Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T15:04:59.430Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

Dendritic cells (DCs) comprise a family of professional antigen presenting cells that are unique in their ability to activate T lymphocytes. Dendritic cells patrol all the tissues at the interface with the external world, including skin and mucosal surfaces, for the presence of invaders. The DC system is characterized by a remarkable plasticity that allows the induction both of immunity and tolerance toward the encountered antigens. This is achieved through the combination of a number of different factors, including the subsets of DCs, their activation state and environmental cells that can regulate DC function. DCs are present in the periphery in an immature form that is particularly apt at capturing antigens and at deciphering the messages associated therein. After an activation stimulus that is delivered by some antigens (including bacteria) or by inflammatory cytokines released during inflammation, activated DCs acquire a migratory phenotype and reach the draining lymph node. Here, DCs present the antigens captured in the periphery and initiate T cell adaptive immune responses.

This book describes how the intimate interplay between dendritic cells, bacteria and the environment dictates the induction of immunity or tolerance to bacteria and how pathogenic bacteria have evolved strategies to escape DC patrolling. The first section introduces the complexity of the DC system describing the different subpopulations of DCs and their role in the induction of immune responses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Edited by Maria Rescigno
  • Book: Dendritic Cell Interactions with Bacteria
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541551.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Edited by Maria Rescigno
  • Book: Dendritic Cell Interactions with Bacteria
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541551.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Edited by Maria Rescigno
  • Book: Dendritic Cell Interactions with Bacteria
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541551.001
Available formats
×