Published online by Cambridge University Press: 05 June 2012
The number of essentially different types of functions with which we have been concerned in the foregoing chapters is not very large, the most important being polynomials, rational functions, algebraical functions, explicit or implicit, and trigonometrical functions, direct or inverse.
The gradual expansion of mathematical knowledge has been accompanied by the introduction into analysis of one new class of function after another. These new functions have generally been introduced because it appeared that some problem which was occupying the attention of mathematicians was incapable of solution by means of the functions already known. The process may fairly be compared with that by which the irrational and complex numbers were first introduced, when it was found that certain algebraical equations could not be solved by means of the numbers already recognised. One of the most fruitful sources of new functions has been the problem of integration. Attempts have been made to integrate some function f(x) in terms of functions already known. These attempts have failed; and after a certain number of failures it has begun to appear probable that the problem is insoluble. Sometimes it has been proved that this is so; but as a rule such a strict proof has not been forthcoming until later on. Generally it has happened that mathematicians have taken the impossibihty for granted as soon as they have become reasonably convinced of it, and have introduced a new function F(x) defined by its possessing the required property, viz. that F′(x) = f(x).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.