Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T13:35:39.923Z Has data issue: false hasContentIssue false

Cosmological implications of the most distant supernova (known)

Published online by Cambridge University Press:  21 August 2009

Adam G. Riess
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Mario Livio
Affiliation:
Space Telescope Science Institute, Baltimore
Get access

Summary

We present photometric observations of an apparent Type Ia supernova (SN Ia) at a redshift of ∼1.7, the farthest SN observed to date. The supernova, SN1997ff, was discovered in a repeat observation by the Hubble Space Telescope (HST) of the Hubble Deep Field-North (HDF-N), and serendipitously monitored with NICMOS on HST throughout the Thompson et al. GTO campaign. The SN type can be determined from the host galaxy type: an evolved, red elliptical lacking enough recent star formation to provide a significant population of core-collapse supernovae. The classification is further supported by diagnostics available from the observed colors and temporal behavior of the SN, both of which match a typical SN Ia. The photometric record of the SN includes a dozen flux measurements in the I, J, and H bands spanning 35 days in the observed frame. The redshift derived from the SN photometry, z = 1.7±0.1, is in excellent agreement with the redshift estimate of z = 1.65 ± 0.15 derived from the U300B450V606I814J110J125H160H165Ks photometry of the galaxy. Optical and near-infrared spectra of the host provide a very tentative spectroscopic redshift of 1.755. Fits to observations of the SN provide constraints for the redshift-distance relation of SNe Ia and a powerful test of the current accelerating Universe hypothesis. The apparent SN brightness is consistent with that expected in the decelerating phase of the preferred cosmological model, ΩM ≈ 1/3, ΩΛ ≈ 2/3.

Type
Chapter
Information
The Dark Universe
Matter, Energy and Gravity
, pp. 123 - 138
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×