Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T16:21:38.346Z Has data issue: false hasContentIssue false

References for Volumes 1 and 2

Published online by Cambridge University Press:  05 February 2014

L. C. G. Rogers
Affiliation:
University of Bath
David Williams
Affiliation:
University of Wales, Swansea
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abrahams, R. and Robbin, J, Transversal Mappings and Flows, Benjamin, New York, Amsterdam, 1967.Google Scholar
[1] Adler, R. J.The Geometry of Random Fields, WileyChichester, 1981.Google Scholar
[2] Adler, R. J., An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, IMS Lecture Notes—Monograph Series Vol. 12, IMS, Hayward, Calif., 1990.Google Scholar
[1] Aizenmann, M. and Simon, B.Brownian motion and the Harnack inequality for Schrödinger operators, Comm. Pure and Appl. Math., 35, 209–273 (1982).CrossRefGoogle Scholar
[1] Albeverio, S., Blanchard, P. and Høegh-Krohn, R.Newtonian diffusions and planets, with a remark on non-standard Dirichlet forms and polymers, Stochastic Analysis and Applications: Lecture Notes in Mathematics 1095, Springer, Berlin, 1984, pp. 1–24.Google Scholar
[1] Albeverio, S., Fenstad, I.E., Høegh-Krohn, R. and Lindström, T.Non-standard Methods in Probability and Mathematical Physics, Academic Press, New York (1986).Google Scholar
[1] Aldous, D. J.Stopping times and tightness, Ann. Prob., 6, 335–40 (1978).CrossRefGoogle Scholar
[1] Ancona, A.Negatively curved manifolds, elliptic operators and Martin boundaryAnn. Math., 125, 495–536 (1987).CrossRefGoogle Scholar
[1] Arnold, L. and Wihstutz, V. (editors) Lyapunov Exponents (Proceedings): Lecture Notes in Mathematics 1186, Springer, Berlin, 1986.CrossRef
[1] Azéma, J.Sur les fermés aléatoires, Séminaires de Probabilités XIX: Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 297–495.Google Scholar
[1] Azéma, J. and Yor, M.Une solution simple au problème de Skorokhod, Séminaire de probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, pp. 90–115, 625–633.Google Scholar
[2] Azéma, J. and Yor, M. (editors) Temps locaux, Astérisque 52–53 Société Mathématique de France (1978).
[3] Azéma, J. and Yor, M.Etude d'une martingale remarquable, Séminaire de Probabilités XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin, 1989, pp. 88–130.CrossRefGoogle Scholar
[1] Azencott, R.Grandes déviations et applications, Ecole d'Été de Probabilités de Saint-Flour VIII: Lecture Note in Mathematics 774, Springer, Berlin, 1980.Google Scholar
[1] Barlow, M. T.Study of a filtration expanded to include an honest time, Z. Wahrscheinlichkeitstheorie, 44, 307–323 (1978).CrossRefGoogle Scholar
[2] Barlow, M. T. Decomposition of a Markov process at an honest time (unpublished).
[3] Barlow, M. T.One dimensional stochastic differential equation with no strong solution, J. London Math. Soc., 26, 335–347 (1982).Google Scholar
[4] Barlow, M. T.On Brownian local time, Séminaire de Probabilités X V: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 189–190.Google Scholar
[5] Barlow, M. T.Necessary and sufficient conditions for the continuity of local time of Lévy processes, Ann. Prob. 16, 1389–1427 (1988).CrossRefGoogle Scholar
[1] Barlow, M. T. and Hawkes, J.Application d'entropie métrique à la continuité des temps locaux des processus de Lévy. C.R. Acad. Sci. Paris Ser. I, 301, 237–239 (1985).Google Scholar
[1] Barlow, M. T., Jacka, S. and Yor, M.Inequalities for a pair of processes stopped at a random time, Proc. London Math. Soc., 52, 142–172 (1986).Google Scholar
[2] Barlow, M. T., Jacka, S. and Yor, M.Inégalities pour un couple de processus arrêtes à un temps quelconque, C.R. Acad. Sci., 299, 351–354 (1984).Google Scholar
[1] Barlow, M. T. and Perkins, E.One-dimensional stochastic differential equations involving a singular increasing process, Stochastics, 12, 229–249 (1984).CrossRefGoogle Scholar
[2] Barlow, M. T. and Perkins, E.Strong existence, uniqueness and non-uniqueness in an equation involving local time, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 32–66.Google Scholar
[1] Barlow, M. T. and Yor, M.(Semi-) martingale inequalities and local times, Z. Wahrscheinlichkeitstheorie 55, 237–254 (1981).CrossRefGoogle Scholar
[2] Barlow, M. T. and Yor, M.Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma and applications to local times, J. Funct. Anal., 49, 198–229 (1982).CrossRefGoogle Scholar
[1] Bass, R. and Cranston, M.The Malliavin calculus for pure jump processes and applications to local time, Ann. Prob., 14, 490–532 (1986).CrossRefGoogle Scholar
[1] Batchelor, G. K.Kolmogoroff's theory of locally isotropic turbulence, Proc. Camb. Phil. Soc, 43, 553–559 (1947).CrossRefGoogle Scholar
[1] Baxendale, P.Asymptotic behaviour of stochastic flows of diffeomorphisms; two case studies, Prob. Th. Rel. Fields, 73, 51–85 (1986).CrossRefGoogle Scholar
[2] Baxendale, P.Moment stability and large deviations for linear stochastic differential equations, Proc. Taniyuchi Symposium on Probabilistic Methods in Mathematical Physics. Katata and Kyoto. 1985 (ed. N., Ikeda), Kinokuniya, Tokyo, 31–54 (1986).Google Scholar
[3] Baxendale, P. The Lyapunov spectrum of a stochastic flow of diffeomorphisms, in Arnold and Wihstutz [1], pp. 322–337 (1986).
[4] Baxendale, P.Brownian motions on the diffeomorphism group, I, Compos. Math., 53, 19–50 (1984).Google Scholar
[1] Baxendale, P. and Harris, T. E.Isotropic stochastic flows. Ann. Prob., 14, 1155–1179 (1986).CrossRefGoogle Scholar
[1] Baxendale, P. and Stroock, D. W.Large deviations and stochastic flows of diffeomorphisms, Prob. Th. Rel. Fields, 80, 169–215 (1988).CrossRefGoogle Scholar
[1] Bensoussan, A.Lectures on stochastic control, Nonlinear Filtering and Stochastic Control: Lecture Notes in Mathematics 972, Springer, Berlin, 1982, pp. 1–62.Google Scholar
[1] Beneš, V. E., Shepp, L. A. and Witsenhausen, H. S.Some solvable stochastic control problems, Stochastics, 4, 39–83 (1980).CrossRefGoogle Scholar
[1] Benveniste, A. and Jacod, J.Systèmes de Lévy des processus de Markov, Invent. Math., 21, 183–198 (1973).CrossRefGoogle Scholar
[1] Berman, S. M.Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc., 137, 277–300 (1969).CrossRefGoogle Scholar
[2] Berman, S. M.Harmonic analysis of local times and sample functions of Gaussian processes, Trans. Amer. Math. Soc., 143, 269–281 (1969).CrossRefGoogle Scholar
[3] Berman, S. M.Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Statist., 41, 1260–1272 (1970).CrossRefGoogle Scholar
[1] Biane, P.Comparaison entre temps d'atteinte et temps de séjour de certaines diffusions réelles, Séminaire de Probabilités XIX. Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 291–296.Google Scholar
[1] Bichteler, K.Stochastic integration and Lp-theory of semi-martingales, Ann. Prob., 9, 49–89 (1981).CrossRefGoogle Scholar
[1] Bichteler, K. and Fonken, D.A simple version of the Malliavin calculus in dimension one, Martingale Theory in Harmonic Analysis and Banach Spaces: Lecture Notes in Mathematics 939, Springer, Berlin, 1982, pp. 6–12.Google Scholar
[1] Bichteler, K.. and Jacod, J.Calcul de Malliavin pour les diffusions avec sauts: Existence d'une densité dans le cas unidimensionnel, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 132–157.Google Scholar
[1] Billingsley, P.Ergodic Theory and Information, Wiley, New York, 1965.Google Scholar
[2] Billingsley, P.Convergence of Probability Measures, Wiley, New York, 1968.Google Scholar
[3] Billingsley, P.Conditional distributions and tightness, Ann. Prob., 2, 480–485 (1974).CrossRefGoogle Scholar
[1] Bingham, N. H.Fluctuation theory in continuous time, Adv. Appl. Prob., 7, 705–766 (1975).CrossRefGoogle Scholar
[1] Bingham, N. H. and Donky, R. A.On higher-dimensional analogues of the arc-sine law, J. Appl. Prob. 25, 120–131 (1988).CrossRefGoogle Scholar
[1] Bishop, R. and Crittenden, R. J.Geometry of Manifolds, Academic Press, New York, 1964.Google Scholar
[1] Bismut, J.-M.Méchanique Aléatoire: Lecture Notes in Mathematics 866, Springer, Berlin, 1981.CrossRefGoogle Scholar
[2] Bismut, J.-M.Martingales, the Malliavin calculus and hypoellipticity under general Hormander's conditions, Z. Wahrscheinlichkeitstheorie, 56, 469–505 (1981).CrossRefGoogle Scholar
[3] Bismut, J.-M.Calcul de variations stochastiques et processus de sauts, Z. Wahrscheinlichkeitstheorie 56, 469–505 (1983).Google Scholar
[4] Bismut, J.-M.Large deviations and the Malliavin calculus, Progress in Mathematics, Birkhäuser, Boston, 1984.Google Scholar
[5] Bismut, J.-M.The Atiyah–Singer theorems; a probabilistic approach: I, The index theorem, J. Funct. Anal., 57, 56–98 (1984); II, The Lefschetz fixed-point formulas, J. Funct. Anal., 57, 329–348.Google Scholar
[1] Bismut, J.-M. and Michel, D.Diffusions conditionnelles, I, II, J. Funct. Anal, 44, 174–211 (1981), 45, 274–292 (1981).
[1] Blackwell, D. and Kendall, D. G.The Martin boundary for Polya's urn scheme and an application to stochastic population growth, J. Appl. Prob. 1, 284–296 (1964).CrossRefGoogle Scholar
[1] Blumenthal, R. M. and Getoor, R. K.Markov Processes and Potential theory, Academic Press, New York, 1968.Google Scholar
[2] Blumenthal, R. M. and Getoor, R. K.Local times for Markov processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 3, 50–74 (1964).CrossRefGoogle Scholar
[1] Bondesson, L.Classes of infinitely divisible distributions and densities. Z. Wahrscheinlichkeitstheorie verw Geb., 57, 39–71 (1981).CrossRefGoogle Scholar
[1] Bougerol, P. and Lacroix, J.Products of Random Matrices with Applications to Schrödinger Operators, Birkhauser, Boston, 1985.CrossRefGoogle Scholar
[1] Bourbaki, N.Topologie générale, in Eléments de Mathématique, Hermann, Paris, 1958, Chap. IX, 2nd edition.Google Scholar
[1] Breiman, L.Probability, Addison-Wesley, Reading, Mass., 1968.Google Scholar
[1] Brémaud, P.Point Processes and Queues: Martingale Dynamics, Springer, New York, 1981.CrossRefGoogle Scholar
[1] Bretagnolle, J.Résultats de Kesten sur les processus à accroissements indépendantes, Séminaire de Probabilités V, Lecture Notes in Mathematics 191, Springer, Berlin, 1971, pp. 21–36.Google Scholar
[1] Brydges, D., Fröhlich, J. and Spencer, T.The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys., 83, 123–150 (1982).CrossRefGoogle Scholar
[1] Burdzy, K.On nonincrease of Brownian motion. Ann. Prob. 18, 978–980 (1990).CrossRefGoogle Scholar
[2] Burdzy, K.Brownian paths and cones, Ann. Prob. 13, 1006–1010 (1985).CrossRefGoogle Scholar
[3] Burdzy, K.Cut points on Brownian paths. Ann. Prob. 17, 1012–1036 (1989).CrossRefGoogle Scholar
[1] Burkholder, D.Distribution function inequalities for martingales, Ann. Prob., 1, 19–42 (1973).CrossRefGoogle Scholar
[1] Carlen, E. A.Conservative diffusions, Comm. Math. Phy., 94, 293–315 (1984).CrossRefGoogle Scholar
[2] Carlen, E. A.Potential scattering in quantum mechanics, Ann. Inst. H. Poincaré, 42, 407–428 (1985).Google Scholar
[1] Carverhill, A. P.Flows of stochastic dynamical systems: ergodic theory, Stochastics, 14, 273–318 (1985).CrossRefGoogle Scholar
[2] Carverhill, A. P.A formula for the Lyapunov exponents of a stochastic flow. Application to a perturbation theorem, Stochastics, 14, 209–226 (1985).CrossRefGoogle Scholar
[3] Carverhill, A. P.A nonrandom Lyapunov spectrum for nonlinear stochastic dynamical systems, Stochastics, 17, 209–226, 1986.CrossRefGoogle Scholar
[1] Carverhill, A. P., Chappell, M. J. and Elworthy, K. D.Characteristic exponents for stochastic flows, Proceedings, BIBOS I: Stochastic Processes.
[1] Carverhill, A. P. and Elworthy, K. D.Flows of stochastic dynamical systems: the functional analytic approach, Z. Wahrscheinlichkeitstheorie, 65, 245–268 (1983).CrossRefGoogle Scholar
[1] Chaleyat-Maurel, M.La condition d'hypoellipticité d'Hörmander, Astérisque, 84–85, 189–202 (1981).Google Scholar
[1] Chaleyat-Maurel, M. and El Karoui, N.Un problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur R, case continu. In Azema, and Yor, [2], pp. 117–144.
[1] Cheeger, J. and Ebin, D. G.Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.Google Scholar
[1] Chung, K. L.Markov Chains with Stationary Transition Probabilities, 2nd edition, Springer, Berlin, 1967.Google Scholar
[2] Chung, K. L.Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier, Grenoble, 23, 313–322 (1973).CrossRefGoogle Scholar
[3] Chung, K. L.Excursions in Brownian motion, Ark. Mat., 14, 155–177 (1976).CrossRefGoogle Scholar
[1] Chung, K. L. and Getoor, R. K.The condenser problem, Ann. Prob., 5, 82–86 (1977).CrossRefGoogle Scholar
[1] Chung, K. L. and Walsh, J. B.To reverse a Markov process, Acta Math., 123, 225–251 (1969).CrossRefGoogle Scholar
[2] Chung, K. L. and Walsh, J. B.Meyer's theorem on previsibility, Z. Wahrscheinlichkeitstheorie, 29, 253–256 (1974).CrossRefGoogle Scholar
[1] Chung, K. L. and Wlliams, R. J.Introduction to Stochastic IntegrationBirkhäuser, Boston, 1983.CrossRefGoogle Scholar
[1] Ciesielski, Z.Hölder conditions for realisations of Gaussian processes. Trans. Amer. Math. Soc., 99, 403–413 (1961).Google Scholar
[1] Ciesielslki, Z. and Taylor, S. J.First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc., 103, 434–450 (1962).Google Scholar
[1] Çinlar, E., Chung, K. L. and Getoor, R. K. (editors) Seminars on Stochastic Processes 1981. 1982; 1983, 1984 (four volumes), Birkhäuser, Boston, 1982, 1983, 1984, 1985.
[1] Çinlar, E, Chung, K. L., Getoor, R. K. and Glover, J. (editors) Seminar on Stochastic Processes 1986, Birkhäuser, Boston, 1987.CrossRef
[1] Çinlar, E., Jacod, J., Protter, P. and Sharpe, M. J.Semimartingales and Markov processes, Z. Wahrscheinlichkeitstheorie, 54, 161–220 (1980).CrossRefGoogle Scholar
[1] Clark, J. M. C.The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat., 41, 1282–1295 (1970); 42, 1778 (1971).CrossRefGoogle Scholar
[2] Clark, J. M. C.An introduction to stochastic differential equations on manifolds, Geometric Methods in Systems Theory (eds. D. Q., Mayne and R. W., Brockett), Reidel, Dordrecht, 1973.Google Scholar
[3] Clark, J. M. C.The design of robust approximations to the stochastic differential equations of nonlinear filtering, Communications Systems and Random Process Theory (ed. J., Skwirzynski), Sijthoff and Noordhoff, Alphen aan den Rijn, 1978.Google Scholar
[1] Clarkson, B. (editor) Stochastic Problems in Dynamics, Pitman, London, 1977.
[1] Cocozza, C. and Yor, M.Démonstration simplifiée d'un théorème de Knight, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 721, Springer, Berlin, 1980, pp. 496–499.Google Scholar
[1] Crank, J.The Mathematics of Diffusion, 2nd ed. Oxford University Press, Oxford (1975).Google Scholar
[1] Cranston, M.On the means of approach of Brownian motionAnn. Probab., 15, 1009–1013 (1987).CrossRefGoogle Scholar
[1] Cutland, N.Non-standard measure theory and its applications, Bull. London. Math. Soc., 15, 529–589 (1983).CrossRefGoogle Scholar
[1] Cutland, N. and Kendall, W. S.A non-standard proof of one of David Williams' splitting-time theorems, in D. G., Kendall [5], pp. 37–48.
[1] Darling, R. W. R.Martingales in manifolds—definition, examples, and behaviour under maps, Séminaire de Probabilités XVI Supplement: Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 217–236.Google Scholar
[1] Davies, E. B. and Simon, B.Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Fund. Anal. 59, 335–395 (1984).CrossRefGoogle Scholar
[1] Davis, B.Picard's theorem and Brownian motion, Trans. Amer. Math. Soc, 213, 353–362 (1975).Google Scholar
[2] Davis, B.Applications of the conformai invariance of Brownian motion, Harmonic analysis in Euclidean Space. Proc. Symp. Pure Math. XXXV, Amer. Math Soc., 303–310.
[1] Davis, M. H. A.On a multiplicative functional transformation arising in non-linear filtering theory, Z. Wahrscheinlichkeitstheorie, 54, 125–139 (1980).CrossRefGoogle Scholar
[2] Davis, M. H. A.Pathwise non-linear filtering, Stochastic Systems: the Mathematics of Filtering and Identification and Applications (eds. M., Hazewinkel and J. C., Willems), Reidel, Dordrecht, 1981.Google Scholar
[3] Davis, M. H. A.Some current issues in stochastic control theory, Stochastics.CrossRef
[4] Davis, M. H. A.Markov Models and Optimization, Chapman & Hall, London, 1993.CrossRefGoogle Scholar
[1] Davis, M. H. A. and Varaiya, P.Dynamic programming conditions for partially observed stochastic systems, SIAM J. Control, 11, 226–261 (1973).CrossRefGoogle Scholar
[1] Dawson, D. A.Measure-valued Markov processes, Ecole d'Eté de Probabilités de Saint-Flour XXI, 1993 (ed. P. L., Hennequin), Lecture Notes in Mathematics 1541, 1993.CrossRefGoogle Scholar
[1] Dawson, D. A. and Gärtner, J.Large deviations from the McKean–Vlasov limit for weakly-interacting diffusions, Stochastics, 20, 247–308 (1987).Google Scholar
[1] Dellacherie, C.Capacités et Processus Stochastiques, Springer, Berlin, 1972.Google Scholar
[2] Dellacherie, C.Quelques exemples familiers en probabilités d'ensembles analytiques non-Boréliens, Séminaire de Probabilités XII: Lecture Notes in Mathematics, Springer, Berlin, 1978, pp. 742–745.CrossRefGoogle Scholar
[3] Dellacherie, C.Un survoi de la théorie de l'intégrale stochastique, Stock Proc. Appt., 10, 115–144 (1980).Google Scholar
[1] Dellacherie, C., Doléans(-dade), Catherine, Letta, G. and Meyer, P. A.Diffusions à coefficients continus d'après D. W. Stroock et S. R. S. Varadhan, Séminaire de Probabilités IV: Lecture Notes in Mathematics 124, Springer, Berlin, 1970, pp. 241–282.Google Scholar
[1] Dellacherie, C. and Meyer, P. A.Probabilités et Potentiel, Chaps. I–VI, Hermann, Paris, 1975; Chaps. V–VIII, Hermann, Paris, 1980; Chaps. IX–XI, Hermann, Paris, 1983; Chapters XII–XVI, Hermann, Paris, 1987; Chaps XVII–XXIV, Hermann, Paris, 1993.Google Scholar
[1] Deuschel, J.-D. and Stroock, D. W.Large Deviations. Academic Press, Boston, 1989.Google Scholar
[1] De Witt-Morette, C. and Elworthy, K. D. (editors) New stochastic methods in physics, Phys. Rep., 77, 121–382 (1981).
[1] Doléans(-dade), C.Existence du processus croissant natural associé à un potentiel de la classe (D), Z. Wahrscheinlichkeitstheorie 9, 309–314 (1968).Google Scholar
[2] Doléans(-dade), C.Quelques applications de la formule de changement de variables pour les semimartingales, Z. Wahrescheinlichkeitstheorie, 16, 181–194 (1970).Google Scholar
[1] Doléans-Dade, C. and Meyer, P. A.Equations différentielles stochastiques, Séminaires de Probabilités XI: Lecture Notes in Mathematics 581, Springer, Berlin, 1977, pp. 376–382.Google Scholar
[1] Doney, R. A.On the maxima of random walks and stable processes and the arc-sine law. Bull. London Math. Soc., 19, 177–182 (1987).CrossRefGoogle Scholar
[2] Doney, R. A.A path decomposition for Lévy processes, Stoch. Prot: Appl. 47, 167–181 (1993).Google Scholar
[1] Doob, J. L.Stochastic Processes, Wiley, New York, 1953.Google Scholar
[2] Doob, J. L.State-spaces for Markov chains, Trans. Amer. Math. Soc. 149, 279–305 (1970).CrossRefGoogle Scholar
[3] Doob, J. L.Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1981.Google Scholar
[1] Doss, H.Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. Henri Poincaré B, 13, 99–126 (1977).Google Scholar
[1] Dubins, L. and Schwarz, G.On continuous martingales, Proc. Natl. Acad. Sei. USA, 53, 913–916 (1965).CrossRefGoogle ScholarPubMed
[1] Dunford, N. and Schwartz, J. T.Linear Operators: Part I, General Theory, Interscience, New York, 1958.Google Scholar
[1] Durrett, R.Brownian Motion and Martingales in Analysis, Wadsworth, Belmont, Calif., 1984.Google Scholar
[2] Durrett, R. (editor) Particle systems, random media, large deviations, Contemp. Math. 41, Amer. Math. Soc., Providence, RI, 1985.
[3] Durrett, R. (editor) Probability: Theory and Examples, Wadsworth & Brooks Cole, Pacific Grove, Calif., 1991.
[1] Dvoretsky, A., Erdös, P. and Kakutani, S.Double points of paths of Brownian motion in n-space, Acta. Sci. Math. (Szeged), 12, 64–81 (1950).Google Scholar
[2] Dvoretsky, A., Erdös, P. and Kakutani, S.Multiple points of paths of Brownian motion in the plane, Bull. Res. Council Isr. Sect. F, 3, 364–371 (1954).Google Scholar
[3] Dvoretsky, A., Erdös, P. and Kakutani, S.Points of multiplicity c of plane Brownian paths, Bull. Res. Council Isr. Sect. F, 7, 175–180 (1958).Google Scholar
[1] Dvoretsky, A., Erdös, P., Kakutani, S. and Taylor, S. J.Triple points of Brownian motion in 3-space, Proc. Camb. Phil. Soc., 53, 856–862 (1957).Google Scholar
[1] Dynkin, E. B.Theory of Markov Processes, Pergamon Press, Oxford, 1960.Google Scholar
[2] Dynkin, E. B.Markov Processes (two volumes), Springer, Berlin, 1965.CrossRefGoogle Scholar
[3] Dynkin, E. B.Non-negative eigenfunctions of the Laplace–Beltrami operator and Brownian motion in certain symmetric spaces (in Russian), Dokl. Akad. Naud SSSR, 141, 288–291 (1961).Google Scholar
[4] Dynkin, E. B.Diffusion of tensors, Dokl. Akad. Nauk. SSSR, 179, 1264–1267 (1968).Google Scholar
[5] Dynkin, E. B. Local times and quantum fields, in Çinlar, Chung and Getoor [1, 1983].
[6] Dynkin, E. B.Gaussian and non-Gaussian random fields associated with Markov processes, J. Func. Anal., 55, 344–376 (1984).CrossRefGoogle Scholar
[7] Dynkin, E. B.Self-intersection local times, occupation fields and stochastic integrals, Adv. App. Math., 65, 254–271 (1987).Google Scholar
[8] Dynkin, E. B.Random fields associated with multiple points of the Brownian motion, J. Fund. Anal., 62, 397–434 (1985).CrossRefGoogle Scholar
[9] Dynkin, E. B. Local times and quantum fields, in Çinlar, Chung and Getoor [1, 1984].
[1] Elliott, R. J.Stochastic Calculus and Applications, Springer, Berlin, 1982.Google Scholar
[1] Elliott, R. J. and Anderson, B. D. O.Reverse time diffusions, Stochastic Processes and their Applications, 19, 327–339 (1985).CrossRefGoogle Scholar
[1] Elworthy, K. D.Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Note Series 20, Cambridge University Press, Cambridge, 1982.CrossRefGoogle Scholar
[2] Elworthy, K. D. (editor) From Local Time to Global Geometry, Control and Physics, Proceedings, Warwick Symposium 1984/85, Longman, Harlow/Wiley, New York, 1986.
[1] Elworthy, K. D. and Stroock, D. W. Large deviation theory for mean exponents of stochastic flows, Appendix to Carverhill, Chappell and Elworthy [1].
[1] Elworthy, K. D. and Truman, A.Classical mechanics, the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold, J. Math. Phys., 22, 2144–2166 (1981).CrossRefGoogle Scholar
[2] Elworthy, K. D. and Truman, A.The diffusion equation and classical mechanics: an elementary formula, Stochastic processes in quantum theory and statistical physics (ed. S., Albeverioet al.), Lecture Notes in Physics 173, Springer, Berlin, 1982, pp. 136–146.Google Scholar
[1] Eméry, M.Annoncabilité des temps prévisibles: deux contre-exemples, Séminaire de Probabilités IV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980, pp. 318–323.Google Scholar
[2] Emery, M.On the Azéma martingales, Séminaire de Probabilitiés XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin 1989 pp. 66–88.Google Scholar
[1] Ethier, S. N. and Kurtz, T. G.Markov Processes: Characterization and Convergence, Wiley, New York, 1986.CrossRefGoogle Scholar
[1] Evans, S. N.On the Hausdorff dimension of Brownian cone points, Math. Proc. Camb. Phil. Soc., 98, 343–353 (1985).CrossRefGoogle Scholar
[2] Evans, S. N.Multiple points in the sample paths of a Lévy process, Prob. Th. Rel. Fields, 76, 359–367 (1987).CrossRefGoogle Scholar
[1] Feller, W.Introduction to Probability Theory and its Applications, Vol. 1, 2nd edition Wiley, New York, 1957; Vol. 2, Wiley, New York, 1966.Google Scholar
[2] Feller, W.Boundaries induced by non-negative matrices, Trans. Amer Math. Soc., 83, 19–54 (1956).CrossRefGoogle Scholar
[3] Feller, W.On boundaries and lateral conditions for the Kolmogorov equations, Ann. Math., Ser. II, 65, 527–570 (1957).CrossRefGoogle Scholar
[4] Feller, W.Generalized second-order differential operators and their lateral conditions, Illinois J. Math., 1, 459–504 (1957).Google Scholar
[1] Fleming, W. H. and Rishel, R. W.Deterministic and Stochastic Optimal Control, Springer, Berlin, 1975.CrossRefGoogle Scholar
[1] Föllmer, H.Calcul d'Itô sans probabilités, Seminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 143–150.Google Scholar
[1] Freedman, D.Brownian Motion and Diffusion, Holden-Day, San Francisco, 1971.Google Scholar
[2] Freedman, D.Approximating Countable Markov Chains, Holden-Day, San Francisco, 1972.Google Scholar
[1] Friedman, A.Stochastic Differential Equations and Applications (two volumes), Academic Press, New York, 1975.Google Scholar
[1] Fristedt, B.Sample functions of stochastic processes with stationary independent increments, Adv. Prob., 3, 241–396 (1973).Google Scholar
[1] Fujisaki, M., Kallianpur, G. and Kunita, H.Stochastic differential equations for the non-linear filtering problem, Osaka J. Math., 9, 19–40 (1972).Google Scholar
[1] Fukushima, M.Dirichlet Forms and Markov Processes, Kodansha, Tokyo, 1980.Google Scholar
[2] Fukushima, M.Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan, 36, 161–176 (1984).CrossRefGoogle Scholar
[1] Garcia Alvarez, M. A. and Meyer, P. A.Une théorie de la dualité à un ensemble polaire prés: I, Ann. Prob., 1, 207–222 (1973).Google Scholar
[1] Garsia, A.Martingale Inequalities: Seminar Notes on Recent Progress, Benjamin, Reading, Mass, 1973.Google Scholar
[1] Garsia, A., Rodemich, E. and Rumsey, H. JrA real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J., 20, 565–578 (1970).CrossRefGoogle Scholar
[1] Geman, D. and Horowitz, J.Occupation densities, Ann. Prob., 8, 1–67 (1980).CrossRefGoogle Scholar
[1] Geman, D.Horowitz, J. and Rosen, J.A local time analysis of intersections of Brownian paths in the plane, Ann. Prob., 12, 86–107 (1984).CrossRefGoogle Scholar
[1] Getoor, R. K.Markov processes: Ray Processes and Right Processes: Lecture Notes in Mathematics 440, Springer, Berlin, 1975.CrossRefGoogle Scholar
[2] Getoor, R. K.Excursions of a Markov process, Ann. Prob., 8, 244–266 (1979).Google Scholar
[3] Getoor, R. K.Splitting times and shift functionals, Z. Wahrscheinlichkeitstheorie, 47, 69–81 (1979).CrossRefGoogle Scholar
[1] Getoor, R. K. and Sharpe, M. J.Last exit times and additive functionals, Ann. Prob., 1, 550–569 (1973).CrossRefGoogle Scholar
[2] Getoor, R. K. and Sharpe, M. J.Excursions of Brownian motion and Bessel process, Z. Wahrscheinlichkeitstheorie, 47, 83–106 (1979).CrossRefGoogle Scholar
[3] Getoor, R. K. and Sharpe, M. J.Last exit decompositions and distributions, Indiana Univ. Math. J., 23, 377–404 (1973).CrossRefGoogle Scholar
[4] Getoor, R. K. and Sharpe, M. J.Excursions of dual processes, Adv. Math., 45, 259–309 (1982).CrossRefGoogle Scholar
[5] Getoor, R. K. and Sharpe, M. J.Conformal martingales, Invent Math., 16, 271–308 (1972).CrossRefGoogle Scholar
[1] Gikhman, I.I. and Skorokhod, A. V.The Theory of Stochastic Processes (three volumes), Springer, Berlin, 1979.Google Scholar
[1] Gray, A., Karp, L. and Pinsky, M. A.The mean exit time from a tube in a Riemannian manifold, Probability and Harmonic Analysis (eds. J., Chao and W., Woyczynski), Dekker, 1986, pp. 113–137.Google Scholar
[1] Gray, A. and Pinsky, M. A.The mean exit time from a small geodesic ball in a Riemannian manifold, Bull. Sci Math., 107, 345–370 (1983).Google Scholar
[1] Greenwood, P. and Perkins, E.A conditional limit theorem for random walk and Brownian local time on square root boundaries, Ann. Prob. 11, 227–261 (1982).Google Scholar
[2] Greenwood, P. and Perkins, E.Limit theorems for excursions from a moving boundary. Th. Prob. Appl. 29, 703–714 (1984).Google Scholar
[1] Greenwood, P. and Pitman, J. W.Construction of local time and Poisson point processes from nested arrays, J. London Math. Sot: (2), 22, 182–192 (1980).Google Scholar
[2] Greenwood, P. and Pitman, J. W.Fluctuation identities for Levy processes and splitting at the maximum, Adv. Appl. Prob., 12, 893–902 (1980).CrossRefGoogle Scholar
[1] Grenander, U.Probabilities on Algebraic Structures, Wiley, New York, 1963.Google Scholar
[1] Griffeath, D.Coupling methods for Markov processes, Advances in Mathematics Supplementary Studies: Studies in Probability and Ergodic Theory, Vol. 2, Academic Press, New York, 1978, pp. 1–43.Google Scholar
[1] Gromov, M. and Rohlin, V. A.Russian Math. Surveys, 25, 1–57 (1970).CrossRef
[1] Grosswald, E.The Student t-distribution of any degree of freedom is infinitely divisible, Z. Wahrsheinlichkeitscheorie verw. Geb., 36, 103–109 (1976).Google Scholar
[1] Halmos, P.Measure Theory, Van Nostrand, Princeton, NJ, 1959.Google Scholar
[1] Harris, T. E.Brownian motions on the homeomorphisms of the plane, Ann. Prob., 9, 232–254 (1981).CrossRefGoogle Scholar
[1] Haussmann, U.On the integral representation of Ito processes, Stochastics, 3, 17–7 (1979).CrossRefGoogle Scholar
[2] Haussmann, U.A Stochastic Maximum Principle for Optimal Control of Diffusions, Longman, Harlow, 1986.Google Scholar
[1] Hawkes, J.Multiple points for symmetric Levy processes, Math. Proc. Camb. Phil., 83, 83–90 (1978).Google Scholar
[2] Hawkes, J.The measure of the range of a subordinator, Bull. London Math. Soc., 5, 21–28 (1973).CrossRefGoogle Scholar
[3] Hawkes, J.Local times as stationary processes, From Local to Global Geometry, Control and Physics, Research Notes in Math. 150, Pitman, Harlow, 1986, pp. 111–120.Google Scholar
[1] Hazewinkel, M. and Willems, J. C. (editors) Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht, 1981.CrossRef
[1] Helgason, S.Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.Google Scholar
[1] Helms, L. L.Introduction to Potential Theory, Robert E. Krieger, Huntington, NY, 1975.Google Scholar
[1] Hille, E. and Phillips, R. S.Functional Analysis and Semigroups, Amer. Math. Soc., Providence, RI, 1957.Google Scholar
[1] Holley, R., Stroock, D. W. and Williams, D.Applications of dual processes to diffusion theory, Proc. Amer. Math. Soc. Prob. Symp., Urbana, 1976, pp. 23–36.Google Scholar
[1] Hörmander, L.Hypoelliptic second-order differential equations, Acta Math., 117, 147–171 (1967).Google Scholar
[1] Hsu, P.On excursions of reflecting Brownian motion, Trans. Math. Soc, 296, 239–264 (1986).Google Scholar
[2] Hsu, P. Brownian motion and the index theorem (to appear).
[1] Hunt, G. A.Markoff processes and potentials: I, II, III, Illinois J. Math., 1, 44–93; 316–369 (1957); 2, 151–213 (1958).
[1] Ikeda, N. and Watanabe, S.Stochastic Differential Equations and Diffusion Processes, North Holland–Kodansha, Amsterdam and Tokyo, 1981.Google Scholar
[2] Ikeda, N. and Watanabe, S. Malliavin calculus of Wiener functionals and its applications, in Elworthy [2], pp. 132–178.
[1] Ismail, M. E. and Kelker, D. H.The Bessel polynomials and the Student t-distribution, SIAM J. Math. Anal., 7, 82–91 (1976).CrossRefGoogle Scholar
[1] Itô, K.Stochastic integral, Proc Imp. Acad. Tokyo, 20, 519–524 (1944).CrossRefGoogle Scholar
[2] Itô, K.On a stochastic integral equation, Proc. Imp. Acad. Tokyo, 22, 32–35 (1946).Google Scholar
[3] Itô, K.Stochastic differential equations in a differential manifold, Nagoya Math. J., 1, 35–47 (1950).CrossRefGoogle Scholar
[4] Itô, K.The Brownian motion and tensor fields on a Riemannian manifold, Proc. Int. Congr. Math. Stockholm, 1963, pp. 536–539.Google Scholar
[5] Itô, K.Stochastic parallel displacement. Probabilistic Methods in Differential Equations: Lecture Notes in Mathematics 451, Springer, Berlin, 1975, pp. 1–7.Google Scholar
[6] Itô, K.Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, Berkeley, 1971, pp. 225–240.Google Scholar
[7] Itô, K. (editor) Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis, Kinokuniya Wiley, 1984.
[8] Itô, K.Stationary random distributions. Mem Coll. Sci. Kyoto Univ. Ser. A, 28, 209–223 (1954).Google Scholar
[1] Itô, K. and McKean, H. P.Diffusion Processes and their Sample Paths, Springer, Berlin, 1965.Google Scholar
[1] Jacka, S.A finite fuel stochastic control problem, Stochastics, 10, 103–113 (1983).CrossRefGoogle Scholar
[2] Jacka, S.A local time inequality for martingales, Séminaires de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983.Google Scholar
[1] Jacobsen, M.Splitting times for Markov processes and a generalised Markov property for diffusions, Z. Wahrscheinlichkeitstheorie, 30, 27–43 (1974).CrossRefGoogle Scholar
[2] Jacobsen, M.Statistical Analysis of Counting Processes: Lecture Notes in Mathematics 12, Springer, New York, 1982.CrossRefGoogle Scholar
[1] Jacod, J.A general theorem of representation for martingales, Proc Amer. Math. Soc. Prob. Symp., Urbana, 1976, 37–53.
[2] Jacod, J.Calcul Stochastique et Problèmes de Martingales: Lecture Notes in Mathematics 714, Springer, Berlin, 1979.CrossRefGoogle Scholar
[1] Jacod, J. and Yor, M.Etude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales, Z. Wahrscheinlichkeitstheorie, 38, 83–125 (1977).CrossRefGoogle Scholar
[1] Jeulin, T.Semimartingales et Grossissement d'une Filtration: Lecture Notes in Mathematics 833, Springer, Berlin, 1980.CrossRefGoogle Scholar
[1] Jeulin, T. and Yor, M.Grossissement d'une Filtration et semi-martingales: formules explicites, Séminaire de Probabilités XII: Lecture Notes in Mathematics 649, Springer, Berlin, 1978, pp. 78–97.Google Scholar
[2] Jeulin, T. and Yor, M. (editors) Grossissements de Filtrations: Exemples et Applications: Lecture Notes in Mathematics 1118, Springer, Berlin, 1985.
[1] Johnson, G. and Helms, L. L.Class (D) supermartingales, Bull. Amer. Math. Soc., 69, 59–62 (1963).CrossRefGoogle Scholar
[1] Kailath, T.An innovations approach to least squares estimation. Part I: Linear filtering with additive white noise, IEEE Trans. Autom. Control. 13, 646–655 (1968).Google Scholar
[1] Kallianpur, G.Stochastic Filtering Theory, Springer, Berlin, 1980.CrossRefGoogle Scholar
[1] Karatzas, I.Shreve, S. E.Brownian Motion and Stochastic Calculus, Springer, Berlin, 1988.CrossRefGoogle Scholar
[1] Kellogg, O. D.Foundations of Potential Theory, Dover, New York, 1953.Google Scholar
[1] Kendall, D. G.Pole-seeking Brownian motion and bird navigation (with discussion), J. Roy. Statist. Soc. B, 36, 365–417 (1974).Google Scholar
[2] Kendall, D. G.The diffusion of shape, Adv. Appl. Prob., 9, 428–430 (1979).Google Scholar
[3] Kendall, D. G.Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16, 81–121 (1984).CrossRefGoogle Scholar
[4] Kendall, D. G.A totally unstable Markov process, Quart. J. Math. Oxford, 9, 149–160 (1958).CrossRefGoogle Scholar
[5] Kendall, D. G. (editor) Analytic and Geometric Stochastics (special supplement to Adv. Appl. Prob. to honour G. E. H. Reuter), Appl. Prob. Trust, 1986.
[1] Kendall, D. G. and Reuter, G. E. H.Some pathological Markov processes with a denumerable infinity of states and the associated contraction semigroups of operators on l, Proc. Int. Congr. Math. 1954 (Amsterdam), 3, 377–415 (1956).Google Scholar
[1] Kendall, W. S.Knotting of Brownian motion in 3-space, J. London Math. Soc. (2), 19, 378–384 (1979).Google Scholar
[2] Kendall, W. S.Brownian motion, negative curvature, and harmonic maps, Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 479–491.Google Scholar
[3] Kendall, W. S.Brownian motion on a surface of negative curvature, Séminaire de Probabilités XVIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 70–76.Google Scholar
[4] Kendall, W. S. Survey article on stochastic differential geometry (to appear).
[1] Kent, J.Some probabilistic properties of Bessel functions, Ann. Prob., 6, 760–770 (1978).CrossRefGoogle Scholar
[2] Kent, J.The infinite divisibility of the von Mises–Fisher distribution for all values of the parameter in all dimensions, Proc. London Math. Soc., 3, 359–384 (1977).Google Scholar
[3] Kent, J.Continuity properties for random fields. Ann. Prob. 17, 1432–1440 (1989).CrossRefGoogle Scholar
[1] Kesten, H.Hitting probabilities of single points for processes with stationary independent increments, Mem. Amer. Math. Soc., 93 (1969).Google Scholar
[1] Khasminskii, R. Z.Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Th. Prob. Appl., 5, 179–196 (1960).Google Scholar
[2] Khasminskii, R. Z.Stochastic Stability of Differential Equations, SijthofTand Noordhoff, Alphen aan den Rijn, 1980.CrossRefGoogle Scholar
[1] Kifer, Y. Brownian motion and positive harmonic functions on complete manifolds of non-positive curvature, in Elworthy [2], pp. 187–232.
[1] Kingman, J. F. C.Subadditive ergodic theory, Ann. Prob., 1, 883–909 (1973).CrossRefGoogle Scholar
[2] Kingman, J. F. C.Completely random measures, Pacific J. Math., 21, 59–78 (1967).CrossRefGoogle Scholar
[3] Kingman, J. F. C.Regenerative Phenomena, Wiley, New York, 1972.Google Scholar
[4] Kingman, J. F. C.Poisson Processes, Oxford University Press, Oxford, 1993.Google Scholar
[1] Knight, F. B.Note on regularisation of Markov processes, Illinois, J. Math., 9, 548–552 (1965).Google Scholar
[2] Knight, F. B.A reduction of continuous square-integrable martingales to Brownian motion, Martingales: A Report on a Meeting at Oberwolfach (ed. H., Dinges): Lecture Notes in Mathematics 190, Springer, Berlin, 1971, pp. 19–31.Google Scholar
[3] Knight, F. B.Random walks and the sojourn density process of Brownian motion, Trans. Amer. Math. Soc., 107, 56–86 (1963).Google Scholar
[1] Knight, F. B. and Pittenger, A.O.Excision of a strong Markov process, Z. Wahrscheinlichkeitstheorie, 23, 114–120 (1972).CrossRefGoogle Scholar
[1] Kobayashi, S. and Nomizu, K.Foundations of Differential Geometry (two volumes) Wiley-Interscience, New York, 1963, 1969.Google Scholar
[1] Kolmogorov, A. N.The local structure of turbulence in an incompressible fluid at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 229–303 (1941).Google Scholar
[2] Kolmogorov, A. N.The distribution of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 19–21 (1941).Google Scholar
[1] Kozin, F. and Prodromou, S.Necessary and sufficient conditions for almost sure sample stability of linear Itô equations, SIAM J. Appl. Math., 21, 413–425 (1971).CrossRefGoogle Scholar
[1] Krylov, N. V.Controlled Diffusion Processes, Springer, New York, 1980.CrossRefGoogle Scholar
[1] Kuelbs, J.The law of the iterated logarithm for Banach space valued random variables, Probability in Banach Spaces: Lecture Notes in Mathematics 526, Springer, Berlin, 1976, pp. 131–142.
[1] Kunita, H.On the decomposition of the solutions of stochastic differential equations, Stochastic Integrals: Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 213–255.Google Scholar
[2] Kunita, H.On backward stochastic differential equations, Stochastics, 6, 293–313 (1982).Google Scholar
[3] Kunita, H.Stochastic differential equations and stochastic flows of homeomorphisms, Stochastic Analysis and Applications, Adv. Probab. Related Topics, 7, Dekker, New York, 1984, pp. 269–291.Google Scholar
[4] Kunita, H. Stochastic partial differential equations connected with nonlinear filtering, in Mitter and Moro [1].
[5] Kunita, H.Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.Google Scholar
[1] Kunita, H. and Watanabe, S.On square integrable martingales, Nagoya Math. J., 30, 209–245 (1967).CrossRefGoogle Scholar
[1] Kunita, H. and Watanabe, T.Some theorems concerning resolvents over locally compact spaces, Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 2, University of California Press, Berkeley 1967, pp. 131–164.Google Scholar
[2] Kunita, H. and Watanabe, T.Markov processes and Martin boundaries, I, Illinois J. Math., 9, 485–526 (1965).Google Scholar
[3] Kunita, H. and Watanabe, T.On certain reversed processes and their application to potential theory and boundary theory, J. Math. Mech., 15, 393–434 (1966).Google Scholar
[1] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part I, Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis (ed. K., Itô), Kinokuniya–Wiley, 1984, 271–306.
[2] Kusuoka, S. and Stroock, D.Applications of the Malliavin calculus, Part II, J. Fac. Sci. Univ. Tokyo (IA), 32, 1–76 (1985).Google Scholar
[1] le Gall, J.-F.Applications du temps local aux equations différentielles stochastiques unidimensionelles, Séminaire de Probabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 15–31.Google Scholar
[2] le Gall, J.-F.Sur la saucisse de Wiener et les points multiples du mouvement Brownien plan at la méthode de renormalization de Varadhan, Séminaire de Probabilités XIX: Lecture Notes in Mathematics 1123, Springer, Berlin, 1985, pp. 314–331.Google Scholar
[4] le Gall, J.-F.Fluctuation results for the Wiener sausage, Ann. Prob., 16, 991–1018 (1988).Google Scholar
[5] le Gall, J.-F. The exact Hausdorff measure of Brownian multiple points, in Çinlar, Chung, and Getoor and Glover [1], pp. 107–137.
[6] le Gall, J.-F.Planar Brownian motion, cones and stable processes, C. R. Acad. Sci. Paris Ser. I, 302, 641–643 (1986).Google Scholar
[7] le Gall, J.-F.Une approche élémentaire des théorèmes de decomposition de Williams, Séminaire de Probabilités, XX, Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 447–464.Google Scholar
[1] le Gall, J.-F., Rosen, J. and Shieh, N. R.Multiple points of Lévy processes, Ann. Prob., 17, 503–515 (1989).Google Scholar
[1] le Gall, J.-F. and Yor, M.Etude asymptotique de certains mouvements browniens complexes avec drift, Prob. Th. Rel. Fields, 71, 183–229 (1986).CrossRefGoogle Scholar
[2] le Gall, J.-F. and Yor, M.Etude asymptotique des enlacements due mouvement brownien autour des droites de l'espace, Prob. Th. Rel. Fields, 74, 617–635 (1987).CrossRefGoogle Scholar
[1] le Jan, Y.Flots de diffusion dans Rd, C.R. Acad. Sci. Paris Ser. I, 294, 697–699 (1982).Google Scholar
[2] le Jan, Y.Equilibre et exposants de Lyapounov de certains flots Browniens, C.R. Acad. Sci. Paris Ser. I, 298, 361–364 (1984).Google Scholar
[3] le Jan, Y.Exposants de Lyapounov pour les mouvements Browniens isotropes, C. R. Acad. Sci. Paris Ser. I, 299, 947–949 (1984).Google Scholar
[4] le Jan, Y.On isotropic Brownian motions, Z. Wahrscheǐnlichkeitstheorie verw. Geb., 70, 609–620 (1985).Google Scholar
[1] le Jan, Y. and Watanabe, S.Stochastic flows of diffeomorphisms, Proceedings of the 1982 Taniguchi Int. Symp. on Stochastic Analysis, 1984, pp. 307–332.Google Scholar
[1] Lenglart, E., Lepingle, D. and Pratelli, M.Présentation unifiée de certaines inégalités de la théorie des martingales, Séminaire de Probabilités XIV: Lecture Notes in Mathematics 784, Springer, Berlin, 1980.Google Scholar
[1] Lévy, P.Théorie de l'Addition des Variables Aléatoires, Gauthier Villars, Paris, 1954.Google Scholar
[2] Lévy, P.Processus Stochastiques et Mouvement Brownien, Gauthier Villars, Paris, 1965.Google Scholar
[3] Lévy, P.Systèmes markoviens et stationnaires. Cas dènombrable, Ann. Ecole Norm. Sup. (3), 68, 327–381 (1951); 69, 203–212 (1952).Google Scholar
[4] Lévy, P.Processus markoviens et stationnaires du cinquième type (infinité dènombrable des états possibles, paramètre continu), C. R. Acad. Sci. Paris, 236, 1630–1632, (1953).Google Scholar
[5] Lévy, P.Processus markoviens et stationnaires. Cas dènombrable, Ann. Inst. H. Poincaré, 16, 7–25 (1958).Google Scholar
[1] Lewis, J. T.Brownian motion on a submanifold of Euclidean space, Bull. London Math. Soc., 18, 616–620 (1986).CrossRefGoogle Scholar
[1] Liggett, T.Interacting Particle Systems, Springer, New York, 1985.CrossRefGoogle Scholar
[1] Lindvall, T.On coupling of diffusion processes, J. Appl. Prob., 20, 82–93 (1983).CrossRefGoogle Scholar
[1] Lipster, R. S. and Shiryayev, A. N.Statistics of Random Processes, I, Springer, Berlin, 1977.Google Scholar
[1] London, R. R., McKean, H. P., Rogers, L. C. G. and Williams, D.A martingale approach to some Wiener–Hopf problems, I, Séminaire de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 41–67.Google Scholar
[1] Lyons, T. J.Finely holomorphic functions, J. Funct. Anal., 37, 1–18 (1980).CrossRefGoogle Scholar
[2] Lyons, T. J.Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains, J. Diff. Geom. 26, 33–66 (1987).Google Scholar
[3] Lyons, T. J. The critical dimension at which quasi-every path is self-avoiding, in D. G. Kendall [5], pp. 87–100.
[1] Lyons, T. J. and McKean, H. P.Windings of the plane Brownian motion, Adv. Math., 51, 212–225 (1984).CrossRefGoogle Scholar
[1] McGill, P.Calculation of some conditional excursion formulae, Z. Wahrscheinlichkeitstheorie, 61, 255–260 (1982).CrossRefGoogle Scholar
[2] McGill, P.Markov properties of diffusion local time: a martingale approach, Adv. Appl. Prob., 14, 789–810 (1980).Google Scholar
[3] McGill, P.Integral representation of martingales in the Brownian excursion filtration, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 465–502.Google Scholar
[1] McKean, H. P.Stochastic Integrals, Academic Press, New York, 1969.Google Scholar
[2] McKean, H. P.Excursions of a non-singular diffusion, Z. Wahrscheinlichkeitstheorie, 1, 230–239 (1963).CrossRefGoogle Scholar
[3] McKean, H. P.Brownian local times, Adv. Math., 16, 91–111 (1975).CrossRefGoogle Scholar
[4] McKean, H. P.Brownian motion with a several-dimensional time, Teor. Veroyatnost., 4(4), 357–378 (1963).Google Scholar
[1] McNamara, J. M.A regularity condition on the transition probability measure of a diffusion process. Stochastics, 15, 161–182 (1985).CrossRefGoogle Scholar
[1] Maisonneuve, B.Systèmes régéneratifs, Astérisque, Soc. Mathématique de France, 15 (1974).Google Scholar
[1] Maisonneuve, B. and Meyer, P.-A.Ensembles aléatoires markoviens homogènes, Séminaire de Probabilités VIII: Lecture Notes in Mathematics 381, Springer, Berlin, 1974, pp. 172–261.Google Scholar
[1] Malliavin, M.P. and Malliavin, P.Factorisations, et lois limites de la diffusion horizontale au dessus d'un espace riemannien symmetrique, Lecture Notes in Mathematics 404, Springer, Berlin, 1974, pp. 166–217.Google Scholar
[1] Malliavin, P.Stochastic calculus of variation and hypo-elliptic operators, Proc. Int. Symp. Stock. Diff. Equations, Kyoto, 1976 (ed. K., Itô), Kinokuniya–Wiley, 1978, pp. 195–263.Google Scholar
[2] Malliavin, P.Ck-hypoellipticity with degeneracy, Stochastic Analysis (eds. A., Friedman and M., Pinksy), Academic Press, New York, 1978, pp. 199–214.Google Scholar
[3] Malliavin, P.Formula de la moyenne, calcul de perturbations et théorèmes d'annulation pour les formes harmoniques, J. Funct. Anal., 17, 274–291 (1974).CrossRefGoogle Scholar
[1] Marcus, M.B. and Rosen, J.Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. Ann. Prob., 20, 1603–1684 (1992).Google Scholar
[1] Mandl, P.Analytic Treatment of One-Dimensional Markov Processes, Springer, Berlin, 1968.Google Scholar
[1] Meléard, S.Application du calcul stochastique à l'étude de processus de Markov réguliers sur [0, 1], Stochastics, 19, 41–82 (1986).CrossRefGoogle Scholar
[1] Messulam, P. and Yor, M.On D. Williams' ‘pinching method’ and some applications, J. London Math. Soc., 26, 348–364 (1982).Google Scholar
[1] Metivier, M. and Pellaumail, J.Stochastic Integration, Academic Press, New York, 1979.Google Scholar
[1] Meyer, P. A.Un cours sur les intégrales stochastiques, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 245–400.Google Scholar
[2] Meyer, P. A.Probability and Potential, Blaisdell, Waltham, Mass., 1966.Google Scholar
[3] Meyer, P. A.Processus de Markov: Lecture Notes in Mathematics 26, Springer, Berlin, 1967.CrossRefGoogle Scholar
[4] Meyer, P. A.Processus de Markov: la Frontière de Martin: Lecture Notes in Mathematics 77, Springer, Berlin, 1970.Google Scholar
[5] Meyer, P. A.Démonstration simplifiée d'un théorème de Knight, Séminaire de Probabilités V: Lecture Notes, in Mathematics 191, Springer, Berlin, 1971, pp. 191–195.Google Scholar
[6] Meyer, P. A.Démonstration probabiliste de certaines inégalités de Littlewood-Paley, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 125–183.Google Scholar
[7] Meyer, P. A.Flot d'un équation différentielle stochastique, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 103–117.Google Scholar
[8] Meyer, P. A.Sur la démonstration de prévisibilité de Chung and Walsh, Séminaire de Probabilités IX: Lecture Notes in Mathematics 465, Springer, Berlin, 1975, pp. 530–533.Google Scholar
[9] Meyer, P. A.Géométrie stochastique sans larmes, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 44–102.Google Scholar
[10] Meyer, P. A.Géométrie stochastique sans larmes (bis), Séminaire de Probabilités XVI: Supplément, Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 165–207.Google Scholar
[11] Meyer, P. A.Eléments de probabilités quantiques, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 186–312.Google Scholar
[12] Meyer, P. A.Quantum Theory for Probabilists, Lecture Notes in Mathematics 1538, Springer, Berlin, 1993.Google Scholar
[1] Mihlstein, G. N.Approximate integration of stochastic differential equations, Th. Prob. Appl., 19, 557–562 (1974).Google Scholar
[1] Millar, P. W.Random times and decomposition theorems, in Probability: Proc. Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 91–103.Google Scholar
[2] Millar, P. W.A path decomposition for Markov processes, Ann. Prob., 6, 345–348 (1978).CrossRefGoogle Scholar
[1] Millar, P. W. and Tran, L. T.Unbounded local times, Z. Wahrscheinlichkeitstheorie verw. Geb., 30, 87–92 (1974).CrossRefGoogle Scholar
[1] Mitro, J.Dual Markov processes: construction of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie, 47, 139–156 (1979).CrossRefGoogle Scholar
[2] Mitro, J.Dual Markov functions: applications of a useful auxiliary process, Z. Wahrscheinlichkeitstheorie, 48, 97–114 (1979).CrossRefGoogle Scholar
[1] Mitter, S. K. Lectures on non-linear filtering and stochastic control, in Mitter and Moro [1], pp. 170–207.
[1] Mitter, S. K. and Moro, A. (editors) Non-linear Filtering and Stochastic Control: Lecture Notes in Mathematics 972, Springer, Berlin, 1982.CrossRef
[1] Motoo, M.Application of additive functionals to the boundary problem of Markov processes (Lévy's system of U-processes), Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 2, Univ. of California Press, Berkeley, 1967, pp. 75–110.Google Scholar
[2] Motoo, M.Proof of the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math., 10, 21–28 (1959).CrossRefGoogle Scholar
[1] Motoo, M.Watanabe, S.On a class of additive functionals of Markov processes, J. Math. Kyoto Univ., 4, 429–469 (1965).CrossRefGoogle Scholar
[1] Nakao, S.On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9, 513–518 (1972).Google Scholar
[1] Nash, J. F.The imbedding problem for Riemannian manifolds, Ann. Math., 63, 20–63 (1956).CrossRefGoogle Scholar
[1] Nelson, E.Dynamical Theories of Brownian Motion, Princeton University Press, 1967.Google Scholar
[2] Nelson, E.Quantum Fluctuations, Princeton University Press, 1984.Google Scholar
[1] Neveu, J.Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.Google Scholar
[2] Neveu, J.Sur les états d'entrée et les états fictifs d'un processus de Markov, Ann. Inst. Henri Poincaré, 17, 323–337 (1962).Google Scholar
[3] Neveu, J.Lattice methods and submarkovian processes, Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. 2, University of California Press, Berkeley, 1960, pp. 347–391.Google Scholar
[4] Neveu, J.Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg, 25, 36–61 (1961).CrossRefGoogle Scholar
[5] Neveu, J.Entrance, exit and fictitious states for Markov chains, Proc. Aarhus Colloq. Combin Prob., 1962, pp. 64–68.Google Scholar
[1] Norris, J. R.Simplified Malliavin calculus, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 101–130.Google Scholar
[1] Norris, J. R., Rogers, L. C. G. and Williams, D.Brownian motion of ellipsoids, Trans. Amer. Math. Soc., 294, 757–765 (1986).CrossRefGoogle Scholar
[2] Norris, J. R., Rogers, L. C. G. and Williams, D.Self-avoiding random walk: a Brownian motion model with local time drift, Prob. Th. Rel. Fields, 74, 271–287 (1987).CrossRefGoogle Scholar
[1] Ocone, D.Malliavin's calculus and stochastic integral: representation of functionals of diffusion processes, Stochastics, 12, 161–185 (1984).CrossRefGoogle Scholar
[1] Orihara, A.On random ellipsoid, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 17, 73–85 (1970).Google Scholar
[1] Pardoux, E.Stochastic differential equations and filtering of diffusion processes, Stochastics, 3, 127–167 (1979).Google Scholar
[2] Pardoux, E.Grossissement d'une filtration et retournement du temps d'une diffusion, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 48–55.Google Scholar
[3] Pardoux, E. Equations of non-linear filtering, and applications to stochastic control with partial observations, in Mitter and Moro [I], pp. 208–248.
[1] Pardoux, E. and Talay, D.Discretization and simulation of stochastic differential equations, Acta Appl. Math 3, 23–47 (1985).CrossRefGoogle Scholar
[1] Parthasarathy, K. R.Probability Measures on Metric Spaces, Academic Press, New York, 1967.CrossRefGoogle Scholar
[1] Pauwels, E. and Rogers, L. C. G.Skew-product decompositions of Brownian motions, Contemp. Math. 73, 237–262 (1988).Google Scholar
[1] Perkins, E.Local time and pathwise uniqueness for stochastic differential equations, Séminaire de Probabilités XVI: Lecture Notes in Mathematics 920, Springer, Berlin, 1982, pp. 201–208.Google Scholar
[2] Perkins, E.Local time is a semimartingale, Z. Wahrscheinlichkeitstheorie, 60, 79–117 (1982).Google Scholar
[1] Phelps, R. R.Lectures on Choquet's Theorem, Van Nostrand, Princeton, NJ, 1966.Google Scholar
[1] Pinsky, M. A. Homogenization and stochastic parallel displacement, in Williams [13], pp. 271–284.
[2] Pinsky, M. A.Stochastic Riemannian geometry, Probabilistic Analysis and Related Topics, 1 (ed. A. T., Bharucha-Reid), Academic Press, New York, 1978.Google Scholar
[1] Pitman, J. W.One-dimensional Brownian motion and the three-dimensional Bessel process, J. Appl. Prob., 7, 511–526 (1975).Google Scholar
[2] Pitman, J. W.Path decomposition for conditional Brownian motion, Inst. Math. Statist. Univ. Copenhagen, Preprint No. 11 (1974).Google Scholar
[3] Pitman, J. W. Lévy systems and path decompositions, in Çinlar, Chung and Getoor [1, 1981].
[1] Pitman, J. W. and Yor, M.Bessel processes and infinitely divisible laws, Stochastic Integrals (ed. D., Williams), Lecture Notes in Mathematics 851, Springer, Berlin, 1981, pp. 285–370.Google Scholar
[2] Pitman, J. W. and Yor, M.A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie, 59, 425–457 (1982).CrossRefGoogle Scholar
[3] Pitman, J. W. and Yor, M.The asymptotic joint distribution of windings of planar Brownian motion, Bull. Amer. Math. Soc., 10, 109–111 (1984).CrossRefGoogle Scholar
[4] Pitman, J. W. and Yor, M.Asymptotic laws of planar Brownian motion, Ann. Proh., 14, 733–779 (1986).Google Scholar
[1] Pittenger, A. O. and Shih, C. T.Coterminal families and the strong Markov property, Trans. Amer. Math. Soc., 182, 1–42 (1973).CrossRefGoogle Scholar
[1] Poor, W. A.Differential Geometric Structures, McGraw-Hill, New York, 1981.Google Scholar
[1] Port, S. C. and Stone, C. J.Classical potential theory and Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Proh., Vol. 3, University of California Press, Berkeley, 1972, pp. 143–176.Google Scholar
[2] Port, S. C. and Stone, C. J.Logarithmic potentials and planar Brownian motion, Proc. 6th Berkeley Symp. Math. Statist. Proh., Vol. 3, University of California Press, Berkeley 1972, pp. 177–192.Google Scholar
[3] Port, S. C. and Stone, C. J.Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.Google Scholar
[1] Price, G. C. and Williams, D.Rolling with ‘slipping’: I, Séminaire de Prohabilités XVII: Lecture Notes in Mathematics 986, Springer, Berlin, 1983, pp. 194–297.Google Scholar
[1] Prohorov, Yu. V.Convergence of random processes and limit theorems in probability, Th. Prob. Appl., 1, 157–214 (1956).Google Scholar
[1] Protter, P.On the existence, uniqueness, convergence and explosions of solutions of stochastic differential equations, Ann. Prob., 5, 243–261 (1977).CrossRefGoogle Scholar
[1] Rao, K. M.On decomposition theorems of Meyer, Math. Scand., 24, 66–78 (1969).CrossRefGoogle Scholar
[2] Rao, K. M.Quasimartingales, Math. Scand., 24, 79–92 (1969).Google Scholar
[1] Ray, D. B.Resolvents, transition functions and strongly Markovian processes, Ann. Math., 70, 43–72 (1959).CrossRefGoogle Scholar
[2] Ray, D. B.Sojourn times of a diffusion process, Illinois J. Math., 7, 615–630 (1963).Google Scholar
[1] Reuter, G. E. H.Denumerable Markov processes, II, J. London Math. Soc., 34, 81–91 (1959).Google Scholar
[1] Revuz, D.The Martin boundary of a recurrent random walk has one or two points, Probability: Proc Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 125–130.Google Scholar
[1] Revuz, D. and Yor, M.Continuous Martingales and Brownian Motion, Springer, Berlin, 1991.CrossRefGoogle Scholar
[1] Rogers, L. C. G.Williams' characterization of the Brownian excursion law: proof and applications, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 227–250.Google Scholar
[2] Rogers, L. C. G.Itô excursion theory via resolvents, Z. Wahrscheinlichkeitstheorie, 63, 237–255 (1983).CrossRefGoogle Scholar
[3] Rogers, L. C. G.Smooth transition densities for one-dimensional diffusions, Bull. London Math. Soc., 17, 157–161 (1985).CrossRefGoogle Scholar
[4] Rogers, L. C. G.Continuity of martingales in the Brownian excursion filtration, Prob. Th. Rel. Fields 76, 291–298 (1987).CrossRefGoogle Scholar
[5] Rogers, L. C. G.Multiple points of Markov processes in a complete metric space, Séminaire de Probabilités XXIII: Lecture Notes in Mathematics 1372, Springer, Berlin, 1989, pp. 186–197.Google Scholar
[6] Rogers, L. C. G.A new identity for real Lévy processes. Ann. Inst. Henri Poincaré, 20, 21–34 (1984).Google Scholar
[1] Rogers, L. C. G. and Pitman, J. W.Markov functions, Ann. Prob. 9, 573–582 (1981).CrossRefGoogle Scholar
[1] Rogers, L. C. G. and Williams, D.Diffusions, Markov Process, and Martingales: Volume 2: Itô Calculus, Wiley, Chichester, 1987.Google Scholar
[2] Rogers, L. C. G. and Williams, D. Construction and approximation of transition matrix functions, in D. G. Kendall [5], pp. 133–160.
[1] Rogozin, B. A.On the distribution of functionals related to boundary problems for processes with independent increments, Th. Prob. Appl., 11, 580–591 (1966).CrossRefGoogle Scholar
[1] Rosen, J.A local time approach to self-intersections of Brownian paths in space, Comm. Math. Phys., 88, 327–338 (1983).CrossRefGoogle Scholar
[1] Schwartz, L.Géometrie différentielle du 2ième ordre, semimartingales et équations différentielles stochastiques sur une variété différentielle, Séminaire de Probabilités XVI, Supplément: Lecture Notes in Mathematics 921, Springer, Berlin, 1982, pp. 1–148.Google Scholar
[1] Sharpe, M. J.General Theory of Markov Processes, Academic Press, New York, 1988.Google Scholar
[1] Sheppard, P.On the Ray–Knight property of local times, J. London Math. Soc., 31, 377–384 (1985).Google Scholar
[1] Shiga, T. and Watanabe, S.Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie, 27, 37–46 (1973).CrossRefGoogle Scholar
[1] Shigekawa, I.Derivatives of Wiener functionals and absolute continuity of induced measure, J. Math. Kyoto Univ., 20, 263–289 (1980).CrossRefGoogle Scholar
[1] Shimura, M.Excursions in a cone for two-dimensional Brownian motion, J. Math. Kyoto Univ., 25, 433–443 (1985).CrossRefGoogle Scholar
[1] Silverstein, M. L.Symmetric Markov Processes: Lecture Notes in Mathematics 426, Springer, Berlin, 1974.CrossRefGoogle Scholar
[2] Silverstein, M. L.Boundary Theory for Symmetric Markov Processes: Lecture Notes in Mathematics 516, Springer, Berlin, 1976.CrossRefGoogle Scholar
[1] Simon, B.Functional Integration and Quantum Physics, Academic Press, New York, 1979.Google Scholar
[2] Simon, B.Semiclassical analysis of low-lying eigenvalues, II. Tunneling, Ann. Math. 120, 89–118 (1984).CrossRefGoogle Scholar
[1] Skorokhod, A. V.Limit theorems for stochastic processes, Th. Prob. Appl. 1, 261–290 (1956).CrossRefGoogle Scholar
[2] Skorokhod, A. V.Limit theorems for Markov processes, Th. Prob. Appl. 3, 202–246 (1958).CrossRefGoogle Scholar
[1] Spitzer, F.Principles of Random Walk, Van Nostrand, Princeton, NJ, 1964.CrossRefGoogle Scholar
[2] Spitzer, F.Some theorems concerning two-dimensional Brownian motion, Trans. Amer. Math. Soc., 87, 187–197 (1958).Google Scholar
[1] Strassen, V.An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie, 3, 211–226 (1964).CrossRefGoogle Scholar
[2] Strassen, V.Almost sure behaviour of sums of independent random variables and martingales, Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 2, Part 1, University of California Press, Berkeley, 1966, pp. 315–343.Google Scholar
[1] Stroock, D. W.The Malliavin calculus and its applications to second-order parabolic differential operators I, II, Math. System Theory, 14, 25–65, 141-171 (1981).Google Scholar
[2] Stroock, D. W.The Malliavin calculus; a functional analytical approach, J. Funct. Anal., 44, 217–257 (1981).CrossRefGoogle Scholar
[3] Stroock, D. W.Diffusion processes associated with Lévy generators, Z. Wahrscheinlichkeitstheorie, 32, 209–244 (1975).CrossRefGoogle Scholar
[4] Stroock, D. W.An Introduction to the Theory of Large Deviations, Springer, Berlin, New York, 1984.CrossRefGoogle Scholar
[1] Stroock, D. W. and Varadhan, S. R. S.Multidimensional Diffusion Processes, Springer, New York, 1979.Google Scholar
[2] Stroock, D. W. and Varadhan, S. R. S.On the support of diffusion processes with applications to the strong maximum principle, Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, Berkeley, 1972, pp. 333–359.Google Scholar
[3] Stroock, D. W. and Varadhan, S. R. S.Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24, 147–225 (1971).CrossRefGoogle Scholar
[1] Stroock, D. W. and Yor, M.Some remarkable martingales, Séminaire de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 590–603.Google Scholar
[1] Sussmann, H. J.On the gap between deterministic and stochastic ordinary differential equations, Ann. Prob., 6, 19–41 (1978).CrossRefGoogle Scholar
[1] Symanzik, K.Euclidean quantum field theory, Local Quantum Theory (ed. R., Jost), Academic Press, New York, 1969.Google Scholar
[1] Talagrand, M.Regularity of Gaussian processes, Acta Math., 159, 99–149 (1987).CrossRefGoogle Scholar
[1] Taylor, G. I.Statistical theory of turbulence, Proc. Roy. Soc. London A, 151, 421–478 (1935).Google Scholar
[1] Taylor, H. M.A stopped Brownian motion formula, Ann. Prob., 3, 234–246 (1975)CrossRefGoogle Scholar
[1] Taylor, S. J.Sample path properties of processes with stationary independent increments, Stochastic Analysis (eds. D. G., Kendall and E. F., Harding), Wiley, New York, 1973, pp. 387–414.Google Scholar
[1] Thorin, O.On the infinite divisibility of the lognormal distribution, Scand. Actuarial J., 121–148 (1977).Google Scholar
[1] Tsirel'son, B. S.An example of the stochastic equation having no strong solution, Teoria Verojatn. i Primenen., 20, 427–430 (1975).Google Scholar
[1] Van Den Berg, M. and Lewis, J. T.Brownian motion on a hypersurface, Bull. London Math. Soc., 17, 144–150 (1985).CrossRefGoogle Scholar
[1] Varadhan, S. R. S.Large Deviations and Applications, SIAM, Philadelphia, 1984.CrossRefGoogle Scholar
[1] Varadhan, S. R. S. and Williams, R. J.Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math., 38, 405–443 (1985).CrossRefGoogle Scholar
[1] Walsh, J. B. Excursions and local time, in Azema and Yor [2], pp. 159–192.
[2] Walsh, J. B. Stochastic integration with respect to local time, in Çinlar, Chung and Getoor [1, 1983].
[3] Walsh, J. B.An introduction to stochastic partial differential equations, Ecole d'Eté de Probabilités de St Flour XIV–1984, Lecture Notes in Mathematics 1180, Springer, Berlin, 1986.Google Scholar
[1] Warner, F. W.Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin 1983.CrossRefGoogle Scholar
[1] Watanabe, S.On discontinuous additive functionals and Lévy measures of a Markov process, Jap. J. Math., 34, 53–79 (1964).CrossRefGoogle Scholar
[1] Watson, G. N.A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.Google Scholar
[1] Whitney, H.Geometric Integration Theory, Princeton University Press, Princeton, NJ, 1957.CrossRefGoogle Scholar
[1] Whittle, P.Optimization over Time (two volumes), Wiley, Chichester, 1982, 1983.Google Scholar
[1] Williams, D.Brownian motions and diffusions as Markov processes, Bull. London Math. Soc., 6, 257–303 (1974).CrossRefGoogle Scholar
[2] Williams, D.Some basic theorems on harnesses, Stochastic Analysis (eds. D. G., Kendall and E. F., Harding), Wiley, New York, 1973, pp. 349–366.Google Scholar
[3] Williams, D.On Lévy's downcrossing theorem, Z. Wahrscheinlichkeitstheorie, 40, 157–158 (1977).CrossRefGoogle Scholar
[4] Williams, D.Path decomposition and continuity of local time for one-dimensional diffusions, I, Proc. London Math. Soc., Ser. 3, 28, 738–768 (1974).Google Scholar
[5] Williams, D.On the stopped Brownian motion formula of H. M. Taylor, Séminaire de Probabilités X: Lecture Notes in Mathematics 511, Springer, Berlin, 1976, pp. 235–239.Google Scholar
[6] Williams, D.Markov properties of Brownian local time, Bull. Amer. Math. Soc., 75, 1035–1036 (1969).CrossRefGoogle Scholar
[7] Williams, D.Decomposing the Brownian path, Bull. Amer. Math. Soc., 76, 871–873 (1970).CrossRefGoogle Scholar
[8] Williams, D.The Q-matrix problem for Markov chains, Bull. Amer. Math. Soc., 81, 1115–1118 (1975).CrossRefGoogle Scholar
[9] Williams, D.The Q-matrix problem, Séminaire de Probabilités X: Lecutre Notes in Mathematics 511, Springer, Berlin, 1976, pp. 216–234.Google Scholar
[10] Williams, D.A note on the Q-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie, 7, 116–121 (1967).CrossRefGoogle Scholar
[11] Williams, D.Some Q-matrix problems, Probability: Proc. Symp. Pure Math. XXXI, Amer. Math. Soc., Providence, RI, 1977, pp. 165–169.Google Scholar
[12] Williams, D.Diffusions. Markov Processes, and Martingales, Volume 1: Foundations, Wiley, Chichester, 1979.Google Scholar
[13] Williams, D. (editor) Stochastic Integrals: Proceedings, LMS Durham Symposium, Lecture Notes in Mathematics 851, Springer, Berlin, 1981.CrossRef
[14] Williams, D.Conditional excursion theory, Séminaire de Probabilités XIII: Lecture Notes in Mathematics 721, Springer, Berlin, 1979, pp. 490–494.Google Scholar
[15] Williams, D.(= [W]) Probability with Martingales, Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
[1] Yaglom, A. M.Some classes of random fields in n-dimensional space, related to stationary random processes, Th. Prob. Appl., 2, 273–319 (1957).CrossRefGoogle Scholar
[1] Yamada, T.On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ., 13, 497–512 (1973).CrossRefGoogle Scholar
[1] Yamada, T. and Ogura, Y.On the strong comparison theorems for solutions of stochastic differential equations, Z. Wahrscheinlichkeitstheorie, 56, 3–19 (1981).CrossRefGoogle Scholar
[1] Yamada, T. and Watanabe, S.On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 155–167 (1971).CrossRefGoogle Scholar
[1] Yor, M.Sur certains commutateurs d'une filtration, Séminaires de Probabilités XV: Lecture Notes in Mathematics 850, Springer, Berlin, 1981, pp. 526–528.Google Scholar
[2] Yor, M. Sur la continuité des temps locaux associés à certaines semimartingales, in Azéma and Yor [2], pp. 23–35.
[3] Yor, M. Rappel et préliminaires généraux, in Azéma and Yor [2], pp. 17–22.
[4] Yor, M.Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement Brownien dans ℝ2, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 532–542.Google Scholar
[5] Yor, M.Sur la réprésentation comme intégrales stochastique des temps d'occupation du mouvement Brownien dans ℝd, Séminaire de Probabilités XX: Lecture Notes in Mathematics 1204, Springer, Berlin, 1986, pp. 543–552.Google Scholar
[1] Yamada, T.Functional Analysis, Springer, Berlin, 1965.Google Scholar
[2] Yamada, T.Brownian motion in homogeneous Riemannian space, Pacific J. Math., 2, 263–296. (1952).Google Scholar
[1] Zakai, M.The Malliavin calculus, Acta Appl. Math., 3, 175–207 (1985).CrossRefGoogle Scholar
[1] Zheng, W. A. and Meyer, P.-A.Quelques résultats de ‘méchanique stochastique’, Séminaire de Probabilités XVIII: Lecture Notes in Mathematics 1059, Springer, Berlin, 1984, pp. 223–244.Google Scholar
[1] Zvonkin, A. K.A transformation of the phase space of a diffusion process that removes the drift, Math. USSR Sbornik, 22, 129–149 (1974).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×