Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T14:48:59.581Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2012

Thomas Hales
Affiliation:
University of Pittsburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Dense Sphere Packings
A Blueprint for Formal Proofs
, pp. 261 - 263
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aristotle., On the heaven. translated by J.L., Stocks, http://classics.mit.edu/Aristotle/heavens.html, 350BC.
[2] A., Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, 2002.
[3] J., Beery and J., Stedall, editors. Thomas Harriot's Doctrine of Triangular Numbers: the ‘Magisteria Magna’. European Math. Soc., 2008.
[4] K., Bezdek. On a stronger form of Rogers' lemma and the minimum surface area of Voronoi cells in unit ball packings. J. Reine Angew. Math., 518:131–143, 2000.Google Scholar
[5] K., Bezdek and E., Daróczy-Kiss. Finding the best face on a Voronoi polyhedron – the strong dodecahedral conjecture revisited. Monatshefte für Mathematik, 145:145–2006, 2005.Google Scholar
[6] M., Bhubaneswar. Computational Real Algebraic Geometry. CRC Press, 1997.
[7] N., Bourbaki. Elements of Sets. Addison-Wesley, Boston MA, 1968.
[8] W., Casselman. Packing pennies in the plane, an illustrated proof of Kepler's conjecture in 2d. AMS Feature Column Archive, http://www.ams.org/featurecolumn/archive/cass1.html, December 2000.
[9] J. H., Conway and N. J. A., Sloane. What are all the best sphere packings in low dimensions?DCG, 13:13–403, 1995.Google Scholar
[10] A., Doxiadis and C. H., Papadimitriou. Logicomix An Epic Search for Truth. Worzalla Publishing, 2009.
[11] L., Euler. Variae speculationes super area triangulorum sphaericorum. N. Acta Ac. Petrop., pages 47–62, 1797. E698 (Erneström index).
[12] L. Fejes, Tóth. Lagerungen in der Ebene auf der Kugel und im Raum. Springer-Verlag, Berlin-New York, first edition, 1953.
[13] W., Fulton. Introduction to Toric Varieties. Princeton University Press, Princeton NJ, 1993.
[14] C. F., Gauss. Untersuchungen über die Eigenscahften der positiven ternären quadratischen Formen von Ludwig August Seber. Göttingische gelehrte Anzeigen, July 1831. also published in J. Reine Angew. Math. 20 (1840), 312–320, and Werke, vol. 2, Königliche Gesellschaft der Wissenschaften, Göttingen, 1876, 188–196.
[15] G., Gonthier. A computer-checked proof of the four colour theorem. Unpublished manuscript, 2005.
[16] G., Gonthier. Formal proof – the four colour theorem. Notices of the AMS, 55(11):1382–1393, December 2008.Google Scholar
[17] B., Gracián. The art of worldly wisdom. Frederick Ungar Publishing, New York NY, 1967.
[18] T. C., Hales. The sphere packing problem. In Journal of Computational and Applied Math, volume 44, pages 41–76, 1992.Google Scholar
[19] T. C., Hales. Cannonballs and honeycombs. Notices of the AMS, 47(4):440–449, 2000.Google Scholar
[20] T. C., Hales. An overview of the Kepler conjecture. Discrete and Computational Geometry, 36(1):5–20, 2006.Google Scholar
[21] T. C., Hales. The Flyspeck Project, 2012. http://code.google.com/p/flyspeck.
[22] T. C., Hales and S. P., Ferguson. The Kepler conjecture. Discrete and Computational Geometry, 36(1):1–269, 2006.Google Scholar
[23] T. C., Hales and S., McLaughlin. A proof of the dodecahedral conjecture. Journal of the AMS, 23:23–344, 2010. http://arxiv.org/abs/math/9811079.Google Scholar
[24] T. C., Hales, J., Harrison, S., McLaughlin, T., Nipkow, S., Obua, and R., Zumkeller. A revision of the proof of the Kepler Conjecture. DCG, 2009.
[25] J., Harrison. Formalizing an analytic proof of the prime number theorem. Journal of Automated Reasoning, 43:43–261, 2009.Google Scholar
[26] J., Harrison. The HOL Light theorem prover, 2010. http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html.
[27] R., Kargon. Atomism in England from Hariot to Newton. Clarendon Press, Oxford, 1966.
[28] J., Kepler. The Six-cornered snowflake. Oxford Clarendon Press, 1966. forward by L. L., Whyte.
[29] J., Lanier. You are not a gadget. Alfred A. Knopf, New York, 2010.
[30] J., Leech. The problem of the thirteen spheres. In Mathematical Gazette, pages 22–23, February 1956.
[31] C., Marchal. Study of the Kepler's conjecture: the problem of the closest packing. Mathematische Zeitschrift, December 2009.
[32] O. R., Musin and A. S., Tarasov. The strong thirteen spheres problem. preprint http://arxiv.org/abs/1002.1439, February 2010.
[33] T., Nipkow, G., Bauer, and P., Schultz. Flyspeck I: Tame Graphs. In Ulrich, Furbach and Natarajan, Shankar, editors, International Joint Conference on Automated Reasoning, volume 4130 of Lect. Notes in Comp. Sci., pages 21–35. Springer-Verlag, 2006.
[34] S., Obua. Proving bounds for real linear programs in Isabelle/HOL. In J., Hurd and T. F., Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of Lect. Notes in Comp. Sci., pages 227–244. Springer-Verlag, 2005.
[35] K., Plofker, January 2000. private communication.
[36] C. A., Rogers. The packing of equal spheres. Journal of the London Mathematical Society, 3/8:8–620, 1958.Google Scholar
[37] K., Schütte and B. L., van der Waerden. Auf welcher Kugel haben 5, 6, 7, oder 9 Punkte mit Mindestabstand Eins Platz. Math. Annalen, 123:123–124, 1951.Google Scholar
[38] K., Schütte and B. L., van der Waerden. Das Problem der dreizehn Kugeln. Math. Annalen, 125:125–334, 1953.Google Scholar
[39] W., Shirley. Thomas Harriot: a biography. Oxford, 1983.
[40] K. S., Shukla. The Āryabhaṭīya of Āryabhaṭa with the Commentary of Bhāskara I and Someśvara. New Delhi: Indian National Science Academy, 1976.
[41] A., Solovyev and T. C., Hales. Efficient formal verification of bounds of linear programs, volume 6824 of LNCS, pages 123–132. Springer-Verlag, 2011.
[42] J., Spolsky. Joel on Software. Apress, 2004.
[43] G. G., Szpiro. Kepler's Conjecture: How Some of the Greatest Minds in History Helped to Solve one of the Oldest Math Problems in the Worlds. John Wiley and Sons, New York NY, 2003.
[44] A., Tarski. A decision method for elementary algebra and geometry. University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd ed.
[45] A., Thue. Om nogle geometrisk taltheoretiske theoremer. Forandlingerneved de Skandinaviske Naturforskeres, 14:14–353, 1892.Google Scholar
[46] A., Thue. über die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene. Christinia Vid. Selsk. Skr., 1:1–9, 1910.Google Scholar
[47] W. T., Tutte. Graph Theory. Encyclopedia of Mathematics and Its Applications. Addison-Wesley Publishing, 1984.
[48] R. J., Webster. Convexity. Oxford University Press, 1994.
[49] F., Wiedijk. Jordan curve theorem. http://www.cs.ru.nl/~freek/jordan/index.html, referenced 2010.
[50] F., Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/, referenced 2012.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.011
Available formats
×