Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T22:57:49.905Z Has data issue: false hasContentIssue false

10 - Counterfactual Causality and Future Empirical Research in the Social Sciences

Published online by Cambridge University Press:  05 June 2012

Stephen L. Morgan
Affiliation:
Cornell University, New York
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

What role should counterfactual models play in causal analysis in observational social science? Some claim that it is the only correct way to think about causality while others claim that it is of limited value. We take an intermediate position. We see the methods of counterfactual causal modeling as constituting a useful set of tools that can help to improve the investigation of causal relationships within the social sciences. We believe that counterfactual methods both complement and extend existing approaches to causal analysis.

The strength of counterfactual modeling is that it demands that the researcher specify precisely how changing the treatment state, holding other relevant conditions constant, would change the expected outcome for a relevant unit of analysis. Counterfactual models also reveal the essential requirement of explanations that appeal to mechanisms: One must document how a treatment effect is propagated by a mechanism to an outcome, considering each distinctive causal pathway along the way.

Nonetheless, counterfactual models require much less than some versions of structural equation modeling. Counterfactual models do not require a full specification of all causes that produce an outcome, and they do not assume (or require) that a causal effect estimate be population invariant. In many cases, their parameters can be estimated under far weaker assumptions. For many average causal effects of interest, for example, the data merely need to be balanced with respect to the determinants of treatment assignment.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 277 - 290
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×