, C. C., Kirtley, J. R., Rupp, M., et al. Pairing symmetry in single-layer tetragonal Tl2Ba2CuO superconductors. Science , 271:329, 1996.Google Scholar
[153] Tsuei, C. C., Kirtley, J. R., Ren, Z. F., et al. Pure order-parameter symmetry in the tetragonal superconductor TI2Ba2CuO6+δ . Nature , 387:481483, 1997.Google Scholar
[154] Tsuei, C. C. and Kirtley, J. R.. Pure d-wave pairing symmetry in high-Tc cuprate superconductors. J. Phys. Chem. Solids , 59:2045, 1998.Google Scholar
[155] Tsuei, C. C. and Kirtley, J. R.. Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys. Rev. Lett. , 85:182185, 2000.Google Scholar
[156] Tsuei, C. C., Kirtley, J. R., Hammerl, G., et al. Robust pairing symmetry in hole-doped cuprate superconductors. Phys. Rev. Lett. , 93:187004, 2004.Google Scholar
[157] Sigrist, M. and Rice, T. M.. Unusual paramagnetic phenomena in granular high-temperature superconductors a consequence of d-wave pairing? Rev. Mod. Phys. , 67:503513, 1995.Google Scholar
[158] Braunisch, W., Knauf, N., Kataev, V., Neuhausen, S., Grütz, A., Kock, A., Roden, B., Khomskii, D., and Wohlleben, D.. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys. Rev. Lett. , 68:19081911, 1992.Google Scholar
[159] Svedlindh, P., Niskanen, K., Norling, P., Nordblad, P., Lundgren, L., Lönnberg, B., and Lundström, T.. Anti-Meissner effect in the BiSrCaCuO-system. Phys. C , 162:13651366, 1989.Google Scholar
[160] Thompson, D. J., Minhaj, M. S. M., Wenger, L. E., and Chen, J. T.. Observation of paramagnetic Meissner effect in niobium disks. Phys. Rev. Lett. , 75:529532, 1995.Google Scholar
[161] Geim, A. K., Dubonos, S. V., Lok, J. G. S., Henini, M., and Maan, J. C.. Paramagnetic Meissner effect in small superconductors. Nature , 396:144, 1998.Google Scholar
[162] Rice, T. M. and Sigrist, M.. Comment on “Paramagnetic Meissner effect in Nb”. Phys. Rev. B , 55:1464714648, 1997.Google Scholar
[163] Anderson, P. W.. Theory of dirty superconductors. J. Phys. Chem. Solids , 11:2630, 1959.Google Scholar
[164] Xiang, T. and Wheatley, J. M.. Nonmagnetic impurities in two-dimensional superconductors. Phys. Rev. B , 51:1172111727, 1995.CrossRefGoogle ScholarPubMed
[165] Pan, S. H., Hudson, E. W., Lang, K. M., et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature , 403:746750, 2000.Google Scholar
[166] Loram, J. W., Luo, J., Cooper, J. R., Liang, W. Y., and Tallon, J. L.. Evidence on the pseudogap and condensate from the electronic specific heat. J. Phys. Chem. Solids , 62:5964, 2001.Google Scholar
[167] Wu, C. J., Xiang, T., and Su, Z. B.. Absence of the zero bias peak in vortex tunneling spectra of high-temperature superconductors. Phys. Rev. B , 62:1442714430, 2000.Google Scholar
[168] Martin, I., Balatsky, A. V., and Zaanen, J.. Impurity states and interlayer tunneling in high temperature superconductors. Phys. Rev. Lett. , 88:097003, 2002.Google Scholar
[169] Yu, L.. Bound state in superconductors with paramagnetic impurities. Acta Phys. Sin. , 21:7591, 2005.Google Scholar
[170] Shiba, H.. Classical spins in superconductors. Prog. Theor. Phys. , 40:435451, 1968.Google Scholar
[171] Kondo, J.. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. , 32:3749, 1964.Google Scholar
[172] Anderson, P. W., Yuval, G., and Hamann, D. R.. Exact results in the Kondo problem. II. scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models. Phys. Rev. B , 1:44644473, 1970.Google Scholar
[173] Wilson, K. G.. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. , 47:773840, 1975.Google Scholar
[174] Abrikosov, A. A. and Gorkov, L. P.. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP , 12:1243, 1961.Google Scholar
[175] Borkowski, L. S. and Hirschfeld, P. J.. Kondo effect in gapless superconductors. Phys. Rev. B , 46:92749277, 1992.Google Scholar
[176] Cassanello, C. R. and Fradkin, E.. Overscreening of magnetic impurities in -wave superconductors. Phys. Rev. B , 56:1124611261, 1997.Google Scholar
[177] Zhang, G. M., Hu, H., and Yu, L.. Marginal Fermi liquid resonance induced by a quantum magnetic impurity in d-wave superconductors. Phys. Rev. Lett. , 86:704707, 2001.Google Scholar
[178] Polkovnikov, A., Sachdev, S., and Vojta, M.. Impurity in a d-wave superconductor: Kondo effect and STM spectra. Phys. Rev. Lett. , 86:296299, 2001.Google Scholar
[179] Balatsky, A. V., Vekhter, I., and Zhu, J.-X.. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. , 78:373433, 2006.Google Scholar
[180] Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C., and Renner, C.. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. , 79:353419, 2007.CrossRefGoogle Scholar
[181] Hoffman, J. E.. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science , 297:11481151, 2002.Google Scholar
[182] McElroy, K., Simmonds, R. W., Hoffman, J. E., et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature , 422:592, 2003.Google Scholar
[183] Howald, C., Eisaki, H., Kaneko, N., Greven, M., and Kapitulnik, A.. Periodic density-of-states modulations in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. B , 67:014533, 2003.Google Scholar
[184] Hanaguri, T., Kohsaka, Y., Ono, M., et al. Coherence factors in a high-T c cuprate probed by quasi-particle scattering off vortices. Science , 323:923, 2009.Google Scholar
[185] Wang, Q. H. and Lee, D. H.. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B , 67:020511, 2003.Google Scholar
[186] Markiewicz, R. S.. Bridging k and q space in the cuprates: Comparing angle-resolved photoemission and STM results. Phys. Rev. B , 69:214517, 2004.Google Scholar
[187] Friedel, J.. Metallic alloys. Nuovo Cimento , 7:287, 1958.Google Scholar
[188] Crommie, M. F., Lutz, C. P., and Eigler, D. M.. Imaging standing waves in a two-dimensional electron gas. Nature , 363:524, 1993.Google Scholar
[189] Hirschfeld, P. J., Wölfle, P., and Einzel, D.. Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties. Phys. Rev. B , 37:8397, 1988.Google Scholar
[190] Itoh, Y., Adachi, S., Machi, T., Ohashi, Y., and Koshizuka, N.. Ni-substituted sites and the effect on Cu electron spin dynamics of YBa2Cu3−x Ni x O7−δ . Phys. Rev. B , 66:134511, 2002.Google Scholar
[191] Schopohl, N. and Dolgov, O. V.. T dependence of the magnetic penetration depth in unconventional superconductors at low temperatures: Can it be linear? Phys. Rev. Lett. , 80:47614762, 1998.Google Scholar
[192] Volovik, G. E.. Comment on “T dependence of the magnetic penetration depth in unconventional superconductors at low temperatures: Can it be linear?”. Phys. Rev. Lett. , 81:40234023, 1998.Google Scholar
[193] Novikov, D. L. and Freeman, A. J.. Electronic structure and Fermi surface of the HgBa2CuO4+δ superconductor: Apparent importance of the role of Van Hove singularities on high Tc . Physica C , 212:233238, 1993.Google Scholar
[194] Andersen, O. K., Liechtenstein, A. I., Jepsen, O., and Paulsen, F.. LDA energy bands, low-energy Hamiltonians, t′, t″, t (k), and J . J. Phys. Chem. Solids , 56:15731591, 1995.Google Scholar
[195] Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. X., and Zhang, K.. Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: Strong evidence for nodes in the gap function. Phys. Rev. Lett. , 70:39994002, 1993.Google Scholar
[196] Zhang, K., Bonn, D. A., Kamal, S., et al. Measurement of the ab plane anisotropy of microwave surface impedance of untwinned YBa2Cu3O6.95 single crystals. Phys. Rev. Lett. , 73:24842487, 1994.CrossRefGoogle ScholarPubMed
[197] Bonn, D. A., Kamal, S., Zhang, K., Liang, R. X., and Hardy, W. N.. The microwave surface impedance of YBa2Cu3O7−δ . J. Chem Phys. Solids , 56:19411943, 1995.Google Scholar
[198] Sonier, J. E., Kiefl, R. F., Brewer, J. H., et al. New muon-spin-rotation measurement of the temperature dependence of the magnetic penetration depth in YBa2Cu3O6.95 . Phys. Rev. Lett. , 72:744747, 1994.Google Scholar
[199] Mao, J., Wu, D. H., Peng, J. L., Greene, R. L., and Anlage, S. M.. Anisotropic surface impedance of YBa2Cu3O7−δ single crystals. Phys. Rev. B , 51:33163319, 1995.Google Scholar
[200] deVaulchier, L. A., Vieren, J. P., Guldner, Y., et al. Linear temperature variation of the penetration depth in YBa2Cu3O7−δ thin films. Europhys. Lett. , 33:153, 1996.Google Scholar
[201] Jacobs, T., Sridhar, S., Li, Q., Gu, G. D., and Koshizuka, N.. In-plane and c-axis microwave penetration depth of Bi2Sr2Ca1Cu2O8+δ crystals. Phys. Rev. Lett. , 75:45164519, 1995.Google Scholar
[202] Lee, S. F., Morgan, D. C., Ormeno, R. J., et al. a-b plane microwave surface impedance of a high-quality Bi2Sr2CaCu2O8 single crystal. Phys. Rev. Lett. , 77:735738, 1996.Google Scholar
[203] Waldmann, O., Steinmeyer, F., Müller, P., et al. Temperature and doping dependence of the penetration depth in Bi2Sr2CaCu2O8+δ . Phys. Rev. B , 53:1182511830, 1996.Google Scholar
[204] Panagopoulos, C., Cooper, J. R., Peacock, G. B., et al. Anisotropic magnetic pene-tration depth of grain-aligned HgBa2Ca2Cu3O8+δ . Phys. Rev. B , 53:R2999R3002, 1996.Google Scholar
[205] Panagopoulos, C., Cooper, J. R., Xiang, T., et al. Probing the order parameter and the c-axis coupling of high-Tc cuprates by penetration depth measurements. Phys. Rev. Lett. , 79:23202323, 1997.Google Scholar
[206] Panagopoulos, C., Cooper, J. R., Athanassopoulou, N., and Chrosch, J.. Effects of Zn doping on the anisotropic penetration depth of YBa2Cu3O7 . Phys. Rev. B , 54:R12721R12724, 1996.Google Scholar
[207] Panagopoulos, C., Cooper, J. R., Xiang, T., et al. Anisotropic penetration depth measurements of high-T c superconductors. Phys. C , 282:145148, 1997.Google Scholar
[208] Panagopoulos, C., Cooper, J. R., and Lo, W.. unpublished.Google Scholar
[209] Panagopoulos, C. and Xiang, T.. Relationship between the superconducting energy gap and the critical temperature in high-Tc superconductors. Phys. Rev. Lett. , 81:23362339, 1998.Google Scholar
[210] Broun, D. M., Morgan, D. C., Ormeno, R. J., et al. In-plane microwave conductivity of the single-layer cuprate Tl2Ba2CuO6+δ . Phys. Rev. B , 56:R11443R11446, 1997.Google Scholar
[211] Emery, V. J. and Kivelson, S. A.. Superconductivity in bad metals. Phys. Rev. Lett. , 74:32533256, 1995.Google Scholar
[212] Basov, D. N., Liang, R. X., Bonn, D. A., et al. In-plane anisotropy of the penetration depth in YBa2Cu3O7−x and YBa2Cu4O8 superconductors. Phys. Rev. Lett. , 74:598601, 1995.Google Scholar
[213] Schlesinger, Z., Collins, R. T., Holtzberg, F., et al. Superconducting energy gap and normal-state conductivity of a single-domain YBa2Cu3O7 crystal. Phys. Rev. Lett. , 65:801804, 1990.Google Scholar
[214] Friedmann, T. A., Rabin, M. W., Giapintzakis, J., Rice, J. P., and Ginsberg, D. M.. Direct measurement of the anisotropy of the resistivity in the a-b plane of twin-free, single-crystal, superconducting YBa2Cu3O7−δ . Phys. Rev. B , 42:62176221, 1990.Google Scholar
[215] Yu, R. C., Salamon, M. B., Lu, J. P., and Lee, W. C.. Thermal conductivity of an untwinned YBa2Cu3O7−δ single crystal and a new interpretation of the superconducting state thermal transport. Phys. Rev. Lett. , 69:14311434, 1992.Google Scholar
[216] Gaifullin, M. B., Matsuda, Y., Chikumoto, N., et al. c-axis superfluid response and quasiparticle damping of underdoped Bi:2212 and Bi:2201. Phys. Rev. Lett. , 83:39283931, 1999.Google Scholar
[217] Hirschfeld, P. J. and Goldenfeld, N.. Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor. Phys. Rev. B , 48:42194222, 1993.Google Scholar
[218] Bonn, D. A., Kamal, S., Zhang, K., et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95 . Phys. Rev. B , 50:40514063, 1994.Google Scholar
[219] Annett, J., Goldenfeld, N., and Renn, S. R.. Interpretation of the temperature dependence of the electromagnetic penetration depth in YBa2Cu3O7−δ . Phys. Rev. B , 43:27782782, 1991.Google Scholar
[220] Lee, J. Y., Paget, K. M., Lemberger, T. R., Foltyn, S. R., and Wu, X. D.. Crossover in temperature dependence of penetration depth λ(t) in superconducting YBa2Cu3O7−δ films. Phys. Rev. B , 50:33373341, 1994.Google Scholar
[221] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.. Superconductivity at 39K in magnesium diboride. Nature , 410:6364, 2001.Google Scholar
[222] Nakai, N., Ichioka, M., and Machida, K.. Field dependence of electronic specific heat in two-band superconductors. J. Phys. Soc. Jpn. , 71:2326, 2002.Google Scholar
[223] Mazin, I. I., Andersen, O. K., Jepsen, O., et al. Superconductivity in MgB2: Clean or dirty? Phys. Rev. Lett. , 89:107002, 2002.Google Scholar
[224] Xiang, T. and Wheatley, J. M.. Superfluid anisotropy in YBCO: Evidence for pair tunneling superconductivity. Phys. Rev. Lett. , 76:134137, 1996.Google Scholar
[225] Panagopoulos, C., Tallon, J. L., and Xiang, T.. Effects of the CuO chains on the anisotropic penetration depth of YBa2Cu4O8 . Phys. Rev. B , 59:R6635R6638, 1999.Google Scholar
[226] Luo, H. G. and Xiang, T.. Superfluid response in electron-doped cuprate superconductors. Phys. Rev. Lett. , 94:027001, 2005.Google Scholar
[227] Sato, T., Kamiyama, T., Takahashi, T., Kurahashi, K., and Yamada, K.. Observation of -like superconducting gap in an electron-doped high-temperature superconductor. Science , 291:15171519, 2001.Google Scholar
[228] Armitage, N. P., Lu, D. H., Feng, D. L., et al. Superconducting gap anisotropy in Nd1.85Ce0.15CuO4: Results from photoemission. Phys. Rev. Lett. , 86:11261129, 2001.Google Scholar
[229] Blumberg, G., Koitzsch, A., Gozar, A., et al. Nonmonotonic superconducting order parameter in Nd2−x Ce x CuO4 . Phys. Rev. Lett. , 88:107002, 2002.Google Scholar
[230] Chesca, B., Ehrhardt, K., Mößle, M., et al. Magnetic-field dependence of the maximum supercurrent of La2−x Ce x CuO4−y interferometers: Evidence for a predominant superconducting order parameter. Phys.Rev.Lett. , 90:057004, 2003.Google Scholar
[231] Alff, L., Meyer, S., Kleefisch, S., et al. Anomalous low temperature behavior of superconducting Nd1.85Ce0.15CuO4−y . Phys. Rev. Lett. , 83:26442647, 1999.Google Scholar
[232] Kokales, J. D., Fournier, P., Mercaldo, L. V., et al. Microwave electrodynamics of electron-doped cuprate superconductors. Phys. Rev. Lett. , 85:36963699, 2000.Google Scholar
[233] Prozorov, R., Giannetta, R. W., Fournier, P., and Greene, R. L.. Evidence for nodal quasiparticles in electron-doped cuprates from penetration depth measurements. Phys. Rev. Lett. , 85:37003703, 2000.Google Scholar
[234] Snezhko, A., Prozorov, R., Lawrie, D. D., et al. Nodal order parameter in electron-doped Pr2−x Ce x CuO4−δ superconducting films. Phys. Rev. Lett. , 92:157005, 2004.Google Scholar
[235] Kim, M. S., Skinta, J. A., Lemberger, T. R., Tsukada, A., and , M. Naito. Magnetic penetration depth measurements of Pr2−x Ce x CuO4−δ films on buffered substrates: Evidence for a nodeless gap. Phys. Rev. Lett. , 91:087001, 2003.Google Scholar
[236] Skinta, J. A., Lemberger, T. R., Greibe, T., and Naito, M.. Evidence for a nodeless gap from the superfluid density of optimally doped Pr1.855Ce0.145CuO4−y films. Phys. Rev. Lett. , 88:207003, 2002.Google Scholar
[237] Skinta, J. A., Kim, M. S., Lemberger, T. R., Greibe, T., and Naito, M.. Evidence for a transition in the pairing symmetry of the electron-doped cuprates La2−x Ce x CuO4−y and Pr2−x Ce x CuO4−y . Phys. Rev. Lett. , 88:207005, 2002.Google Scholar
[238] Pronin, A. V., Pimenov, A., Loidl, A., Tsukada, A., and Naito, M.. Doping dependence of the gap anisotropy in La2−x Ce x CuO4 studied by millimeter-wave spectroscopy. Phys. Rev. B , 68:054511, 2003.Google Scholar
[239] Armitage, N. P., Ronning, F., Lu, D. H., et al. Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. , 88:257001, 2002.Google Scholar
[240] Yoshida, T., Zhou, X. J., Sasagawa, T., et al. Metallic behavior of lightly doped La2−x Sr x CuO4 with a Fermi surface forming an arc. Phys. Rev. Lett. , 91:027001, 2003.Google Scholar
[241] Xiang, T. and Wheatley, J. M.. Quasiparticle energy dispersion in doped two-dimensional quantum antiferromagnets. Phys. Rev. B , 54:R12653R12656, 1996.Google Scholar
[242] Xiang, T., Luo, H. G., Lu, D. H., Shen, K. M., and Shen, Z. X.. Intrinsic electron and hole bands in electron-doped cuprate superconductors. Phys. Rev. B , 79:014524, 2009.Google Scholar
[243] Wang, Z. Z., Chien, T. R., Ong, N. P., Tarascon, J. M., and Wang, E.. Positive Hall coefficient observed in single-crystal Nd2−x Ce x CuO4−δ at low temperatures. Phys. Rev. B , 43:30203025, 1991.Google Scholar
[244] Jiang, W., Mao, S. N., Xi, X. X., et al. Anomalous transport properties in superconducting Nd1.85Ce0.15CuO4−δ . Phys. Rev. Lett. , 73:12911294, 1994.Google Scholar
[245] Fournier, P., Jiang, X., Jiang, W., et al. Thermomagnetic transport properties of Nd1.85Ce0.15CuO4+δ films: Evidence for two types of charge carriers. Phys. Rev. B , 56:1414914156, 1997.Google Scholar
[246] Kusko, C., Markiewicz, R. S., Lindroos, M., and Bansil, A.. Fermi surface evolution and collapse of the Mott pseudogap in Nd2−x Ce x CuO4−δ . Phys. Rev. B , 66:140513, 2002.Google Scholar
[247] Matsui, H., Terashima, K., Sato, T., et al. Angle-resolved photoemission spectroscopy of the antiferromagnetic superconductor Nd1.87Ce0.13CuO4: Anisotropic spin-correlation gap, pseudogap, and the induced quasiparticle mass enhancement. Phys. Rev. Lett. , 94:047005, 2005.Google Scholar
[248] Yuan, Q. S., Chen, Y., Lee, T. K., and Ting, C. S.. Fermi surface evolution in the antiferromagnetic state for the electron-doped tt′ − t″ − J model. Phys. Rev. B , 69:214523, 2004.Google Scholar
[249] Yip, S. K. and Sauls, J. A.. Nonlinear Meissner effect in CuO superconductors. Phys. Rev. Lett. , 69:22642267, 1992.Google Scholar
[250] Moler, K. A., Sisson, D. L., Urbach, J. S., et al. Specific heat of YBa2Cu3O7−δ . Phys. Rev. B , 55:39543965, 1997.Google Scholar
[251] Wang, Y. X., Revaz, B., Erb, A., and Junod, A.. Direct observation and anisotropy of the contribution of gap nodes in the low-temperature specific heat of YBa2Cu3O7 . Phys. Rev. B , 63:094508, 2001.Google Scholar
[252] Kosztin, I. and Leggett, A. J.. Nonlocal effects on the magnetic penetration depth in d-wave superconductors. Phys. Rev. Lett. , 79:135138, 1997.Google Scholar
[253] Li, M. R., Hirschfeld, P. J., and Wölfle, P.. Is the nonlinear Meissner effect unobservable? Phys. Rev. Lett. , 81:56405643, 1998.Google Scholar
[254] Mattis, D. C. and Bardeen, J.. Theory of the anomalous skin effect in normal and superconducting metals. Phys. Rev. , 111:412417, 1958.Google Scholar
[255] Ferrell, R. A. and Glover, R. E.. Conductivity of superconducting films: A sum rule. Phys. Rev. , 109:13981399, 1958.Google Scholar
[256] Tinkham, M. and Ferrell, R. A.. Determination of the superconducting skin depth from the energy gap and sum rule. Phys. Rev. Lett. , 2:331333, 1959.Google Scholar
[257] Homes, C. C., Dordevic, S. V., Bonn, D. A., Liang, R. X., and Hardy, W. N.. Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x . Phys. Rev. B , 69:024514, 2004.Google Scholar
[258] Basov, D. N., Woods, S. I., Katz, A. S., et al. Sum rules and interlayer conductivity of high-Tc cuprates. Science , 283:4952, 1999.Google Scholar
[259] Molegraaf, H. J. A., Presura, C., Van Der Marel, D., Kes, P. H., and Li, M.. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ . Science , 295:22392241, 2002.Google Scholar
[260] Ioffe, L. B. and Millis, A. J.. Superconductivity and the c-axis spectral weight of high-Tc superconductors. Science , 285:12411244, 1999.Google Scholar
[261] Hirschfeld, P. J., Putikka, W. O., and Scalapino, D. J.. Microwave conductivity of d-wave superconductors. Phys. Rev. Lett. , 71:37053708, 1993.Google Scholar
[262] Hirschfeld, P. J., Putikka, W. O., and Scalapino, D. J.. d-wave model for microwave response of high-Tc superconductors. Phys. Rev. B , 50:1025010264, 1994.Google Scholar
[263] Lee, P. A.. Localized states in a d-wave superconductor. Phys. Rev. Lett. , 71:18871890, 1993.Google Scholar
[264] Hosseini, A., Kamal, S., Bonn, D. A., Liang, R. X., and Hardy, W. N.. c-axis electrodynamics of YBa2Cu3O7−δ . Phys. Rev. Lett. , 81:12981301, 1998.Google Scholar
[265] Xiang, T. and Hardy, W. N.. Universal c-axis conductivity of high-Tc oxides in the superconducting state. Phys. Rev. B , 63:024506, 2000.Google Scholar
[266] Valla, T., Fedorov, A. V., Johnson, P. D., et al. Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8+δ . Science , 285:21102113, 1999.Google Scholar
[267] Valla, T., Fedorov, A. V., Johnson, P. D., et al. Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. , 85:828831, 2000.Google Scholar
[268] Ioffe, L. B. and Millis, A. J.. Zone-diagonal-dominated transport in high-Tc cuprates. Phys. Rev. B , 58:1163111637, 1998.Google Scholar
[269] Latyshev, Y. I., Yamashita, T., Bulaevskii, L. N., et al. Interlayer transport of quasiparticles and cooper pairs in Bi2Sr2CaCu2O8+δ superconductors. Phys. Rev. Lett. , 82:53455348, 1999.Google Scholar
[270] Ambegaokar, V. and Griffin, A.. Theory of the thermal conductivity of superconducting alloys with paramagnetic impurities. Phys. Rev. , 137:A1151A1167, 1965.Google Scholar
[271] Durst, A. C. and Lee, P. A.. Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation in d-wave superconductors. Phys. Rev. B , 62:12701290, 2000.Google Scholar
[272] Taillefer, L., Lussier, B., Gagnon, R., Behnia, K., and Aubin, H.. Universal heat conduction in YBa2Cu3 O 6.9 . Phys. Rev. Lett. , 79:483486, 1997.Google Scholar
[273] Nakamae, S., Behnia, K., Balicas, L., et al. Effect of controlled disorder on quasiparticle thermal transport in Bi2Sr2CaCu2O8 . Phys. Rev. B , 63:184509, 2001.Google Scholar
[274] Sutherland, M., Hawthorn, D. G., Hill, R. W., et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys. Rev. B , 67:174520, 2003.Google Scholar
[275] Abrikosov, A. and Genkin, V. M.. On the theory of Raman scattering of light in superconductors. Zh. Eksp. Teor. Fiz.[ Sov. Phys. JETP 38, 417 (1974)] , 65:842, 1973.Google Scholar
[276] Allen, P. B.. Fermi-surface harmonics: A general method for nonspherical problems. application to Boltzmann and Eliashberg equations. Phys. Rev. B , 13:14161427, 1976.Google Scholar
[277] Klein, M. V. and Dierker, S. B.. Theory of Raman scattering in superconductors. Phys. Rev. B , 29:49764991, 1984.Google Scholar
[278] Monien, H. and Zawadowski, A.. Theory of Raman scattering with final-state interaction in high-Tc BCS superconductors: Collective modes. Phys. Rev. B , 41:87988810, 1990.Google Scholar
[279] Devereaux, T. P. and Einzel, D.. Erratum: Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing. Phys. Rev. B , 54:1554715547, 1996.Google Scholar
[280] Staufer, T., Nemetschek, R., Hackl, R., Müller, P., and Veith, H.. Investigation of the superconducting order parameter in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. , 68:10691072, 1992.Google Scholar
[281] Chen, X. K., Irwin, J. C., Trodahl, H. J., Kimura, T., and Kishio, K.. Investigation of the superconducting gap in La2−x Sr x CuO4 by Raman spectroscopy. Phys. Rev. Lett. , 73:32903293, 1994.Google Scholar
[282] Devereaux, T. P., Einzel, D., Stadlober, B., et al. Electronic Raman scattering in high-T c superconductors: A probe of pairing. Phys. Rev. Lett. , 72:396399, 1994.Google Scholar
[283] Kendziora, C., Kelley, R. J., and Onellion, M.. Superconducting gap anisotropy vs doping level in high-Tc cuprates. Phys. Rev. Lett. , 77:727730, 1996.Google Scholar
[284] Qazilbash, M. M., Koitzsch, A., Dennis, B. S., et al. Evolution of superconductivity in electron-doped cuprates: Magneto-Raman spectroscopy. Phys. Rev. B , 72:214510, 2005.Google Scholar
[285] Blumberg, G., Qazilbash, M. M., Dennis, B. S., and Greene, R. L.. Evolution of coherence and superconductivity in electron-doped cuprates. AIP Conference Pro-ceedings, edited by Takano, Y., Blumberg, S. P. G., Qazilbash, M. M., Dennis, B. S., and Greene, R. L.. Evolution of coherence and superconductivity in electron-doped cuprates. AIP Conference Proceedings, edited by Takano, Y., Hershfield, S. P., Hirschfeld, P. J., and Goldman, A. M., 24th International Conference on Low Temperature Physics (LT24). Low Temperature Physics, Pts. A and B, 850:525, 2006.Google Scholar
[286] Liu, C. S., Luo, H. G., Wu, W. C., and Xiang, T.. Two-band model of Raman scattering on electron-doped high-Tc superconductors. Phys. Rev. B , 73:174517, 2006.Google Scholar
[287] Slichter, C. P.. Principles of Magnetic Resonance . Springer, Berlin, 1996.Google Scholar
[288] Mila, F. and Rice, T. M.. Spin dynamics of YBa2Cu3O6+x as revealed by NMR. Phys. Rev. B , 40:1138211385, 1989.Google Scholar
[289] Hebel, L. C. and Slichter, C. P.. Nuclear spin relaxation in normal and superconducting aluminum. Phys. Rev. , 113:15041519, 1959.Google Scholar
[290] Alloul, H., Mendels, P., Casalta, H., Marucco, J. F., and Arabski, J.. Correlations between magnetic and superconducting properties of Zn-substituted YBa2Cu3O6+x . Phys. Rev. Lett. , 67:31403143, 1991.Google Scholar
[291] Mendels, P., Alloul, H., Collin, G., et al. Macroscopic magnetic properties of Ni and Zn substituted YBa2Cu3O x . Phys. C: Supercond. , 235:15951596, 1994.Google Scholar
[292] Mahajan, A. V., Alloul, H., Collin, G., and Marucco, J. F.. 89Y NMR probe of Zn induced local moments in YBa2(Cu1−y Zn y )3O6+x . Phys. Rev. Lett. , 72:31003103, 1994.Google Scholar
[293] Mahajan, A. V., Alloul, H., Collin, G., and Marucco, J. F. F.. 89Y NMR probe of Zn induced local magnetism in YBa2 (Cu1−y Zn y )3 O6+x . Eur. Phys. J. B: Cond. Mat. Comp. Sys. , 13:457475, 2000.Google Scholar
[294] Julien, M. H., Fehér, T., Horvatić, M., et al. 63Cu NMR evidence for enhanced antiferromagnetic correlations around Zn impurities in YBa2Cu3O6.7 . Phys. Rev. Lett. , 84:34223425, 2000.Google Scholar
[295] Ishida, K., Kitaoka, Y., Yamazoe, K., Asayama, K., and Yamada, Y.. Al NMR probe of local moments induced by an Al impurity in high-Tc cuprate La1.85Sr0.15CuO4 . Phys. Rev. Lett. , 76:531534, 1996.Google Scholar
[296] Bobroff, J., MacFarlane, W. A., Alloul, H., et al. Spinless impurities in high-Tc cuprates: Kondo-like behavior. Phys. Rev. Lett. , 83:43814384, 1999.Google Scholar
[297] Bernhard, C., Niedermayer, C., Blasius, T., et al. Muon-spin-rotation study of Zninduced magnetic moments in cuprate high-Tc superconductors. Phys. Rev. B , 58:R8937R8940, 1998.Google Scholar
[298] Tallon, J. L., Loram, J. W., and Williams, G. V. M.. Comment on “spinless impurities in high-Tc cuprates: Kondo-like behavior”. Phys. Rev. Lett. , 88:059701, 2002.Google Scholar
[299] Balatsky, A. V., Salkola, M. I., and Rosengren, A.. Impurity-induced virtual bound states in d-wave superconductors. Phys. Rev. B , 51:1554715551, 1995.Google Scholar
[300] Salkola, M. I., Balatsky, A. V., and Scalapino, D. J.. Theory of scanning tunneling microscopy probe of impurity states in a d-wave superconductor. Phys. Rev. Lett. , 77:18411844, 1996.Google Scholar
[301] Williams, G. V. M. and Krämer, S.. Localized behavior near the Zn impurity in YBa2Cu4O8 as measured by nuclear quadrupole resonance. Phys. Rev. B , 64:104506, 2001.Google Scholar
[302] Pan, S. H., O’neal, J. P., Badzey, R. L., et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature , 413:282285, 2001.Google Scholar
[303] Norman, M. R., Randeria, M., Ding, H., and Campuzano, J. C.. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B , 52:615622, 1995.Google Scholar
[304] Martindale, J. A., Barrett, S. E., Klug, C. A., et al. Anisotropy and magnetic field dependence of the planar copper NMR spin-lattice relaxation rate in the superconducting state of YBa2Cu3O7 . Phys. Rev. Lett. , 68:702705, 1992.Google Scholar
[305] Hammel, P. C., Takigawa, M., Heffner, R. H., Fisk, Z., and Ott, K. C.. Spin dynamics at oxygen sites in YBa2Cu3O7 . Phys. Rev. Lett. , 63:19921995, 1989.Google Scholar
[306] Barrett, S. E., Martindale, J. A., Durand, D. J., et al. Anomalous behavior of nuclear spin-lattice relaxation rates in YBa2Cu3O7 below Tc . Phys. Rev. Lett. , 66:108111, 1991.Google Scholar
[307] Zheng, G. Q., Kitaoka, Y., Asayama, K., et al. Characteristics of the spin fluctuation in Tl2Ba2Ca2Cu3O10 . J. Phys. Soc. Jpn , 64:31843187, 1995.Google Scholar
[308] Imai, T., Shimizu, T., Yasuoka, H., Ueda, Y., and Kosuge, K.. Anomalous temperature dependence of Cu nuclear spin-lattice relaxation in YBa2Cu3O6.91 . J. Phys. Soc. Jpn. , 57:22802283, 1988.Google Scholar
[309] Ishida, K., Kitaoka, Y., Asayama, K., Kadowaki, K., and Mochiku, T.. Cu NMR study in single crystal Bi2Sr2CaCu2O8 – observation of gapless superconductivity. J. Phys. Soc. Jpn. , 63:11041113, 1994.Google Scholar
[310] Ohsugi, S., Kitaoka, Y., Ishida, K., Zheng, G. Q., and Asayama, K.. Cu NMR and NQR studies of high-Tc superconductor La2−x Sr x CuO4 . J. Phys. Soc. Jpn. , 63:700715, 1994.Google Scholar
[311] Magishi, K., Kitaoka, Y., Zheng, G. Q., et al. Spin correlation in high-T c cuprate HgBa2Ca2Cu3O8+δ with T c =133 K – an origin of T c -enhancement evidenced by 63Cu-NMR study. J. Phys. Soc. Jpn. , 64:45614565, 1995.Google Scholar
[312] Takigawa, M. and Mitzi, D. B.. NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals. Phys. Rev. Lett. , 73:12871290, 1994.Google Scholar
[313] Kitaoka, Y., Ishida, K., Zheng, G., Ohsugi, S., Yamazoe, K., and Asayama, K.. NMR study of symmetry of the superconducting order parameter in high-Tc cuprate superconductor. Phys. C , 235–240:1881, 1994.Google Scholar
[314] Martindale, J. A., Barrett, S. E., O’Hara, K. E., Slichter, C. P., Lee, W. C., and Ginsberg, D. M.. Magnetic-field dependence of planar copper and oxygen spin-lattice relaxation rates in the superconducting state of YBa2Cu3O7 . Phys. Rev. B , 47:91559157, 1993.Google Scholar
[315] Horvatić, M., Auler, T., Berthier, C., Berthier, Y., Butaud, P., Clark, W. G., Gillet, J. A., Ségransan, P., and Henry, J. Y.. NMR investigation of single-crystal YBa2Cu3O6+x from the underdoped to the overdoped regime. Phys. Rev. B , 47:34613464, 1993.Google Scholar
[316] Song, Y. Q., Kennard, M. A., Poeppelmeier, K. R., and Halperin, W. P.. Spin susceptibility in the La2−x Sr x CuO4 system from underdoped to overdoped regimes. Phys. Rev. Lett. , 70:31313134, 1993.Google Scholar
[317] Kitaoka, Y., Fujiwara, K., Ishida, K., et al. Spin dynamics in heavily-doped high-T c superconductors T12Ba2CuO6+y with a single CuO2 layer studied by 63Cu and 205Tl NMR. Phy. C: Supercond. , 179:107118, 1991.Google Scholar
[318] Lovesey, S. W.. Theory of Neutron Scattering from Condensed Matter, Vol. II . Clarendon Press, Oxford, 1984.Google Scholar
[319] Coleman, P.. Introduction to Many-body Physics . Cambridge University Press, Cambridge, 2015.Google Scholar
[320] Rossat-Mignod, J., Regnault, L. P., Vettier, C., et al. Neutron scattering study of the YBa2Cu3O6+x system. Phys. C: Supercond. , 185-189:8692, 1991.Google Scholar
[321] Rossat-Mignod, J., Regnault, L. P., Vettier, C., et al. Spin dynamics in the high-Tc system YBa2Cu3O6+x . Phys. B: Condens. Matter , 180–181:383388, 1992.Google Scholar
[322] Rossat-Mignod, J., Regnault, L. P., Vettier, C., et al. Investigation of the spin dynamics in YBa2Cu3O6+x by inelastic neutron scattering. Phys. B: Conden. Matter , 169:5865, 1991.Google Scholar
[323] Fong, H. F., Keimer, B., Anderson, P. W., et al. Phonon and magnetic neutron scattering at 41 meV in YBa2Cu3O7 . Phys. Rev. Lett. , 75:316319, 1995.Google Scholar
[324] Dai, P., Yethiraj, M., Mook, H. A., Lindemer, T. B., and Doğan, F.. Magnetic dynamics in underdoped YBa2Cu3 O 7−x : Direct observation of a superconducting gap. Phys. Rev. Lett. , 77:54255428, 1996.Google Scholar
[325] Mook, H. A., Dai, P. C., Hayden, S. M., et al. Spin fluctuations in YBa2Cu3O6.6 . Nature , 395:580, 1998.Google Scholar
[326] Fong, H. F., Bourges, P., Sidis, Y., et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B , 61:1477314786, 2000.Google Scholar
[327] Fong, H. F., Bourges, P., Sidis, Y., et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature , 398:588591, 1999.Google Scholar
[328] He, H., Sidis, Y., Bourges, P., et al. Resonant spin excitation in an overdoped high temperature superconductor. Phys. Rev. Lett. , 86:16101613, 2001.Google Scholar
[329] He, H., Bourges, P., Sidis, Y., et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ . Science , 295:10451048, 2002.Google Scholar
[330] Kastner, M. A., Birgeneau, R. J., Shirane, G., and Endoh, Y.. Magnetic, transport, and optical properties of monolayer copper oxides. Rev. Mod. Phys. , 70:897928, 1998.Google Scholar
[331] Christensen, N. B., McMorrow, D. F., Rønnow, H. M., et al. Dispersive excitations in the high-temperature superconductor La2−x Sr x CuO4 . Phys. Rev. Lett. , 93:147002, 2004.Google Scholar
[332] Dai, P. C., Mook, H. A., Aeppli, G., Hayden, S. M., and Dogan, F.. Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6 . Nature , 406:965968, 2000.Google Scholar
[333] Demler, E. and Zhang, S. C.. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature , 396:733735, 1998.CrossRefGoogle Scholar
[334] Scalapino, D. J. and White, S. R.. Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism. Phys. Rev. B , 58:82228224, 1998.Google Scholar
[335] Fong, H. F., Keimer, B., Reznik, D., Milius, D. L., and Aksay, I. A.. Polarized and unpolarized neutron-scattering study of the dynamical spin susceptibility of YBa2Cu3O7 . Phys. Rev. B , 54:67086720, 1996.Google Scholar
[336] Morr, D. K. and Pines, D.. The resonance peak in cuprate superconductors. Phys. Rev. Lett. , 81:10861089, 1998.Google Scholar
[337] Eschrig, M.. The effect of collective spin-1 excitations on electronic spectra in high-T c superconductors. Adv. Phys. , 55:47183, 2006.Google Scholar
[338] Lee, P. A., Nagaosa, N., and Wen, X-G.. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. , 78:1785, 2006.Google Scholar
[339] Demler, E. and Zhang, S. C.. Theory of the resonant neutron scattering of high-Tc superconductors. Phys. Rev. Lett. , 75:41264129, 1995.Google Scholar
[340] Demler, E., Hanke, W., and Zhang, S. C.. SO(5) theory of antiferromagnetism and superconductivity. Rev. Mod. Phys. , 76:909974, 2004.Google Scholar
[341] Bulut, N. and Scalapino, D. J.. Weak-coupling model of spin fluctuations in the superconducting state of the layered cuprates. Phys. Rev. B , 45:23712384, 1992.Google Scholar
[342] Wu, C. J., Hu, J. P., and Zhang, S. C.. Exact SO(5) symmetry in the spin-3/2 fermionic system. Phys. Rev. Lett. , 91:186402, 2003.Google Scholar
[343] Wu, C.. Hidden symmetry and quantum phases in spin-3/2 cold atomic systems. Mod. Phys. Lett. B , 20:17071738, 2006.Google Scholar
[344] Caroli, C., De Gennes, P. G., and Matricon, J.. Bound fermion states on a vortex line in a type II superconductor. Phys. Lett. , 9:307309, 1964.Google Scholar
[345] Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M., and Waszczak, J. V.. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. , 62:214216, 1989.Google Scholar
[346] Hess, H. F., Robinson, R. B., and Waszczak, J. V.. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. , 64:27112714, 1990.Google Scholar
[347] Volovik, G. E.. Superconductivity with lines of gap nodes: Density of states in the vortex. JETP Lett. , 58:469469, 1993.Google Scholar
[348] Franz, M. and Tešanović, Z.. Quasiparticles in the vortex lattice of unconventional superconductors: Bloch waves or Landau levels? Phys. Rev. Lett. , 84:554557, 2000.Google Scholar
[349] Vekhter, I., Hirschfeld, P. J., and Nicol, E. J.. Thermodynamics of d-wave superconductors in a magnetic field. Phys. Rev. B , 64:064513, 2001.Google Scholar
[350] Moler, K. A., Baar, D. J., Urbach, J. S., et al. Magnetic field dependence of the density of states of YBa2Cu3O6.95 as determined from the specific heat. Phys. Rev. Lett. , 73:27442747, 1994.Google Scholar
[351] Revaz, B., Genoud, J. Y., Junod, A., et al. d-wave scaling relations in the mixed-state specific heat of YBa2Cu3O7 . Phys. Rev. Lett. , 80:33643367, 1998.Google Scholar
[352] Wright, D. A., Emerson, J. P., Woodfield, B. F., et al. Low-temperature specific heat of YBa2Cu3O7−δ , 0 ≤ δ ≤ 0.2: Evidence for d-wave pairing. Phys. Rev. Lett. , 82:15501553, 1999.Google Scholar
[353] Luo, J. L., Loram, J. W., Xiang, T., Cooper, T. R., and Tallon, J. L.. The magnetic field dependence of the electronic specific heat of Y0.8Ca0.2Ba2Cu3O6+x . arXiv:condmat/0112065 , 2001.Google Scholar
[354] Wen, H. H., Shan, L., Wen, X. G., et al. Pseudogap, superconducting energy scale, and Fermi arcs of underdoped cuprate superconductors. Phys. Rev. B , 72:134507, 2005.Google Scholar
[355] Kübert, C. and Hirschfeld, P. J.. Vortex contribution to specific heat of dirty d-wave superconductors: Breakdown of scaling. Solid State Commun. , 105:459463, 1998.Google Scholar
[356] Simon, S. H. and Lee, P. A.. Scaling of the quasiparticle spectrum for d-wave superconductors. Phys. Rev. Lett. , 78:15481551, 1997.Google Scholar
[357] Junod, A., Roulin, M., Revaz, B., et al. Specific heat of high temperature superconductors in high magnetic fields. Phys. C: Supercond. , 282:13991400, 1997.Google Scholar
[358] Mermin, N. D. and Wagner, H.. Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. , 17:11331136, 1966.Google Scholar
[359] Ashcroft, N. W. and Mermin, N. D.. Solid State Phys . Holt, Rinehart and Winston, New York, 1976.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tao Xiang, Chinese Academy of Sciences, Beijing, Congjun Wu, Westlake University, Hangzhou
  • Book: D-wave Superconductivity
  • Online publication: 17 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009218566.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tao Xiang, Chinese Academy of Sciences, Beijing, Congjun Wu, Westlake University, Hangzhou
  • Book: D-wave Superconductivity
  • Online publication: 17 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009218566.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tao Xiang, Chinese Academy of Sciences, Beijing, Congjun Wu, Westlake University, Hangzhou
  • Book: D-wave Superconductivity
  • Online publication: 17 June 2022
  • Chapter DOI: https://doi.org/10.1017/9781009218566.024
Available formats
×