Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T22:30:48.322Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 June 2012

Stephen L. Morgan
Affiliation:
Cornell University, New York
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Did mandatory busing programs in the 1970s increase the school achievement of disadvantaged minority youth? If so, how much of a gain was achieved? Does obtaining a college degree increase an individual's labor market earnings? If so, is this particular effect large relative to the earnings gains that could be achieved only through on-the-job training? Did the use of a butterfly ballot in some Florida counties in the 2000 presidential election cost Al Gore votes? If so, was the number of miscast votes sufficiently large to have altered the election outcome?

At their core, these types of questions are simple cause-and-effect questions of the form, Does X cause Y? If X causes Y, how large is the effect of X on Y? Is the size of this effect large relative to the effects of other causes of Y?

Simple cause-and-effect questions are the motivation for much empirical work in the social sciences, even though definitive answers to cause-and-effect questions may not always be possible to formulate given the constraints that social scientists face in collecting data. Even so, there is reason for optimism about our current and future abilities to effectively address cause-and-effect questions. In the past three decades, a counterfactual model of causality has been developed, and a unified framework for the prosecution of causal questions is now available. With this book, we aim to convince more social scientists to apply this model to the core empirical questions of the social sciences.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 3 - 30
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Stephen L. Morgan, Cornell University, New York, Christopher Winship, Harvard University, Massachusetts
  • Book: Counterfactuals and Causal Inference
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804564.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Stephen L. Morgan, Cornell University, New York, Christopher Winship, Harvard University, Massachusetts
  • Book: Counterfactuals and Causal Inference
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804564.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Stephen L. Morgan, Cornell University, New York, Christopher Winship, Harvard University, Massachusetts
  • Book: Counterfactuals and Causal Inference
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804564.001
Available formats
×