Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T04:35:21.380Z Has data issue: false hasContentIssue false

4 - Translations and Standard Triangles

Published online by Cambridge University Press:  15 November 2019

Amnon Yekutieli
Affiliation:
Ben-Gurion University of the Negev, Israel
Get access

Summary

We talk about the translation (or shift or suspension) functor and standard triangles in the DG category C(A,M). The translation T(M) of a DG module M is the usual one. A calculation shows that T is a DG functor from C(A,M) to itself. We introduce the degree -⁠1 morphism tM : M → T(M), called the little t operator, which facilitates many calculations.

A morphism φ : M → N in Cstr(A,M) gives rise to the standard Cone(φ) = N ⊕ T(M) , whose differential is a matrix involving the degree 1 morphism φ ◦ (tM)-1. The standard cone sits inside the standard triangle associated to φ.A DG functor F : C(A,M) → C(B,N) gives rise to a T-additive functor F : Cstr(A,M) → Cstr(B,N), and it sends standard triangles in Cstr(A,M) to standard triangles in Cstr(B,N).

Type
Chapter
Information
Derived Categories , pp. 101 - 116
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×