from Part II - Statistical Models
Published online by Cambridge University Press: 17 August 2023
In this chapter we extend our discussion of the previous chapter to model dynamical systems with continuous state-spaces. We present statistical formulations to model and analyze noisy trajectories that evolve in a continuous state space whose output is corrupted by noise. In particular, we place special emphasis on linear Gaussian state-space models and, within this context, present Kalman filtering theory. The theory presented herein lends itself to the exploration of tracking algorithms explored in the chapter and in an end-of-chapter project.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.