Book contents
- Frontmatter
- Dedication
- Contents
- 0 Introduction
- 1 Basic Facts on Categories
- 2 Abelian Categories and Additive Functors
- 3 Differential Graded Algebra
- 4 Translations and Standard Triangles
- 5 Triangulated Categories and Functors
- 6 Localization of Categories
- 7 The Derived Category D(A,M)
- 8 Derived Functors
- 9 DG and Triangulated Bifunctors
- 10 Resolving Subcategories of K(A,M)
- 11 Existence of Resolutions
- 12 Adjunctions, Equivalences and Cohomological Dimension
- 13 Dualizing Complexes over Commutative Rings
- 14 Perfect and Tilting DG Modules over NC DG Rings
- 15 Algebraically Graded Noncommutative Rings
- 16 Derived Torsion over NC Graded Rings
- 17 Balanced Dualizing Complexes over NC Graded Rings
- 18 Rigid Noncommutative Dualizing Complexes
- References
- Index
13 - Dualizing Complexes over Commutative Rings
Published online by Cambridge University Press: 15 November 2019
- Frontmatter
- Dedication
- Contents
- 0 Introduction
- 1 Basic Facts on Categories
- 2 Abelian Categories and Additive Functors
- 3 Differential Graded Algebra
- 4 Translations and Standard Triangles
- 5 Triangulated Categories and Functors
- 6 Localization of Categories
- 7 The Derived Category D(A,M)
- 8 Derived Functors
- 9 DG and Triangulated Bifunctors
- 10 Resolving Subcategories of K(A,M)
- 11 Existence of Resolutions
- 12 Adjunctions, Equivalences and Cohomological Dimension
- 13 Dualizing Complexes over Commutative Rings
- 14 Perfect and Tilting DG Modules over NC DG Rings
- 15 Algebraically Graded Noncommutative Rings
- 16 Derived Torsion over NC Graded Rings
- 17 Balanced Dualizing Complexes over NC Graded Rings
- 18 Rigid Noncommutative Dualizing Complexes
- References
- Index
Summary
Let A be a noetherian commutative ring. A complex R ∈ D(A) is called a dualizing complex (DC) if it has bounded finitely generated cohomology, finite injective dimension, and the derived Morita property, which says that the derived homothety morphism : A → RHomA(R, R) in D(A) is an isomorphism.We prove uniqueness of DCs and existence when A is essentially finite type over a regular noetherian ring.A residue complex is a DC that consists of injective modules of the correct multiplicity in each degree. There is a stronger uniqueness property for residue complexes. To understand residue complexes, we review the Matlis classification of injective A-modules. In the last two sections we talk about Van den Bergh rigidity. We prove that if A has a rigid DC R, then it is unique up to a unique rigid isomorphism. Existence of a rigid DC is harder to prove, and we just give a reference to it. Rigid residue complexes always exist, and they are unique in a very strong sense. We end this chapter with remarks that explain how rigid residue complexes allow a new approach to residues and duality on schemes and Deligne--Mumford stacks.
- Type
- Chapter
- Information
- Derived Categories , pp. 330 - 372Publisher: Cambridge University PressPrint publication year: 2019