Book contents
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part I Theory of Deep Learning for Image Reconstruction
- Part II Deep-Learning Architecture for Various Imaging Architectures
- 5 Deep Learning for CT Image Reconstruction
- 6 Deep Learning in CT Reconstruction: Bringing the Measured Data to Tasks
- 7 Overview of the Deep-Learning Reconstruction of Accelerated MRI
- 8 Model-Based Deep-Learning Algorithms for Inverse Problems
- 9 k-Space Deep Learning for MR Reconstruction and Artifact Removal
- 10 Deep Learning for Ultrasound Beamforming
- 11 Ultrasound Image Artifact Removal using Deep Neural Networks
- Part III Generative Models for Biomedical Imaging
5 - Deep Learning for CT Image Reconstruction
from Part II - Deep-Learning Architecture for Various Imaging Architectures
Published online by Cambridge University Press: 15 September 2023
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Part I Theory of Deep Learning for Image Reconstruction
- Part II Deep-Learning Architecture for Various Imaging Architectures
- 5 Deep Learning for CT Image Reconstruction
- 6 Deep Learning in CT Reconstruction: Bringing the Measured Data to Tasks
- 7 Overview of the Deep-Learning Reconstruction of Accelerated MRI
- 8 Model-Based Deep-Learning Algorithms for Inverse Problems
- 9 k-Space Deep Learning for MR Reconstruction and Artifact Removal
- 10 Deep Learning for Ultrasound Beamforming
- 11 Ultrasound Image Artifact Removal using Deep Neural Networks
- Part III Generative Models for Biomedical Imaging
Summary
In this chapter, we review largely targeted tasks in the computed tomography (CT) literature, including low-dose CT, sparse-view CT, limited angle CT, interior CT, etc. We present deep-learning-based methods which operate as image post-processing techniques or raw-to-image mapping techniques.
Keywords
- Type
- Chapter
- Information
- Deep Learning for Biomedical Image Reconstruction , pp. 89 - 113Publisher: Cambridge University PressPrint publication year: 2023