Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:23:16.729Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 July 2024

Slobodan Perovic
Affiliation:
University of Belgrade
Milan M. Cirkovic
Affiliation:
Astronomical Observatory of Belgrade, Serbia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Cosmic Microwave Background
Historical and Philosophical Lessons
, pp. 185 - 200
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. J. (2011). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics 89(2), 687710.CrossRefGoogle Scholar
Acuña, P. (2021). Charting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics. Synthese, 198, 17111740.CrossRefGoogle Scholar
Adams, P. J. (1983). Large numbers hypothesis. II: Electromagnetic radiation. International Journal of Theoretical Physics 22, 421436.CrossRefGoogle Scholar
Ade, P. A. R., Rowan-Robinson, M., & Clegg, P. E. (1976). Millimetre emission from extragalactic objects. II Luminosities, spectra and contribution to the micro-wave background. Astronomy & Astrophysics 53, 403409.Google Scholar
Aguirre, A. (1999). Cold Big Bang nucleogenesis. The Astrophysical Journal 521, 1729.CrossRefGoogle Scholar
Aguirre, A. (2000). The cosmic background radiation in a cold Big Bang. Astrophysical Journal 533, 118.CrossRefGoogle Scholar
Aguirre, A., & Johnson, M. C. (2011). A status report on the observability of cosmic bubble collisions. Reports on Progress in Physics 74, 074901.CrossRefGoogle Scholar
Albrow, M. G. (1973). CPT conservation in the oscillating model of the universe. Nature Physical Science 241, 5657.CrossRefGoogle Scholar
Alexanian, M. (1970). Possible nonequilibrium nature of cosmic-background radiation. Astrophysical Journal 159, 745752.CrossRefGoogle Scholar
Alfvén, H. O. (1979). Hubble expansion in a Euclidean framework. Astrophysics and Space Science 66, 2337.CrossRefGoogle Scholar
Alfvén, H. O. (1984). Cosmology: Myth or science? Journal of Astrophysics and Astronomy 5(1), 7998.CrossRefGoogle Scholar
Alfvén, H. O. (1990). Cosmology in the plasma universe: An introductory exposition. IEEE Transactions on Plasma Science 18, 510.CrossRefGoogle Scholar
Alfvén, H. O., & Mendis, A. (1977). Interpretation of observed cosmic microwave background radiation. Nature 266, 698699.CrossRefGoogle Scholar
Alpher, R. A. (1962). Laboratory test of the Finlay-Freundlich red shift hypothesis. Nature 196, 367368.CrossRefGoogle Scholar
Alpher, R. A., & Herman, R. C. (1948a). Evolution of the universe. Nature 162, 774775.CrossRefGoogle Scholar
Alpher, R. A., & Herman, R. C. (1948b). On the relative abundance of the elements. Physical Review 74, 17371742.CrossRefGoogle Scholar
Alpher, R. A., & Herman, R. C. (1949). Remarks on the evolution of the expanding universe. Physical Review 75, 10891095.CrossRefGoogle Scholar
Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review 73, 803804.CrossRefGoogle ScholarPubMed
Alvargonzález, D. (2013). Is the history of science essentially Whiggish? History of Science, 51(1), 8599.CrossRefGoogle Scholar
Arp, H. C. (1987). Quasars, Redshifts and Controversies. Cambridge: Cambridge University Press.Google Scholar
Arp, H. C., & Van Flandern, T. (1992). The case against the big bang. Physics Letters A 164, 263273.CrossRefGoogle Scholar
Arp, H. C., Burbidge, G., Hoyle, F., Narlikar, J. V., & Wickramasinghe, N. C. (1990). The extragalactic universe: An alternative view. Nature 346, 807812.CrossRefGoogle Scholar
Barnes, L. A. (2012). The fine-tuning of the universe for intelligent life. Publications of the Astronomical Society of Australia 29, 529564.CrossRefGoogle Scholar
Barrow, J. D. (1978). Quiescent cosmology. Nature 272, 211215.CrossRefGoogle Scholar
Barrow, J. D., & Tipler, F. J. (1986). The Anthropic Cosmological Principle. New York: Oxford University Press.Google Scholar
Baryshev, Y. V., Raikov, A. A., & Tron, A. A. (1996). Microwave background radiation and cosmological large numbers. Astronomical and Astrophysical Transactions 10, 135138.CrossRefGoogle Scholar
Beane, S. R., Davoudi, Z., & Savage, M. J. (2014). Constraints on the universe as a numerical simulation. The European Physical Journal A 50, 148.CrossRefGoogle Scholar
Beisbart, C. (2009). Can we justifiably assume the cosmological principle in order to break model underdetermination in cosmology? Journal for General Philosophy of Science 40, 175205.CrossRefGoogle Scholar
Belousek, D. W. (2005). Underdetermination, realism, and theory appraisal: An epistemological reflection on quantum mechanics. Foundations of Physics, 35, 669695.CrossRefGoogle Scholar
Boltzmann, L. (1895). On certain questions of the theory of gases. Nature 51, 413414.CrossRefGoogle Scholar
Bond, J. R., Carr, B. J., & Hogan, C. J. (1991). Cosmic backgrounds from primeval dust. Astrophysical Journal 367, 420454.CrossRefGoogle Scholar
Bond, J. R., Kofman, L., & Pogosyan, D. (1996). How filaments of galaxies are woven into the cosmic web. Nature 380, 603606.CrossRefGoogle Scholar
Bondi, H. (1955). Fact and inference in theory and in observation. Vistas in Astronomy 1, 155162.CrossRefGoogle Scholar
Bondi, H. (1960), Cosmology. Cambridge: Cambridge University Press.Google Scholar
Bondi, H. (1960). Gravitational waves in general relativity. Nature 186(4724), 535535.CrossRefGoogle Scholar
Bondi, H. (1992). The philosopher for science. Nature 358, 363.CrossRefGoogle Scholar
Bondi, H., & Gold, T. (1948). The steady-state theory of the expanding universe. Monthly Notices of the Royal Astronomical Society 108, 252270.CrossRefGoogle Scholar
Bostrom, N. (2002). Anthropic Bias: Observation Selection Effects in Science and Philosophy. New York: Routledge.Google Scholar
Bousso, R., & Polchinski, J. (2004). The string theory landscape. Scientific American 291, 6069.CrossRefGoogle ScholarPubMed
Boyd, N. M. (2018). Evidence enriched. Philosophy of Science 85(3), 403421.CrossRefGoogle Scholar
Boyd, N. M., & Matthiessen, D. (2023). Observations, experiments, and arguments for epistemic superiority in scientific methodology. Philosophy of Science 91(1), 111131.CrossRefGoogle Scholar
Butterfield, H. [1931] (1959). The Whig Interpretation of History. London: G. Bell and Sons.Google Scholar
Butterfield, J. (2012). Underdetermination in cosmology: An invitation. Aristotelian Society Supplementary Volume 86(1), 1–18. https://doi.org/10.1111/j.1467-8349.2012.00205.xGoogle Scholar
Butterfield, J. (2014). On under-determination in cosmology. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46, 5769.CrossRefGoogle Scholar
Canuto, V., & Hsieh, S. H. (1977). Dirac cosmology and the microwave background. Astronomy and Astrophysics 61, L5L6.Google Scholar
Canuto, V., & Lodenquai, J. (1977). Dirac cosmology. Astrophysical Journal 211, 342356.CrossRefGoogle Scholar
Canuto, V., Adams, P. J., Hsieh, S. H., & Tsiang, E. (1977). Scale-covariant theory of gravitation and astrophysical applications. Physical Review D 16, 16431663.CrossRefGoogle Scholar
Carr, B. (ed.) (2007). Universe or Multiverse? Cambridge: Cambridge University Press.CrossRefGoogle ScholarPubMed
Carr, B. J. (1977). Black hole and galaxy formation in a cold early universe. Monthly Notices of the Royal Astronomical Society (MNRAS) 181, 293309.CrossRefGoogle Scholar
Carr, B. J. (1981a). Pregalactic black hole accretion and the thermal history of the universe. Monthly Notices of the Royal Astronomical Society 194, 639668.CrossRefGoogle Scholar
Carr, B. J. (1981b). Pregalactic stars and the origin of the microwave background. Monthly Notices of the Royal Astronomical Society 195, 669684.CrossRefGoogle Scholar
Carr, B. J. (1994). Baryonic dark matter. Annual Review of Astronomy and Astrophysics 32, 531590.CrossRefGoogle Scholar
Carr, B. J., & Rees, M. J. (1977). A tepid model for the early universe. Astronomy & Astrophysics 61, 705709.Google Scholar
Carr, B. J., & Rees, M. J. (1979). The anthropic principle and the structure of the physical world. Nature 278, 605612.CrossRefGoogle Scholar
Carrier, M. (2011). Underdetermination as an epistemological test tube: Expounding hidden values of the scientific community. Synthese, 180(2), 189204.CrossRefGoogle Scholar
Carter, B. (1974). Large number coincidences and the anthropic principle in cosmology. In Longair, M. S. (ed.), Confrontation of Cosmological Theories with Observational Data; Proceedings of the Symposium, Krakow, Poland, September 10–12, 1973 (pp. 291298). Dordrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
Chang, H. (2009). We have never been whiggish (About Phlogiston). Centaurus 51, 239264.CrossRefGoogle Scholar
Chang, H. (2010). The hidden history of phlogiston. HYLE – International Journal for Philosophy of Chemistry 16, 4779.Google Scholar
Cheng, F. H. (1981). Estimation of the deceleration parameter q0 using Quasar data. Irish Astronomical Journal 15, 3641.Google Scholar
Cheng, E. S., Saulson, P. R., Wilkinson, D. T., & Corey, B. E. (1979). Large-scale anisotropy in the 2.7 K radiation. The Astrophysical Journal 232, L139L143.CrossRefGoogle Scholar
Ćirković, M. M. (2003). The thermodynamical arrow of time: Reinterpreting the Boltzmann–Schuetz argument. Foundations of Physics 33, 467490.CrossRefGoogle Scholar
Ćirković, M. M. (2004). The anthropic principle and the duration of the cosmological past. Astronomical & Astrophysical Transactions 23, 567597.CrossRefGoogle Scholar
Ćirković, M. M. (2012). The Astrobiological Landscape: Philosophical Foundations of the Study of Cosmic Life. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ćirković, M. M. (2016). Anthropic arguments outside of cosmology and string theory. Belgrade Philosophical Annual 29, 91114.CrossRefGoogle Scholar
Ćirković, M. M., & Balbi, A. (2020). Copernicanism and the typicality in time. International Journal of Astrobiology 19, 101109.CrossRefGoogle Scholar
Ćirković, M. M., & Perović, S. (2018). Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62, 118.CrossRefGoogle Scholar
Cleland, C. E. (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science 69(3), 474496.CrossRefGoogle Scholar
Cleland, C. E. (2011). Prediction and explanation in historical natural science. The British Journal for the Philosophy of Science 62, 551582.CrossRefGoogle Scholar
Coles, P., & Lucchin, F. (1995). Cosmology: The Origin and Evolution of Cosmic Structure. New York: John Wiley & Sons.Google Scholar
Conklin, E. K. (1969). Velocity of the Earth with respect to the cosmic background radiation. Nature 222, 971972.CrossRefGoogle Scholar
Copi, C. J., Schramm, D. N., & Turner, M. S. (1995). Assessing big-bang nucleosynthesis. Physics Review Letters 75, 39813984.CrossRefGoogle ScholarPubMed
Cowan, J. J., Sneden, C., Burles, S., Ivans, I. I., Beers, T. C., Truran, J. W., Lawler, J. E., Primas, F., Fuller, G. M., Pfeiffer, B., & Kratz, K. L. (2002). The chemical composition and age of the metal-poor halo star BD+ 17 3248. The Astrophysical Journal 572, 861879.CrossRefGoogle Scholar
Crawford, D. F. (1987a). Diffuse background X rays and the density of the intergalactic medium. Australian Journal of Physics 40(3), 459464.CrossRefGoogle Scholar
Crawford, D. F. (1987b). Photons in curved space? Time. Australian Journal of Physics 40(3), 449458.CrossRefGoogle Scholar
Crawford, D. F. (1991). A new gravitational interaction of cosmological importance. Astrophysical Journal 377, 1–6.CrossRefGoogle Scholar
Crawford, T. A., Hogg, D. C., & Hunt, L. E. (1961). A horn‐reflector antenna for space communication. Bell System Technical Journal 40(4), 10951116.CrossRefGoogle Scholar
Crill, B. P., et al. (2003). BOOMERANG: A balloon-borne millimeter wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. Astrophysical Journal Supplement Series 148, 527541.CrossRefGoogle Scholar
Currie, A. (2013). Convergence as evidence. The British Journal for the Philosophy of Science 64(4), 763786.CrossRefGoogle Scholar
Currie, A., & Levy, A. (2019). Why experiments matter. Inquiry 62(9–10), 10661090.CrossRefGoogle Scholar
Cushing, J. T. (1994). Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. Chicago: University of Chicago Press.Google Scholar
da Silveira Ferreira, P., & Quartin, M. (2021). First constraints on the intrinsic CMB dipole and our velocity with Doppler and aberration. Physical Review Letters 127, 101301.CrossRefGoogle Scholar
Damour, T., Gibbons, G. W., & Taylor, J. H. (1988). Limits on the variability of G using binary-pulsar data. Physical Review Letters 61, 11511154.CrossRefGoogle ScholarPubMed
Davies, P. C. W. (1972). Closed time as an explanation of the black body background radiation. Nature Physical Science 240, 35.CrossRefGoogle Scholar
Davies, P. C. W. (1977). The Physics of Time Asymmetry. Berkeley: University of California Press.Google Scholar
Davies, P. C. W. (1978). Cosmic heresy? Nature 273, 336337.CrossRefGoogle Scholar
Davis, M., & Peebles, P. J. E. (1983). A survey of galaxy redshifts. V. The two-point position and velocity correlations. The Astrophysical Journal 267, 465482.CrossRefGoogle Scholar
Dawid, R. (2006). Underdetermination and theory succession from the perspective of string theory. Philosophy of Science 73, 298322.CrossRefGoogle Scholar
Dawid, R., Hartmann, S., & Sprenger, J. (2015). The no alternatives argument. The British Journal for the Philosophy of Science 66, 213234.CrossRefGoogle Scholar
Dicke, R. H. (1961). Dirac’s Cosmology and Mach’s Principle. Nature 192, 440441.CrossRefGoogle Scholar
Dicke, R. H. (1962). Long-range scalar interaction. Physical Review 126, 18751877.CrossRefGoogle Scholar
Dicke, R. H., Beringer, R., Kyhl, R. L., & Vane, A. B. (1946). Atmospheric absorption measurements with a microwave radiometer. Physical Review 70, 340–348.CrossRefGoogle Scholar
Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal 142, 414419.CrossRefGoogle Scholar
Dingle, H. (1953). Address. Monthly Notices of the Royal Astronomical Society 113, 398.Google Scholar
Dingle, H. (1954). Science and modern cosmology. Science 120, 513521.CrossRefGoogle ScholarPubMed
Dirac, P. A. M. (1974). Cosmological models and the large numbers hypothesis. Proceedings of the Royal Society of London A 338, 439446.Google Scholar
Dirac, P. A. M. (1979). The large numbers hypothesis and the Einstein Theory of Gravitation. Proceedings of the Royal Society of London A 365, 1930.Google Scholar
Disney, M. J. (2000). The case against cosmology. General Relativity and Gravitation 32, 11251134.CrossRefGoogle Scholar
Dodelson, S. (2003). Modern Cosmology. London: Academic Press.Google Scholar
Doroshkevich, A. G., & Novikov, I. D. (1964). Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology. Soviet Physics Doklady 9, 42924298.Google Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R., & Wegner, G. (1987). Spectroscopy and photometry of elliptical galaxies. I-A new distance estimator. The Astrophysical Journal 313, 4258.CrossRefGoogle Scholar
Duhem, P. M. M. (1994). The Aim and Structure of Physical Theory (Vol. 13). Originally published in 1914 as La Théorie Physique: Son Objet et sa Structure (Paris: Marcel Riviera & Cie.). Princeton: Princeton University Press.Google Scholar
Earman, J. (1987). The SAP also rises: A critical examination of the anthropic principle. American Philosophical Quarterly 24, 307317.Google Scholar
Earman, J. (1993). Underdetermination, realism and reason. Midwest Studies in Philosophy 18, 1938.CrossRefGoogle Scholar
Egan, C. A., & Lineweaver, C. H. (2010). A larger estimate of the entropy of the universe. The Astrophysical Journal 710, 1825–1834.CrossRefGoogle Scholar
Eichler, D. (1977). Primeval entropy fluctuations and the present-day pattern of gravitational clustering. Astrophysical Journal 218, 579581.CrossRefGoogle Scholar
Einasto, J., Kaasik, A., & Saar, E. (1974). Dynamic evidence on massive coronas of galaxies. Nature 250, 309310.CrossRefGoogle Scholar
Einasto, M., Lietzen, H., Gramann, M., Tempel, E., Saar, E., Liivamägi, L. J., Heinämäki, P., Nurmi, P., & Einasto, J. (2016). Sloan Great Wall as a complex of superclusters with collapsing cores. Astronomy & Astrophysics 595, A70.CrossRefGoogle Scholar
Einstein, A. (1917). Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 142–152.Google Scholar
Ellis, G. F. R. (1978). Is the universe expanding? General Relativity and Gravitation 9, 8794.CrossRefGoogle Scholar
Ellis, G. F. R. (1984). Alternatives to the Big Bang. Annual Review of Astronomy and Astrophysics 22, 157184.CrossRefGoogle Scholar
Ellis, G. F. R. (2014). On the philosophy of cosmology. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46, 523.CrossRefGoogle Scholar
Ellis, G. F. R., & Brundrit, G. B. (1979). Life in the infinite universe. Quarterly Journal of the Royal Astronomical Society 20, 3741.Google Scholar
Ellis, G. F. R., Kirchner, U., & Stoeger, W. R. (2004). Multiverses and physical cosmology. Monthly Notices of the Royal Astronomical Society 347, 921936.CrossRefGoogle Scholar
Ellis, G. F. R., Maartens, R., & Nel, S. D. (1978). The expansion of the Universe. Monthly Notices of the Royal Astronomical Society 184, 439465.CrossRefGoogle Scholar
Engelhardt, H. T., & Caplan, A. L. (1987). Scientific Controversies: Case studies in the Resolution and Closure of Disputes in Science and Technology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fabbri, R., Guidi, I., Melchiorri, F., & Natale, V. (1980). Measurement of the cosmic-background large-scale anisotropy in the millimetric region. Physical Review Letters 44, 15631566.CrossRefGoogle Scholar
Fabian, A. C., & Barcons, X. (1992). The origin of the X-ray background. Annual Review of Astronomy and Astrophysics 30, 429456.CrossRefGoogle Scholar
Fahr, H. J., & Zoennchen, J. H. (2009). The “writing on the cosmic wall”: Is there a straightforward explanation of the cosmic microwave background? Annals of Physics, 18, 699721.CrossRefGoogle Scholar
Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V. (2011). First observational tests of eternal inflation. Physical Review Letters 107, 071301.CrossRefGoogle ScholarPubMed
Fixsen, D. J. (2009). The temperature of the cosmic microwave background. The Astrophysical Journal 707, 916920.CrossRefGoogle Scholar
Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer, R. A., & Wright, E. L. (1996). The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophysical Journal 473, 576587.CrossRefGoogle Scholar
Foley, R. J., Filippenko, A. V., Leonard, D. C., Riess, A. G., Nugent, P., & Perlmutter, S. (2005). A definitive measurement of time dilation in the spectral evolution of the moderate-redshift type Ia Supernova 1997ex. The Astrophysical Journal 626, L11L14.CrossRefGoogle Scholar
Fortey, R. (2005). Earth: An Intimate History. New York: Vintage Books.Google Scholar
Fraser, D. (2009). Quantum field theory: Underdetermination, inconsistency, and idealization. Philosophy of Science, 76(4), 536567.CrossRefGoogle Scholar
Frautschi, S. (1982). Entropy in an expanding universe. Science 217, 593599.CrossRefGoogle Scholar
Friedmann, A. [1922] (1979). On the curvature of space. In Lang, Kenneth R, & Gingerich, Owen (eds.), A Source Book in Astronomy and Astrophysics, 1900–1975 (pp. 838843). Cambridge: Harvard University Press.Google Scholar
Frigg, R., & Hartmann, S. (2018). Stanford encyclopedia of philosophy: Models in science. Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/archives/spr2020/entries/models-science/.Google Scholar
Gallagher, S., & Smeenk, C. (2023). What’s in a survey? Simulation-induced selection effects in astronomy. In Boyd, N. M., De Baerdemaeker, S., Heng, K., & Matarese, V. (eds.), Philosophy of Astrophysics: Stars, Simulations, and the Struggle to Determine What Is Out There (pp. 207222). Springer.CrossRefGoogle Scholar
Gamow, G. (1946). Expanding universe and the origin of elements. Physical Review 70, 572573.CrossRefGoogle Scholar
Gamow, G. (1948). The origin of elements and the separation of galaxies. Physical Review 74, 505506.CrossRefGoogle Scholar
Gamow, G. (1949). On relativistic cosmogony. Reviews of Modern Physics 21, 367373.CrossRefGoogle Scholar
Gee, H. (1999). In Search of Deep Time: Beyond the Fossil Record to a New History of Life. Ithaca, NY: Cornell University Press.Google Scholar
Giunta, C. J. (2022). Is There Room for the Present in the History of Science? Bulletin for the History of Chemistry, 47(1), 163170.Google Scholar
Gnedin, N. Y. (2000). Effect of reionization on structure formation in the universe. The Astrophysical Journal 542, 535541.CrossRefGoogle Scholar
Gnedin, N. Y., & Ostriker, J. P. (1992). Light element nucleosynthesis – A false clue? Astrophysical Journal 400, 120.CrossRefGoogle Scholar
Gold, T., & Pacini, F. (1968). Can the observed microwave background BE due to a superposition of sources? Astrophysical Journal 152, L115L118.CrossRefGoogle Scholar
Gorenstein, M. V., & Smoot, G. F. (1981). Large-angular-scale anisotropy in the cosmic background radiation. Astrophysical Journal 244, 361381.CrossRefGoogle Scholar
Gould, S. J. (2002). The Structure of Evolutionary Theory. Cambridge: Belknap Press.Google Scholar
Gould, R. J., & Ramsay, W. (1966). The temperature of intergalactic matter. Astrophysical Journal 144, 587.CrossRefGoogle Scholar
Gould, S. J., & Vrba, E. S. (1982). Exaptation: A missing term in the science of form. Paleobiology 8, 415.CrossRefGoogle Scholar
Gregory, J. (2005). Fred Hoyle’s Universe. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gush, H. P. (1981). Rocket measurement of the cosmic background submillimeter spectrum. Physical Review Letters 47(10), 745.CrossRefGoogle Scholar
Hall, A. R. (1983). On whiggism. History of Science 21, 4559.CrossRefGoogle ScholarPubMed
Halpern, P. (2021). Flashes of Creation: George Gamow, Fred Hoyle, and the Great Big Bang Debate. New York: Basic Books.Google Scholar
Hannestad, S., & Mersini-Houghton, L. (2005). First glimpse of string theory in the sky? Physical Review D 71, 123504.CrossRefGoogle Scholar
Harrison, E. (1987). Whigs, prigs and historians of science. Nature 329, 213214.CrossRefGoogle Scholar
Harwit, M. (2019). Cosmic Discovery: The Search, Scope, and Heritage of Astronomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hayakawa, S. (1984). Cosmic background radiation from pregalactic objects. Advances in Space Research 3, 449457.CrossRefGoogle Scholar
Hazard, C., & Salpeter, E. E. (1969). Discrete sources and the microwave background in steady-state cosmologies. Astrophysical Journal 157, L87L90.CrossRefGoogle Scholar
Hellings, R. W. et al. (1983). Experimental test of the variability of G using Viking lander ranging data. Physical Review Letters 51, 16091612.CrossRefGoogle Scholar
Hinshaw, G. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The angular power spectrum. Astrophysical Journal Supplement Series 148, 135159.CrossRefGoogle Scholar
Hinshaw, G. et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophysical Journal Supplement 208, 25article id. 19.CrossRefGoogle Scholar
Hogarth, J. E. (1962). Cosmological considerations of the absorber theory of radiation. Proceedings of the Royal Society of London A 267, 365383.Google Scholar
Holton, G. (1988). Thematic Origins of Scientific Thought: Kepler to Einstein. Cambridge: Harvard University Press.Google Scholar
Hossenfelder, S. (2018). Lost in Math: How Beauty Leads Physics Astray. New York: Hachette UK.Google Scholar
Hoyle, F. (1948). A new model for the expanding universe. Monthly Notices of the Royal Astronomical Society (MNRAS) 108, 372382.CrossRefGoogle Scholar
Hoyle, F. (1955). Frontiers of Astronomy. New York: Harper and Row.Google Scholar
Hoyle, F. (1975). On the origin of the microwave background. Astrophysical Journal 196, 661670.CrossRefGoogle Scholar
Hoyle, F. (1983). The Intelligent Universe. London: Michael Joseph Limited.Google Scholar
Hoyle, F. (1994). Home Is Where the Wind Blows: Chapters from a Cosmologist’s Life. Mill Valley: University Science Books.Google Scholar
Hoyle, F., & Burbidge, G. (1992). Possible explanations of the large angle fluctuations of the microwave background. Astrophysical Journal, Part 2-Letters 399, 1, L9L10.CrossRefGoogle Scholar
Hoyle, F., & Narlikar, J. V. (1964). Time symmetric electrodynamics and the arrow of time in cosmology. Proceedings of the Royal Society of London A 277, 123.Google Scholar
Hoyle, F., & Narlikar, J. V. (1966). A radical departure from the ‘steady-state’ concept in cosmology. Proceedings of the Royal Society of London A 290, 162176.Google Scholar
Hoyle, F., & Narlikar, J. V. (1971). Electrodynamics of direct interparticle action. II: Relativistic treatment of radiative processes. Annals of Physics 62, 4497.CrossRefGoogle Scholar
Hoyle, F., & Narlikar, J. V. (1972a). Cosmological models in a conformally invariant gravitational theory-I. The Friedmann models. Monthly Notices of the Royal Astronomical Society 155, 305321.CrossRefGoogle Scholar
Hoyle, F., & Narlikar, J. V. (1972b). Cosmological models in a conformally invariant gravitational theory-II. A new model. Monthly Notices of the Royal Astronomical Society 155, 323335.CrossRefGoogle Scholar
Hoyle, F., & Sandage, A. (1956). The second-order term in the redshift-magnitude relation. Publications of the Astronomical Society of the Pacific 68(403), 301307.CrossRefGoogle Scholar
Hoyle, F., & Wickramasinghe, N. C. (1967). Impurities in interstellar grains. Nature 214, 969971.CrossRefGoogle Scholar
Hoyle, F., Burbidge, G. R., & Narlikar, J. V. (1993). A quasi-steady state cosmological model with creation of matter. Astrophysical Journal 410, 437457.CrossRefGoogle Scholar
Hoyle, F., Burbidge, G. R., & Narlikar, J. V. (1994). Astrophysical deductions from the quasi-steady-state cosmology. Monthly Notices of the Royal Astronomical Society 267, 10071019.CrossRefGoogle Scholar
Hoyle, F., Burbidge, G., & Narlikar, J. V. (1999). A Different Approach to Cosmology: From a Static Universe through the Big Bang towards Reality. Cambridge: Cambridge University Press.Google Scholar
Hoyle, F., Dunbar, D. N. F., Wenzel, W. A., & Whaling, W. (1953). A state in C-12 predicted from astrophysical evidence. Physical Review 92, 10951095.Google Scholar
Hsu, S., & Zee, A. (2006). Message in the sky. Modern Physics Letters A 21, 14951500.CrossRefGoogle Scholar
Humphreys, N. P., Maartens, R., & Matravers, D. R. (1997). Anisotropic observations in universes with nonlinear inhomogeneity. The Astrophysical Journal 477, 4757.CrossRefGoogle Scholar
Ijjas, A., Steinhardt, P. J., & Loeb, A. (2014). Inflationary schism. Physics Letters B736, 142146.CrossRefGoogle Scholar
Islam, J. N. (2004). An Introduction to Mathematical Cosmology (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Jardine, N. (2003). Whigs and stories: Herbert Butterfield and the historiography of science. History of Science 41, 125140.CrossRefGoogle Scholar
Kant, I. [1797] (2005). Universal natural history and theory of heaven. Oxford Text Archive Core Collection.Google Scholar
Klee, R. (2002). The revenge of Pythagoras: How a mathematical sharp practice undermines the contemporary design argument in Astrophysical Cosmology. British Journal for the Philosophy of Science 53, 331354.CrossRefGoogle Scholar
Kolb, E. W., & Turner, M. S. (1990). The Early Universe. Boulder: Westview Press.Google Scholar
Komatsu, E. et al. (2011). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. The Astrophysical Journal Supplement Series 192, 18 (47pp).CrossRefGoogle Scholar
Kragh, H. (1982). Cosmo-physics in the thirties: Towards a history of Dirac cosmology. Historical Studies in the Physical Sciences 13, 69108.CrossRefGoogle Scholar
Kragh, H. (1996). Cosmology and Controversy. Princeton: Princeton University Press.CrossRefGoogle Scholar
Kragh, H. (1997). Remarks on the historiography and philosophy of modern cosmology. Danish Yearbook of Philosophy 32, 6586.CrossRefGoogle Scholar
Kragh, H. (2004). Matter and Spirit in the Universe: Scientific and Religious Preludes to Modern Cosmology. London: Imperial College Press.CrossRefGoogle Scholar
Kragh, H. (2011). Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology. Oxford: Oxford University Press.Google Scholar
Kragh, H. (2012). Quasi-steady-state and related cosmological models: A historical review. arXiv:1201.3449 [physics.hist-ph].Google Scholar
Kragh, H. (2013a). The most philosophically important of all the sciences: Karl Popper and physical cosmology. Perspectives on Science 21, 325357.CrossRefGoogle Scholar
Kragh, H. (2013b). Cyclic models of the relativistic universe: The early history. arXiv:1308.0932.Google Scholar
Kragh, H. (2015). Masters of the Universe: Conversations with Cosmologists of the Past. Oxford: Oxford University Press.Google Scholar
Kragh, H. (2016). Varying Gravity: Dirac’s Legacy in Cosmology and Geophysics. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Kragh, H., & Longair, M. S. (2019). The Oxford Handbook of the History of Modern Cosmology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago: Chicago University Press.Google Scholar
Lahav, O., Kaiser, N., & Hoffman, Y. (1990). Local gravity and peculiar velocity-Probes of cosmological models. The Astrophysical Journal 352, 448456.CrossRefGoogle Scholar
Lakatos, I. (1978). The Methodology of Scientific Research Programmes, 1. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
LaViolette, P. A. (1986). Is the universe really expanding? Astrophysical Journal 301, 544553.CrossRefGoogle Scholar
Layzer, D. (1968). Black-body radiation in a cold universe. Astrophysical Letters 1, 99102.Google Scholar
Layzer, D. (1972). Science or superstition? (A physical scientist looks at the IQ controversy). Cognition 1, 265299.CrossRefGoogle Scholar
Layzer, D. (1976). The arrow of time. Astrophysical Journal 206, 559569.CrossRefGoogle Scholar
Layzer, D. (1992). On the origin of cosmic structure. Astrophysical Journal 392, L5L8.CrossRefGoogle Scholar
Layzer, D., & Hively, R. (1973). Origin of the microwave background. Astrophysical Journal 179, 361370.CrossRefGoogle Scholar
Lem, S. [1971] (1993). The new cosmogony. In A Perfect Vacuum translated by M. Kandel (pp. 197227). Evanston: Northwestern University Press.Google Scholar
Lemaître, G. (1931). The beginning of the world from the point of view of quantum theory. Nature 127(3210), 706.CrossRefGoogle Scholar
Lerner, E. J. (1988). Plasma model of microwave background and primordial elements – an alternative to the Big Bang. Laser and Particle Beams 6, 457469.CrossRefGoogle Scholar
Lerner, E. J. (1991). The Big Bang Never Happened. New York: Times Books.Google Scholar
Lerner, E. J. (1995). Intergalactic radio absorption and the COBE data. Astrophysics and Space Science 227, 6181.CrossRefGoogle Scholar
Li, A. (2003). Cosmic needles versus cosmic microwave background radiation. The Astrophysical Journal 584, 593598.CrossRefGoogle Scholar
Lightman, A. P., & Rybicki, G. B. (1979). Inverse Compton reflection-Time-dependent theory. Astrophysical Journal 232, 882890.CrossRefGoogle Scholar
Linde, A. D. (1983). Chaotic inflation. Physics Letters B, 129(3–4), 177181.CrossRefGoogle Scholar
Linde, A. D. (1990). Inflation and Quantum Cosmology. Boston: Academic Press.CrossRefGoogle Scholar
Linde, A. D. (2008). Inflationary cosmology. In Lemoine, M., Martin, J., & Peters, P. (eds.), Inflationary Cosmology (pp. 151). Berlin: Springer.Google Scholar
Linde, A. D. (2014). Inflationary Cosmology after Planck 2013, Les Houches School 2013 Lectures (preprint https://arxiv.org/abs/1402.0526).Google Scholar
Longair, M. S. (1993). Modern cosmology: A critical assessment. Quarterly Journal of the Royal Astronomical Society 34, 157199.Google Scholar
López-Corredoira, M. (2013). Peaks in the CMBR power spectrum II: Physical interpretation for any cosmological scenario. International Journal of Modern Physics D 22, 1350032.CrossRefGoogle Scholar
López-Corredoira, M. (2014). Non-standard models and the sociology of cosmology. Studies in History and Philosophy of Modern Physics 46A, 8696.CrossRefGoogle Scholar
Lucretius (1997). On the Nature of Things. Amherst: Prometheus Books.Google Scholar
Magueijo, J., & Land, K. (2006). Template fitting and the large-angle cosmic microwave background anomalies. Monthly Notices of the Royal Astronomical Society 367(4), 17141720.Google Scholar
Maher, P. (1993). Discussion: Howson and Franklin on Prediction. Philosophy of Science, 60(2), 329340.CrossRefGoogle Scholar
Mansfield, V. N. (1976). Dirac cosmologies and the microwave background. Astrophysical Journal 210, L137L138.CrossRefGoogle Scholar
Mather, J., & Boslough, J. (1997). The Very First Light: The True Inside Story of the Scientific Journey Back to the Dawn of the Universe. New York: Basic Books.Google Scholar
Mather, J. C., Cheng, E. S., EpleeJr, R. E., Isaacman, R. B., Meyer, S. S., Shafer, R. A., et al. (1990). A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. The Astrophysical Journal 354, L37L40.CrossRefGoogle Scholar
Mather, J. C. et al. (1994). Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophysical Journal 420, 439444.CrossRefGoogle Scholar
Matsubara, K. (2013). Realism, underdetermination and string theory dualities. Synthese, 190(3), 471489.CrossRefGoogle Scholar
Matsumoto, T., Hayakawa, S., Matsuo, H., Murakami, H., Sato, S., Lange, A. E., & Richards, P. L. (1988). The submillimeter spectrum of the cosmic background radiation. The Astrophysical Journal 329, 567571.CrossRefGoogle Scholar
Mayr, E. (1990). When is historiography whiggish? Journal of the History of Ideas 51, 301309.CrossRefGoogle Scholar
McCrea, W. H. (1953). Cosmology. Reports on Progress in Physics 16, 321–363.CrossRefGoogle Scholar
McKellar, A. (1941). Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space. Publications of the Dominion Astrophysical Observatory 7, 251272.Google Scholar
Mercier, C. (2019). Calculation of the universal gravitational constant, of the hubble constant, and of the average CMB temperature. Journal of Modern Physics 10, 641662.CrossRefGoogle Scholar
Millano, A. D., Jusufi, K., & Leon, G. (2023). Phase space analysis of the bouncing universe with stringy effects. Physics Letters B 841, 137916.CrossRefGoogle Scholar
Milojević, S. (2014). Principles of scientific research team formation and evolution. Proceedings of the National Academy of Sciences 111(11), 39843989.CrossRefGoogle Scholar
Misner, C. W. (1968). The isotropy of the universe. Astrophysical Journal 151, 431457.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman and Co.Google Scholar
Mitton, S. (2011). Fred Hoyle: A Life in Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Molaro, P., Levshakov, S. A., Dessauges-Zavadsky, M., & D’Odorico, S. (2002). The cosmic microwave background radiation temperature at toward QSO 0347–3819. Astronomy & Astrophysics 381, L64L67.CrossRefGoogle Scholar
Moradpour, H., Shabani, H., Ziaie, A. H., & Sharma, U. K. (2021). Non-minimal coupling inspires the Dirac cosmological model. The European Physical Journal Plus 136, 112.CrossRefGoogle Scholar
Mukhopadhyay, U., & Ray, S. (2014). N.C. Rana: The Life of a “Comet” in the Astrophysical World, preprint https://arxiv.org/abs/1401.2141v1.Google Scholar
Nadolny, T., Durrer, R., Kunz, M., & Padmanabhan, H. (2021). A new way to test the Cosmological Principle: Measuring our peculiar velocity and the large-scale anisotropy independently. Journal of Cosmology and Astroparticle Physics 11, 009.CrossRefGoogle Scholar
Narlikar, J. V. (1983). Introduction to Cosmology. Boston: Jones and Bartlett Publishers.Google Scholar
Narlikar, J. V., & Rana, N. C. (1980). Cosmic microwave background spectrum and G-varying cosmology. Physics Letters A 77, 219220.CrossRefGoogle Scholar
Narlikar, J. V., & Rana, N. C. (1983). Cosmic microwave background spectrum in the Hoyle-Narlikar cosmology. Physics Letters A 99, 7576.CrossRefGoogle Scholar
Narlikar, J. V., & Wickramasinghe, N. C. (1968). Interpretation of cosmic microwave background. Nature 217, 12351236.CrossRefGoogle Scholar
Narlikar, J. V., Vishwakarma, R. G., Hajian, A., Souradeep, T., Burbidge, G., & Hoyle, F. (2003). Inhomogeneities in the microwave background radiation interpreted within the framework of the quasi-steady state cosmology. The Astrophysical Journal 585, 111.CrossRefGoogle Scholar
Newton-Smith, W. (1978). The underdetermination of theory by data. In Hilpinen, R. Rationality in Science: Studies in the Foundations of Science and Ethics (pp. 91110). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
North, J. (1994). The Fontana History of Astronomy and Cosmology. London: Fontana Press.Google Scholar
Norton, J. D. (2008). The dome: An unexpectedly simple failure of determinism. Philosophy of Science, 75(5), 786798.CrossRefGoogle Scholar
Norton, J. D. (2017). “Inference to the best explanation: Examples” draft chapter for the Material theory of induction, www.pitt.edu/~jdnorton/homepage/cv.html.Google Scholar
Okasha, S. (2001). What did Hume really show about induction? Philosophical Quarterly 51(204), 307327.CrossRefGoogle Scholar
O’Raifeartaigh, C., McCann, B., Nahm, W., & Mitton, S. (2014). Einstein’s exploration of a steady-state model of the universe. The European Physical Journal H, 39(3), 353367.CrossRefGoogle Scholar
Oreskes, N. (2013). Why I am a presentist. Science in Context 26(4), 595609.CrossRefGoogle Scholar
Ostriker, J. P., Peebles, P. J. E., & Yahil, A. (1974). The size and mass of galaxies, and the mass of the universe. Astrophysical Journal 193, L1L4.CrossRefGoogle Scholar
Paczynski, B., & Piran, T. (1990). A dipole moment of the microwave background as a cosmological effect. The Astrophysical Journal 364, 341348.CrossRefGoogle Scholar
Page, S. E. (2011). Diversity and Complexity. Princeton: Princeton University Press.Google Scholar
Pagels, H. R. (1998). A Cozy cosmology. In Leslie, J. (ed.), Modern Cosmology & Philosophy (pp. 180186). Amherst: Prometheus Books.Google Scholar
Pais, A. (1986). Inward Bound: Of Matter and Forces in the Physical World. Oxford: Oxford University Press.Google Scholar
Partridge, R. B. (1995). 3K: The Cosmic Microwave Background Radiation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Partridge, R. B., & Wilkinson, D. T. (1967). Isotropy and homogeneity of the universe from measurements of the cosmic microwave background. Physical Review Letters 18, 557559.CrossRefGoogle Scholar
Paul, P., Sengupta, R., & Ray, S. (2023). Studies on modified power law inflation. Chinese Physics C 47, 035107.CrossRefGoogle Scholar
Peacock, J. A. (1999 ). Cosmological Physics. Cambridge: Cambridge University Press.Google Scholar
Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton: Princeton University Press.Google Scholar
Peebles, P. J. E. (1999). Penzias & Wilson’s discovery of the cosmic microwave background. Astrophysical Journal, Centennial Issue, 525C, 10671068.Google Scholar
Peebles, P. J. E. (2014). Discovery of the Hot Big Bang: What happened in 1948. The European Physical Journal H, 39, 205223.CrossRefGoogle Scholar
Peebles, P. J. E. (2020). Cosmology’s Century: An Inside History of Our Modern Understanding of the Universe. Princeton: Princeton University Press.Google Scholar
Peebles, P. J. E. (2022a). Anomalies in physical cosmology. Annals of Physics 447, 169159.CrossRefGoogle Scholar
Peebles, P. J. E. (2022b). The Whole Truth: A Cosmologist’s Reflections on the Search for Objective Reality. Princeton: Princeton University Press.Google Scholar
Peebles, P. J., & Yu, J. T. (1970). Primeval adiabatic perturbation in an expanding universe. The Astrophysical Journal 162, 815–836.CrossRefGoogle Scholar
Peebles, P. J. E., Page, L. A.., & Partridge, R. B. (2009). Finding the Big Bang. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Penrose, R. (1979). Singularities and time-asymmetry. In Hawking, S. W., & Israel, W. (eds.), General Relativity: An Einstein Centenary (pp. 581638). Cambridge: Cambridge University Press.Google Scholar
Penrose, R. (1989). The Emperor’s New Mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal 142, 419421.CrossRefGoogle Scholar
Perović, S. (2011). Missing experimental challenges to the standard model of particle physics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42(1), 3242.CrossRefGoogle Scholar
Perović, S. (2018). Egalitarian paradise or factory drudgery? Organizing knowledge production in high energy physics (HEP) laboratories. Social Epistemology 32(4), 241261.CrossRefGoogle Scholar
Perović, S. (2021). Observation, experiment, and scientific practice. International Studies in the Philosophy of Science 34(1), 120.CrossRefGoogle Scholar
Perović, S., Radovanović, S., Sikimić, V., & Berber, A. (2016). Optimal research team composition: Data envelopment analysis of Fermilab experiments. Scientometrics 108, 83111.CrossRefGoogle Scholar
Pfenniger, D., Combes, F., & Martinet, L. (1994). Is dark matter in spiral galaxies cold gas? I. Observational constraints and dynamical clues about galaxy evolution. Astronomy and Astrophysics 285, 7993.Google Scholar
Phillips, P. R. (1994a). Solution of the field equations for a steady-state cosmology in a closed space. Monthly Notices of the Royal Astronomical Society 269, 771778.CrossRefGoogle Scholar
Phillips, P. R. (1994b). Development of the closed steady-state cosmological model. Monthly Notices of the Royal Astronomical Society 271, 499503.CrossRefGoogle Scholar
Pietsch, W. (2011). The Underdetermination debate: How lack of history leads to bad philosophy. In Cohen, R., Gavroglu, K., Renn, J. (eds.), Integrating History and Philosophy of Science: Problems and Prospects (pp. 83106). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Popper, K. (1972). Objective Knowledge: An Evolutionary Approach. Oxford: Oxford University Press.Google Scholar
Popper, K. R. (1992). Conjectures and Refutations: The Growth of Scientific Knowledge (5th ed.). London: Routledge.Google Scholar
Price, H. (1991). The asymmetry of radiation: Reinterpreting the Wheeler-Feynman argument. Foundations of Physics 21, 959975.CrossRefGoogle Scholar
Puget, J. L., & Heyvaerts, J. (1980). Population III stars and the shape of the cosmological black body radiation. Astronomy & Astrophysics 83, L10L12.Google Scholar
Quine, W. V. (1975). On empirically equivalent systems of the world. Erkenntnis 313328.CrossRefGoogle Scholar
Rana, N. C. (1979). Absorption effects of intergalactic natural graphite whiskers on observations at microwave and radio frequencies. Astrophysics and Space Science 66, 173190.CrossRefGoogle Scholar
Rana, N. C. (1980). Absorption effects due to intergalactic long whiskers of pyrolytic graphite and the cosmic microwave background. Astrophysics and Space Science 71, 123133.CrossRefGoogle Scholar
Rana, N. C. (1981). Cosmic thermalization and the microwave background radiation. Monthly Notices of the Royal Astronomical Society 197, 11251137.CrossRefGoogle Scholar
Rassat, A., Starck, J. L., Paykari, P., Sureau, F., & Bobin, J. (2014). Planck CMB anomalies: Astrophysical and cosmological secondary effects and the curse of masking. Journal of Cosmology and Astroparticle Physics 2014(08), 006.CrossRefGoogle Scholar
Raup, D. (1999). Nemesis Affair Revised and Expanded: A Story of the Death of the Dinosaurs and the Ways of Science. New York: W. W. Norton & Company.Google Scholar
Rees, M. J. (1972). Origin of the cosmic microwave background radiation in a chaotic universe. Physical Review Letters 28, 16691671.CrossRefGoogle Scholar
Rees, M. J. (1978). Origin of pregalactic microwave background. Nature 275, 3537.CrossRefGoogle Scholar
Rees, M. J. (2007). Cosmology and the multiverse. In Carr, B. (ed.), Universe or Multiverse? (pp. 5776). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Roth, K. C., Meyer, D. M., & Hawkins, I. (1993). Interstellar cyanogen and the temperature of the cosmic microwave background radiation. Astrophysical Journal Letters 413, L67L71.CrossRefGoogle Scholar
Rowan-Robinson, M. (1974). A discrete source model of the microwave background. Monthly Notices of the Royal Astronomical Society 168, 4550.CrossRefGoogle Scholar
Rowan-Robinson, M. (1977). On the unity of activity in galaxies. Astrophysical Journal 213, 635647.CrossRefGoogle Scholar
Rowan-Robinson, M., Negroponte, J., & Silk, J. (1979). Distortions of the cosmic microwave background spectrum by dust. Nature 281, 635638.CrossRefGoogle Scholar
Sachs, R. K., & Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations of the microwave background. Astrophysical Journal 147, 7390.CrossRefGoogle Scholar
Sakharov, A. D. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Journal of Experimental and Theoretical Physics Letters 5, 2427.Google Scholar
Salem, M. P. (2012). The CMB and the measure of the multiverse. Journal of High Energy Physics 2012(6), 128.CrossRefGoogle Scholar
Sandage, A. (1988). Observational tests of world models. Annual Review of Astronomy and Astrophysics 26, 561630.CrossRefGoogle Scholar
Schild, R. E., & Gibson, C. H. (2008). Goodness in the Axis of Evil. arXiv preprint arXiv:0802.3229.Google Scholar
Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., & Bromm, V. (2003). Low-mass relics of early star formation. Nature 422, 869871.CrossRefGoogle ScholarPubMed
Schramm, D. N., Michael, S., & Turner, M. S. (1998). Big-bang nucleosynthesis enters the precision era. Reviews of Modern Physics 70, 303318.CrossRefGoogle Scholar
Sciama, D. W. (1955). On the formation of galaxies in a steady state universe. Monthly Notices of the Royal Astronomical Society 115(1), 314.CrossRefGoogle Scholar
Sciama, D. W. (1966). On the origin of the microwave background radiation. Nature 211, 277279.CrossRefGoogle Scholar
Seo, H. J., & Eisenstein, D. J. (2003). Probing dark energy with baryonic acoustic oscillations from future large galaxy redshift surveys. The Astrophysical Journal 598, 720–740.CrossRefGoogle Scholar
Sepkoski, D. (2020). Catastrophic Thinking: Extinction and the Value of Diversity from Darwin to the Anthropocene. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Šešelja, D. (2022). Agent‐based models of scientific interaction. Philosophy Compass 17(7), e12855.CrossRefGoogle Scholar
Setti, G. (1970). Infrared background from Seyfert galaxies. Nature 227, 586587.CrossRefGoogle ScholarPubMed
Shakeshaft, J. R., & Webster, A. S. (1968). Microwave background in a steady state universe. Nature 217, 339.CrossRefGoogle Scholar
Sharov, A. S., & Novikov, I. D. (1993). Edwin Hubble: Discoverer of the Big Bang Universe. New York: Cambridge University Press.Google Scholar
Shiryaev, A. N. (2016). Probability-1. New York: Springer.CrossRefGoogle Scholar
Sklar, L. (1975). Methodological conservatism. The Philosophical Review 84(3), 374400.CrossRefGoogle Scholar
Smeenk, C., & Ellis, G. E. (2017). Philosophy of Cosmology, Stanford Encyclopedia of Philosophy, as accessed at https://plato.stanford.edu/entries/cosmology/ (last accessed March 30, 2024).Google Scholar
Smith, M. G., & Partridge, R. B. (1970). Can discrete sources produce the cosmic microwave radiation? Astrophysical Journal 159, 737.CrossRefGoogle Scholar
Smolin, L. (1997). The Life of the Cosmos. Oxford: Oxford University Press.Google Scholar
Smolin, L. (2004). Scientific alternatives to the anthropic principle. preprint arXiv:hep-th/0407213.Google Scholar
Smolin, L. (2006). The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. New York: Houghton Mifflin Company.Google Scholar
Smoot, G. F., Gorenstein, M. V., & Muller, R. A. (1977). Detection of anisotropy in the cosmic blackbody radiation. Physical Review Letters 39, 898901.CrossRefGoogle Scholar
Smoot, G. F., Bensadouin, M., Bersanelli, M., De Amici, G., Kogut, A., Levin, S., & Witebsky, C. (1987). Long-wavelength measurements of the cosmic microwave background radiation spectrum. Astrophysical Journal 317, L45L49.CrossRefGoogle Scholar
Smoot, G. F. et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal 396, L1L5.CrossRefGoogle Scholar
Soler, L. (2023). What would it be like to be Bohmians? Experiencing a Gestalt Switch in Physics as an Effect of Path Dependence. Social Epistemology, DOI: 10.1080/02691728.2023.2212372CrossRefGoogle Scholar
Soler, L., Trizio, E., & Pickering, A. (eds.) (2016). Science as It Could Have Been: Discussing the Contingency/Inevitability Problem. Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
Sorrell, W. H. (2008). The cosmic microwave background radiation in a non-expanding universe. Astrophysics and Space Science 317, 5970.CrossRefGoogle Scholar
Spergel, D. N. et al. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology. Astrophysical Journal Supplement Series 170, 377408.CrossRefGoogle Scholar
Springel, V., White, S. D., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., & Peacock, J. A. (2005). Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435, 629636.CrossRefGoogle Scholar
Srianand, R., Petitjean, P., & Ledoux, C. (2000). The cosmic microwave background radiation temperature at a redshift of 2.34. Nature 408, 931–935.CrossRefGoogle Scholar
Staggs, S., Dunkley, J., & Page, L. (2018). Recent discoveries from the cosmic microwave background: A review of recent progress. Reports on Progress in Physics 81, 044901.CrossRefGoogle ScholarPubMed
Stanford, P. K. (2006). Exceeding Our Grasp: Science, History, and the Problem of Unconceived Alternatives. Oxford: Oxford University Press.CrossRefGoogle Scholar
Stebbins, A. (1997). The CMBR Spectrum, preprint astro-ph/9705178.CrossRefGoogle Scholar
Steckline, V. S. (1983). Zermelo, Boltzmann, and the recurrence paradox. American Journal of Physics 51, 894897.CrossRefGoogle Scholar
Steigman, G. (1978). A crucial test of the Dirac cosmologies. Astrophysical Journal 221, 407411.CrossRefGoogle Scholar
Steigman, G., & Strittmatter, P. A. (1971). Neutrino limits on antimatter sources of energy in Seyfert galaxies. Astronomy and Astrophysics 11, 279–285.Google Scholar
Strogatz, S. H. (2001). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boulder: Westview Press.Google Scholar
Sulliven, J. W. N. (1931). The physical nature of the universe. In Rose, W. (ed.), An Outline of Modern Knowledge. London: Victor Golanz.Google Scholar
Sunyaev, R. A., & Zel’dovich, Ya. B. (1980). Microwave background radiation as a probe of the contemporary structure and history of the universe. Annual Review of Astronomy and Astrophysics 18, 537560.CrossRefGoogle Scholar
Susskind, L. (2006). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. New York: Back Bay Books.Google Scholar
Thorne, K. S., & Will, C. M. (1971). Theoretical frameworks for testing relativistic gravity. I: Foundations. The Astrophysical Journal 163, 595610.CrossRefGoogle Scholar
Tipler, F. J. (1982). Anthropic-principle arguments against steady-state cosmological theories. Observatory 102, 3639.Google Scholar
Tolman, R. C. (1934). Relativity, Thermodynamics, and Cosmology. Oxford: Clarendon Press.Google Scholar
Turner, M. S. (1992). The tilted universe. General Relativity and Gravitation 24(1), 17.CrossRefGoogle Scholar
Unzicker, A. (2009). A look at the abandoned contributions to cosmology of Dirac, Sciama, and Dicke. Annalen der Physik 521, 5770.CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, D., Xu, D., Snyder, G., Nelson, D., & Hernquist, L. (2014). Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Monthly Notices of the Royal Astronomical Society 444(2), 15181547.CrossRefGoogle Scholar
Wagoner, R. V., Fowler, W. A., & Hoyle, F. (1967). On the synthesis of elements at very high temperatures. The Astrophysical Journal 148, 349.CrossRefGoogle Scholar
Wainwright, C. L., Johnson, M. C., Peiris, H. V., Aguirre, A., Lehner, L., & Liebling, S. L. (2014). Simulating the universe (s): From cosmic bubble collisions to cosmological observables with numerical relativity. Journal of Cosmology and Astroparticle Physics 2014(03), 030.CrossRefGoogle Scholar
Wallace, A. R. (1903). Man’s Place in the Universe. London: Chapman & Hall.Google Scholar
Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley.Google Scholar
Weinberg, S. (2008). Cosmology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Wesson, P. S. (1975). The interrelationship between cosmic dust and the microwave background. Astrophysics and Space Science 36, 363382.CrossRefGoogle Scholar
Wesson, P. S., & Seahra, S. S. (2001). Images of the Big Bang. The Astrophysical Journal 558, L75L78.CrossRefGoogle Scholar
Weymann, R. (1966). The energy spectrum of radiation in the expanding universe. Astrophysical Journal 145, 560571.CrossRefGoogle Scholar
Wheeler, J. A., & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of radiation. Review of Modern Physics 17, 157161.CrossRefGoogle Scholar
Wheeler, J. A., & Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action. Review of Modern Physics 21, 425433.CrossRefGoogle Scholar
Whittaker, E. (1989). A History of the Theories of Aether and Electricity: Vol. I: The Classical Theories; Vol. II: The Modern Theories, 1900–1926. Mineola: Dover Publications.Google Scholar
Whitrow, G. J. (1962). Is the Physical Universe a Self-Contained System? The Monist 7793.CrossRefGoogle Scholar
Whitrow, G. J., & Bondi, H. (1954). Is physical cosmology a science? The British Journal for the Philosophy of Science 4(16), 271283.CrossRefGoogle Scholar
Wickramasinghe, N. C., Edmunds, M. G., Chitre, S. M., Narlikar, J. V., & Ramadurai, S. (1975). A dust model for the cosmic microwave background. Astrophysics and Space Science 35, L9L13.CrossRefGoogle Scholar
Will, C. M. (1971). Theoretical frameworks for testing relativistic gravity. II: Parametrized post-Newtonian hydrodynamics, and the Nordtvedt effect. The Astrophysical Journal 163, 611628.CrossRefGoogle Scholar
Will, C. M., & Nordtvedt, K.. (1972). Conservation laws and preferred frames in relativistic gravity. I: Preferred-frame theories and an extended PPN formalism. The Astrophysical Journal 177, 757774.CrossRefGoogle Scholar
Willman, B., Blanton, M. R., West, A. A., Dalcanton, J. J., Hogg, D. W., Schneider, D. P., Wherry, N., Yanny, B., & Brinkmann, J. (2005). A new Milky Way companion: Unusual globular cluster or extreme dwarf satellite? The Astronomical Journal 129(6), 2692–2700.CrossRefGoogle Scholar
Winsberg, E. (2019). Science in the Age of Computer Simulation. Chicago: University of Chicago Press.Google Scholar
Woit, P. (2011). Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics. New York: Random House.Google Scholar
Wolfe, A. M., & Burbidge, G. R. (1969). Discrete source models to explain the microwave background radiation. Astrophysical Journal 156, 345371.CrossRefGoogle Scholar
Woody, D. P., & Richards, P. L. (1978). Spectrum of the cosmic background radiation. Preprint. Available online at https://escholarship.org/uc/item/5wt0g1v6 (last accessed June 20, 2023).Google Scholar
Woody, D. P., & Richards, P. L. (1979). Spectrum of the cosmic background radiation. Physical Review Letters 42(14), 925–929.CrossRefGoogle Scholar
Wright, E. L. (1982). Thermalization of starlight by elongated grains: Could the microwave background have been produced by stars? Astrophysical Journal 255, 401407.CrossRefGoogle Scholar
Wright, E. L. (1987). Source counts in the chronometric cosmology. Astrophysical Journal 313, 551555.CrossRefGoogle Scholar
Wright, E. L. (2003). The WMAP data and results. New Astronomy Reviews 47, 877881.CrossRefGoogle Scholar
Wright, E. L., et al. (1994). Interpretation of the COBE FIRAS CMBR spectrum. Astrophysical Journal 420, 450456.CrossRefGoogle Scholar
Yi-Fu, C., Easson, D., & Brandenberger, R. (2012). Towards a nonsingular bouncing cosmology. Journal of Cosmology and Astroparticle Physics 8, 020.Google Scholar
Zel’dovich, Ya. B. (1963). Star production in an expanding universe. Journal of Experimental and Theoretical Physics 16, 13951396.Google Scholar
Zel’dovich, Ya. B. (1964). The theory of the expanding universe as originated by A. A. Fridman. Soviet Physics Uspekhi 6, 475494.CrossRefGoogle Scholar
Zel’dovich, Ya. B. (1972). A hypothesis, unifying the structure and the entropy of the universe. Monthly Notices of the Royal Astronomical Society 160, 13.CrossRefGoogle Scholar
Zollman, K. J. (2007). The communication structure of epistemic communities. Philosophy of Science 74(5), 574587.CrossRefGoogle Scholar
Zwier, K. R. (2013). An epistemology of causal inference from experiment. Philosophy of Science 80(5), 660671.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×