Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T17:05:20.272Z Has data issue: false hasContentIssue false

Preface to the Series Perspectives in Mathematical Logic

Published online by Cambridge University Press:  30 March 2017

Keith J. Devlin
Affiliation:
Lancaster University
Get access

Summary

On Perspectives. Mathematical logic arose from a concern with the nature and the limits of rational or mathematical thought, and from a desire to systematise the modes of its expression. The pioneering investigations were diverse and largely autonomous. As time passed, and more particularly since the mid-fifties, interconnections between different lines of research and links with other branches of mathematics proliferated. The subject is now both rich and varied. It is the aim of the series to provide, as it were, maps or guides to this complex terrain. We shall not aim at encyclopaedic coverage; nor do we wish to prescribe, like Euclid, a definitive version of the elements of the subject. We are not committed to any particular philosophical programme. Nevertheless we have tried by critical discussion to ensure that each book represents a coherent line of thought', and that, by developing certain themes, it will be of greater interest than a mere assemblage of results and techniques.

The books in the series differ in level', some are introductory, some highly specialised. They also differ in scope: some offer a wide view of an area, others present a single line of thought. Each book is, at its own level, reasonably self-contained. Although no book depends on another as prerequisite, we have encouraged authors to fit their book in with other planned volumes, sometimes deliberately seeking coverage of the same material from different points of view. We have tried to attain a reasonable degree of uniformity of notation and arrangement. However, the books in the series are written by individual authors, not by the group. Plans for books are discussed and argued about at length. Later, encouragement is given and revisions suggested. But it is the authors who do the work', if, as we hope, the series proves of value, the credit will be theirs.

History of the Q-Group. During 1968 the idea of an integrated series of monographs on mathematical logic was first mooted. Various discussions led to a meeting at Oberwolfach in the spring of 1969. Here the founding members of the group (R. O. Gandy, A. Levy, G. H. Muller, G. E. Sacks, D. S. Scott) discussed the project-in earnest and decided to go ahead with it.

Type
Chapter
Information
Constructibility , pp. v - vi
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×