Book contents
- Frontmatter
- Contents
- Preface
- Abbreviations
- 1 Introduction to Superconductivity
- 2 Microscopic Models for High Temperature Superconductors
- 3 Basic Properties of d-wave Superconductors
- 4 Quasiparticle Excitation Spectra
- 5 Tunneling Effect
- 6 Josephson Effect
- 7 Single Impurity Scattering
- 8 Many-Impurity Scattering
- 9 Superfluid Response
- 10 Optical and Thermal Conductivities
- 11 Raman Spectroscopy
- 12 Nuclear Magnetic Resonance
- 13 Neutron Scattering Spectroscopy
- 14 Mixed State
- Appendix A Bogoliubov Transformation
- Appendix B Hohenberg Theorem
- Appendix C Degenerate Perturbation Theory
- Appendix D Anderson Theorem
- Appendix E Sommerfeld Expansion
- Appendix F Single-Particle Green’s Function
- Appendix G Linear Response Theory
- References
- Index
3 - Basic Properties of d-wave Superconductors
Published online by Cambridge University Press: 17 June 2022
- Frontmatter
- Contents
- Preface
- Abbreviations
- 1 Introduction to Superconductivity
- 2 Microscopic Models for High Temperature Superconductors
- 3 Basic Properties of d-wave Superconductors
- 4 Quasiparticle Excitation Spectra
- 5 Tunneling Effect
- 6 Josephson Effect
- 7 Single Impurity Scattering
- 8 Many-Impurity Scattering
- 9 Superfluid Response
- 10 Optical and Thermal Conductivities
- 11 Raman Spectroscopy
- 12 Nuclear Magnetic Resonance
- 13 Neutron Scattering Spectroscopy
- 14 Mixed State
- Appendix A Bogoliubov Transformation
- Appendix B Hohenberg Theorem
- Appendix C Degenerate Perturbation Theory
- Appendix D Anderson Theorem
- Appendix E Sommerfeld Expansion
- Appendix F Single-Particle Green’s Function
- Appendix G Linear Response Theory
- References
- Index
Summary
Chapter 3 derives the gap equation and determines the critical transition temperature as well as the zero-temperature energy gap as a function of coupling constant for d-wave superconductors. The energy dependence of the density of states and its effects on the temperature dependence of the gap function, entropy and other thermodynamic quantities are also discussed. Low energy nodal excitations lead to characteristic power-law behaviors in the specific heat or other thermodynamic response functions of d-wave superconductors at low temperatures, in contrast to the activated behaviors in s-wave superconductors. The probability density current and charge density current operators of d-wave quasiparticles, together with the gap operators in the continuum limit, are derived and discussed with the BdG framework.
- Type
- Chapter
- Information
- D-wave Superconductivity , pp. 72 - 92Publisher: Cambridge University PressPrint publication year: 2022