Book contents
- Frontmatter
- Contents
- Preface
- Unit Used
- Notations and Graphical Representations
- Abbreviations
- 1 Introduction
- 2 Basic Algebra of Tensors
- 3 Tensor Network Representation of Classical Statistical Models
- 4 Tensor Network Representation of Operators
- 5 Tensor Network Ansatz of Wave Functions
- 6 Criterion of Truncation: Symmetric Systems
- 7 Real-Space DMRG
- 8 Implementation of Symmetries
- 9 DMRG with Nonlocal Basis States
- 10 Matrix Product States
- 11 Infinite Matrix Product States
- 12 Determination of MPS
- 13 Continuous Matrix Product States
- 14 Classical Transfer Matrix Renormalization
- 15 Criterion of Truncation: Nonsymmetric Systems
- 16 Renormalization of Quantum Transfer Matrices
- 17 MPS Solution of QTMRG
- 18 Dynamical Correlation Functions
- 19 Time-Dependent Methods
- 20 Tangent-Space Approaches
- 21 Tree Tensor Network States
- 22 Two-Dimensional Tensor Network States
- 23 Coarse-Graining Tensor Renormalization
- Appendix Other Numerical Methods
- References
- Index
10 - Matrix Product States
Published online by Cambridge University Press: 18 January 2024
- Frontmatter
- Contents
- Preface
- Unit Used
- Notations and Graphical Representations
- Abbreviations
- 1 Introduction
- 2 Basic Algebra of Tensors
- 3 Tensor Network Representation of Classical Statistical Models
- 4 Tensor Network Representation of Operators
- 5 Tensor Network Ansatz of Wave Functions
- 6 Criterion of Truncation: Symmetric Systems
- 7 Real-Space DMRG
- 8 Implementation of Symmetries
- 9 DMRG with Nonlocal Basis States
- 10 Matrix Product States
- 11 Infinite Matrix Product States
- 12 Determination of MPS
- 13 Continuous Matrix Product States
- 14 Classical Transfer Matrix Renormalization
- 15 Criterion of Truncation: Nonsymmetric Systems
- 16 Renormalization of Quantum Transfer Matrices
- 17 MPS Solution of QTMRG
- 18 Dynamical Correlation Functions
- 19 Time-Dependent Methods
- 20 Tangent-Space Approaches
- 21 Tree Tensor Network States
- 22 Two-Dimensional Tensor Network States
- 23 Coarse-Graining Tensor Renormalization
- Appendix Other Numerical Methods
- References
- Index
Summary
This chapter discusses the properties of matrix product state (MPS). It starts with a simple proof that the wave function generated by DMRG is an MPS. Then three different but equivalent canonical forms or representations of MPS are introduced. An MPS generally has redundant gauge degrees of freedom on each bond linking two neighboring local tensors. One can convert it into a canonical form by taking a canonical transformation to remove the gauge redundancy in the local tensors. Finally, the implementation of symmetries, including both the U(1) and SU(2) symmetries, is discussed.
Keywords
- Type
- Chapter
- Information
- Density Matrix and Tensor Network Renormalization , pp. 154 - 165Publisher: Cambridge University PressPrint publication year: 2023