Skip to main content Accessibility help
×
Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-29T13:33:43.905Z Has data issue: false hasContentIssue false

Part IV - Managing Connectivity

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Abberton, M., Conant, R., & Batello, C., 2010. Grassland Carbon Sequestration: Management, Policy and Economics. Food and Agriculture of the United Nations, Rome.Google Scholar
Addis, H.K., Abera, A., & Abebaw, L., 2020. Economic benefits of soil and water conservation measures at the sub-catchment scale in the northern Highlands of Ethiopia. Progress in Physical Geography 44(2), 251266.CrossRefGoogle Scholar
Aguilera, E., Sanz-Cobena, A., Infante-Amate, J., García-Ruiz, R., Vila-Traver, J., Guzmán, G.I., González de Molina, M., Rodríguez, A., Piñero, P., & Lassaletta, L., 2021. Long-term trajectories of the C footprint of N fertilization in Mediterranean agriculture (Spain, 1860–2018). Environmental Research Letters 16, 085010.CrossRefGoogle Scholar
Amare, S., Langendoen, E., Keesstra, S., Ploeg, M.V.D., Gelagay, H., Lemma, H., & Zee, S.E.V.D., 2021. Susceptibility to gully erosion: applying random forest (RF) and frequency ratio (FR) approaches to a small catchment in Ethiopia. Water, 13(2), 216.CrossRefGoogle Scholar
Andrade, B.O., Koch, C., Boldrini, I.I., Vélez-Martin, E., Hasenack, H., Hermann, J.M., Kollmann, J., Pillar, V.D., & Overbeck, G.E., 2015. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza & Conservação 13, 95104.CrossRefGoogle Scholar
Armesto, J.J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A.M., & Marquet, P.A., 2010. From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27(2), 148160.CrossRefGoogle Scholar
Atucha, A., Merwin, I.A., Brown, M.G., Gardiazabal, F., Mena, F., Adriazola, C., & Lehmann, J., 2013. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 368, 393406.CrossRefGoogle Scholar
Bardgett, R.D., Bullock, J.M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., Chomel, M., et al. 2021. Combatting global grassland degradation. Nature Reviews Earth & Environment 2, 720735.CrossRefGoogle Scholar
Barrena-González, J., Lozano-Parra, J., Alfonso-Torreño, A., Lozano-Fondón, C., Abdennour, M.A., Cerdà, A., & Pulido-Fernández, M., 2020. Soil erosion in Mediterranean chestnut tree plantations at risk due to climate change and land abandonment. Central European Forestry Journal 66, 8596.CrossRefGoogle Scholar
Bayat, F., Monfared, A.B., Jahansooz, M.R., Esparza, E.T., Keshavarzi, A., Morera, A.G., Fernández, M.P., & Cerdà, A., 2019. Analyzing long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 183, 104176.CrossRefGoogle Scholar
Becerra, A.T., Botta, G.F., Bravo, X.L., Tourn, M., Melcon, F.B., Vazquez, J., Rivero, D., Linares, P., & Nardon, G., 2010. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil and Tillage Research 107, 4956.CrossRefGoogle Scholar
Bilotta, G.S., Brazier, R.E., & Haygarth, P.M., 2007. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy 94, 237280.CrossRefGoogle Scholar
Bilotta, G.S., Brazier, R.E., Haygarth, P.M., Macleod, C.J.A., Butler, P., Granger, S., Krueger, T., Freer, J., & Quinton, J., 2008. Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. Journal of Environmental Quality 37, 906914.CrossRefGoogle ScholarPubMed
Blanco Sepúlveda, R., & Aguilar Carrillo, A., 2015. Soil erosion and erosion thresholds in an agroforestry system of coffee (Coffea arabica) and mixed shade trees (Inga spp and Musa spp) in Northern Nicaragua. Agriculture, Ecosystems & Environment 210, 2535.CrossRefGoogle Scholar
Borrelli, P., & Panagos, P., 2020. An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land Use Policy 92, 104467.CrossRefGoogle Scholar
Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8, 2013.CrossRefGoogle ScholarPubMed
Brazier, R.E., Bilotta, G.S., & Haygarth, P.M., 2007. A perspective on the role of lowland, agricultural grasslands in contributing to erosion and water quality problems in the UK. Earth Surface Processes and Landforms 32, 964967.CrossRefGoogle Scholar
Brown, C., Walpole, M., Simpson, L., & Tierney, M., 2011. Introduction to the UK National Ecosystem Assessment. In: The UK National Ecosystem Assessment Technical Report. UK National Ecosystem Assessment, UNEP-WCMC, Cambridge.Google Scholar
Burguet, M., Taguas, E.V., Cerdà, A., &Gómez, J.A., 2016. Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena 147, 187195.CrossRefGoogle Scholar
Buschiazzo, D.E., Zobeck, T.M., & Abascal, S.A., 2007. Wind erosion quantity and quality of an Entic Haplustoll of the semi-arid pampas of Argentina. Journal of Arid Environments 69(1), 2939.CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M.E., Calvo-Cases, A., & Estrany, J., 2018. Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation and Development 29, 11981210.CrossRefGoogle Scholar
Cao, J.J., Adamowski, J.F., Deo, R.C., Xu, X.Y., Gong, Y.F., & Feng, Q., 2019. Grassland degradation on the Qinghai-Tibetan Plateau: Reevaluation of causative factors. Rangeland Ecology & Management 72, 988995.CrossRefGoogle Scholar
Cerdà, A., Franch-Pardo, I., Novara, A., Sannigrahi, S., & Rodrigo-Comino, J., 2022. Examining the effectiveness of catch crops as a nature-based solution to mitigate surface soil and water losses as an environmental regional concern. Earth Systems and Environment 6, 2944.CrossRefGoogle Scholar
Chen, S.-K., Liu, C.-W., & Chen, Y.-R., 2012. Assessing soil erosion in a terraced paddy field using experimental measurements and universal soil loss equation. Catena 95, 131141.CrossRefGoogle Scholar
Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G., & Scarciglia, F., 2013. Studying the relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena 110, 4458.CrossRefGoogle Scholar
Cucchiaro, S., Paliaga, G., Fallu, D.J., Pears, B.R., Walsh, K., Zhao, P., Van Oost, K., et al. 2021. Volume estimation of soil stored in agricultural terrace systems: A geomorphometric approach. Catena 207, 105687.CrossRefGoogle Scholar
Di Stefano, C., Ferro, V., Burguet, M., & Taguas, E.V., 2016. Testing the long term applicability of USLE-M equation at an olive orchard microcatchment in Spain. Catena 147, 7179.CrossRefGoogle Scholar
Dixon, A.P., Faber-Langendoen, D., Josse, C., Morrison, J., & Loucks, C.J., 2014. Distribution mapping of world grassland types. Journal of Biogeography 41, 20032019.CrossRefGoogle Scholar
Dong, H., Song, Y., Chen, L., Liu, H., Fu, X., & Xie, M. 2022. Soil erosion and human activities over the last 60 years revealed by magnetism, particle size and minerals of check dams sediments on the Chinese Loess Plateau. Environmental Earth Sciences 81(5), article 162.CrossRefGoogle Scholar
Dong, Q.M., Zhao, X.Q., Wu, G.L., Shi, J.J., & Ren, G.H., 2013. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences 70, 23592370.CrossRefGoogle Scholar
Dreibelbis, F.R., 1944. A summary of soil‐moisture data useful in soil‐ and water‐conservation investigations. Eos, Transactions American Geophysical Union 25(6), 10411047.Google Scholar
Durán Zuazo, V.H., Aguilar Ruiz, J., Martínez Raya, A., & Franco Tarifa, D., 2005. Impact of erosion in the taluses of subtropical orchard terraces. Agriculture Ecosystems & Environment 107, 199210.CrossRefGoogle Scholar
Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kiss, M., Kröel-Dulay, G., et al. 2018. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Applied Vegetation Science 21, 345362.CrossRefGoogle Scholar
European Commission, 2014. LIFE and Soil protection. Publications Office of the European Union (2014). Luxembourg. DOI:10.2779/64447.CrossRefGoogle Scholar
European Commission, 2021. EU Soil Strategy for 2030 – Reaping the benefits of healthy soils for people, food, nature and climate. COM (2021) 699 final. Brussels, 17.11.2021.Google Scholar
European Commission, 2022. The common agricultural policy at a glance. Website: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en (visited on 25 May 2022).Google Scholar
Ferreira, C.S., Veiga, A., Caetano, A., Gonzalez-Pelayo, O., Karine-Boulet, A., Abrantes, N., Keizer, J., & Ferreira, A.J., 2020. Assessment of the impact of distinct vineyard management practices on soil physico-chemical properties. Air, Soil and Water Research 13, https://doi.org/10.1177/1178622120944847.CrossRefGoogle Scholar
Findley, D.M., Acabado, S., Amano, N., Kay, A.U., Hamilton, R., Barretto-Tesoro, G., Bankoff, G., Kaplan, J.O., & Roberts, P., 2022. Land use change in a pericolonial society: Intensification and diversification in Ifugao, Philippines between 1570 and 1800 CE. Frontiers in Earth Science 10, 680926.CrossRefGoogle Scholar
Fleskens, L., & Stroosnijder, L., 2007. Is soil erosion in olive groves as bad as often claimed? Geoderma 141, 260271.CrossRefGoogle Scholar
Fressard, M., & Cossart, E., 2019. A graph theory tool for assessing structural sediment connectivity: Development and application in the Mercurey vineyards (France). Science of The Total Environment 651, 25662584.CrossRefGoogle ScholarPubMed
Fryirs, K.A., 2013. (Dis) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38, 3046.CrossRefGoogle Scholar
Fu, B., Wang, Y., Xu, P., & Yan, K., 2013. Mapping the flood mitigation services of ecosystems-a case study in the Upper Yangtze River Basin. Ecological Engineering 52, 238246.CrossRefGoogle Scholar
Gang, C.C., Zhou, W., Chen, Y.Z., Wang, Z.Q., Sun, Z.G., Li, J.L., Qi, J.G., & Odeh, I., 2014. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences 72, 42734282.CrossRefGoogle Scholar
García-Díaz, A., Bienes, R., Sastre, B., Novara, A., Gristina, L., & Cerdà, A., 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems & Environment 236, 256267.CrossRefGoogle Scholar
García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, N., & Sanjuán, Y., 2015. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160173.CrossRefGoogle Scholar
Glymph, L.M., 1954. Studies of sediment yields from watersheds. International Association for Hydrological Sciences Publication 36, 173191.Google Scholar
Gómez, J.A., Giráldez, J.V., & Vanwalleghem, T., 2008. Comments on “Is soil erosion in olive groves as bad as often claimed?” by L. Fleskens and L. Stroosnijder. Geoderma 147, 9395.CrossRefGoogle Scholar
Granger, S.J., Hawkins, J.M.B., Bol, R., Whitem, S.M., Naden, P., Old, G., Bilotta, G.S., Brazier, R.E., Macleod, C.J.A., & Haygarth, P.M., 2010. High temporal resolution monitoring of multiple pollutant responses in drainage from an intensively managed grassland catchment caused by a summer storm. Water, Air and Soil Pollution 205, 377393.CrossRefGoogle Scholar
Guo, Q., Hu, Z., Li, S., Li, X., Sun, X., & Yu, G., 2012. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Global Change Biology 18, 36243631.CrossRefGoogle Scholar
Hakansson, I., & Lipiec, J., 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil & Tillage Research 53, 7185.CrossRefGoogle Scholar
Hancock, G.R., Ovenden, M., Sharma, K., Rowlands, W., & Wells, T., 2020. Soil erosion-the impact of grazing and regrowth trees. Geoderma 361, 114102.CrossRefGoogle Scholar
Honigova, I., Vackar, D., Lorencova, E., Melichar, J., Gotzl, M., Sonderegger, G., Ouskova, V., Hosek, M., & Chobot, K., 2012. Survey on grassland ecosystem services. Report to the EEA-European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prague, p78.Google Scholar
Hooke, J., 2003. Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56(1–2), 7994.CrossRefGoogle Scholar
INE (Instituto Nacional de Estadística), 2009. Agrarian Census 2009 Project. Madrid, Spain, 124 pages.Google Scholar
Kawai, K., Okada, M., & Ikemune, K., 1957. Studies of Cropping Systems for Soil Conservation against Erosion HI. Influences of tobacco and potato cultivation on soil erosion and conservative measures. Japanese Journal of Crop Science 26(1), 6364.CrossRefGoogle Scholar
Keesstra, S. D., Bruijnzeel, L. A., & Van Huissteden, J., 2009. Meso‐scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms, 34(11), 15471561.CrossRefGoogle Scholar
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A., 2018a. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572.CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A., 2018b. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610, 9971009.CrossRefGoogle ScholarPubMed
Khalil, M.I., Cordovil, C.M.D.S., Francaviglia, R., Beverley, H., Klumpp, K.; Koncz, P., Llorente, M., Madari, B.E., Muñoz-Rojas, M., & Nerger, R., 2021. Grasslands. In Recarbonizing Global Soils: A Technical Manual of Recommended Sustainable Soil Management; FAO, Italy, Rome, Volume 3, ISBN 978-92-5-134893-2.Google Scholar
Knapen, A., Smets, T., & Poesen, J., 2009. Flow-retarding effects of vegetation and geotextiles on soil detachment during concentrated flow. Hydrological Processes 23, 24272437.CrossRefGoogle Scholar
Kraushaar, S., Herrmann, N., Ollesch, G., Vogel, H.-J., & Siebert, C., 2014. Mound measurements – Quantifying medium-term soil erosion under olive trees in Northern Jordan. Geomorphology 213, 112.CrossRefGoogle Scholar
Lana-Renault, N., López-Vicente, M., Nadal-Romero, E., Ojanguren, R., Llorente, J.A., Errea, P., Regüés, D., et al., 2018. Catchment based hydrology under post farmland abandonment scenarios. Geographical Research Letters 44(2), 503534.Google Scholar
Lexartza-Artza, I., & Wainwright, J., 2011. Making connections: Changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36 (8), 10901104.CrossRefGoogle Scholar
Li, X., Gao, J., Zhang, J., Wang, R., Jin, L., & Zhou, H., 2019. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting. Catena 182, 104142.CrossRefGoogle Scholar
Li, Z., Schneider, R.L., Morreale, S.J., Xie, Y., Li, C., & Li, J., 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 310, 143152.CrossRefGoogle Scholar
Liu, H., Blagodatsky, S., Giese, M., Liu, F., Xu, J., & Cadisch, G., 2016. Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. Catena 145, 180192.CrossRefGoogle Scholar
Liu, J., Milne, R.I., Cadotte, M.W., Wu, Z.Y., Provan, J., Zhu, G.F., Gao, L.M., & Li, D.Z., 2018. Protect third pole’s fragile ecosystem. Science 362, 1368.CrossRefGoogle Scholar
Liu, M., Min, L., Wu, L., Pei, H., & Shen, Y., 2022. Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain. Science of the Total Environment 825, 153894.CrossRefGoogle ScholarPubMed
Liu, Y., Li, S.Y., Shi, J.J., Niu, Y.L., Cui, Z., Zhang, Z.C., Wang, Y.L., Ma, Y.S., Lopez-Vicente, M., & Wu, G.L., 2022b. Effectiveness of mixed cultivated grasslands to reduce sediment concentration in runoff on hillslopes in the Qinghai-Tibetan Plateau. Geoderma 422, 115933.CrossRefGoogle Scholar
Liu, Y.F., Zhang, Z.C., Liu, Y., Cui, Z., Leite, P.A.M., Shi, J.J., Wang, Y.L., & Wu, G.L., 2022a. Shrub encroachment enhances the infiltration capacity of alpine meadows by changing the community composition and soil conditions. Catena 213,106222.CrossRefGoogle Scholar
López-Vicente, M., & Álvarez, S. 2018. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surface Processes and Landforms 43(7), 14031415.CrossRefGoogle Scholar
López-Vicente, M., Lana-Renault, N., García-Ruiz, J.M., & Navas, A., 2011. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments 11, 14401455.CrossRefGoogle Scholar
López-Vicente, M., Nadal-Romero, E., & Cammeraat, E.L.H. 2017. Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development 28, 12981310.CrossRefGoogle Scholar
López-Vicente, M., & Navas, A., 2010. Relating soil erosion and sediment yield to geomorphic features and erosion processes at the catchment scale in the Spanish Pre-Pyrenees. Environmental Earth Sciences 61, 143158.CrossRefGoogle Scholar
López-Vicente, M., Navas, A., & Machín, J., 2008. Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology and Earth System Sciences 12, 523535.CrossRefGoogle Scholar
Ma, Y.S., Lang, B.N., Li, Q.Y., Shi, J.J., & Dong, Q.M., 2002. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Acta Prataculturae Sinica 19, 14.Google Scholar
Martín, W.S., 2017. Nitrogen, science, and environmental change: The politics of the Green Revolution in Chile and the global nitrogen challenge. Journal of Political Ecology 24(1), 777796.CrossRefGoogle Scholar
Martínez-Raya, A., Durán-Zuazo, V.H., & Francia-Martínez, J.R., 2006. Soil erosion and runoff response to plant-cover strips on semiarid slopes (SE Spain). Land Degradation & Development 17(1), 111.CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S. D., Stroosnijder, L., Baartman, J. E., & Maroulis, J., 2015. Soil conservation through sediment trapping: a review. Land Degradation & Development, 26(6), 544556.CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., & Maroulis, J., 2017. Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation & Development 28(2), 708717.CrossRefGoogle Scholar
Menzies Pluer, E.G., Schneider, R.L., Morreale, S. J., Liebig, M.A., Li, J., Li, C.X., & Walter, M.T., 2020. Returning degraded soils to productivity: An examination of the potential of coarse woody amendments for improved water retention and nutrient holding capacity. Water Air Soil Pollut 231, 15.CrossRefGoogle Scholar
Mermoz, S., Bouvet, A., Toan, T. L., & Herold, M., 2018. Impacts of the forest definitions adopted by African countries on carbon conservation. Environmental Research Letters 13, 104014.CrossRefGoogle Scholar
Meyles, E.W., Williams, A.G., Ternan, J.L., Anderson, J.M., & Dowd, J.F., 2006. The influence of grazing on vegetation, soil properties and stream discharge in a small Dartmoor catchment, southwest England, UK. Earth Surface Processes and Landforms 31, 622631.CrossRefGoogle Scholar
Monfreda, C., Ramankutty, N., & Foley, J.A., 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22, https://doi.org/10.1029/2007GB002947.CrossRefGoogle Scholar
Montanarella, L., & Panagos, P., 2021. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100, 104950.CrossRefGoogle Scholar
Moradi, E., Rodrigo-Comino, J., Terol, E., Mora-Navarro, G., Marco da Silva, A., Daliakopoulos, I.N., Khosravi, H., Pulido Fernández, M., & Cerdà, A., 2020. Quantifying soil compaction in persimmon orchards using ISUM (improved stock unearthing method) and core sampling methods. Agriculture 10, 266.CrossRefGoogle Scholar
Morellón, M., Valero-Garcés, B., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., et al. 2011. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, 423452.CrossRefGoogle Scholar
Neto, J.P.S., De Souza, N.M., Andrello, A.C., & Appoloni, C.R., 2008. Loss and soil deposition estimate by means of the cesium 137 concentration in the Rio das Ondas Basin, BA. Soils and Rocks 31(3), 137142.CrossRefGoogle Scholar
Ning, J., Zhang, D., & Yu, Q. 2021. Quantifying the efficiency of soil conservation and optimized strategies: A case-study in a hotspot of afforestation in the Loess Plateau. Land Degradation and Development 32(3), 11141126.CrossRefGoogle Scholar
Nouaim, W., Rambourg, D., Merzouki, M., El Harti, A., & Karaoui, I., 2022. Assessing the intra-annual variability of agricultural soil losses: a RUSLE application in Nord-Pas-de-Calais, France. Journal of Water and Land Development 52, 210220.CrossRefGoogle Scholar
O’Mara, F. P., 2012. The role of grasslands in food security and climate change. Annals of Botany 110, 12631270.CrossRefGoogle ScholarPubMed
Ortíz-Rodríguez, A.J., Borselli, L., & Sarocchi, D., 2017. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena 157, 90111.CrossRefGoogle Scholar
Panagos, P., Borrelli, P., & Poesen, J., 2019. Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process. Science of the Total Environment 664, 487498.CrossRefGoogle ScholarPubMed
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C., 2015a. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy 54, 438447.CrossRefGoogle Scholar
Panagos, P., Borrelli, P., & Robinson, D.A., 2015b. Common Agricultural Policy: tackling soil loss across Europe. Nature 526, 195.CrossRefGoogle ScholarPubMed
Parr, C.L., Lehmann, C.E.R., Bond, W.J., Hoffmann, W.A., & Andersen, A.N., 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology & Evolution 29, 205213.CrossRefGoogle ScholarPubMed
Parsons, A.J., Wainwright, J., Brazier, R.E., & Powell, D.M., 2006. Is sediment delivery a fallacy? Earth Surface Processes and Landforms 31(10), 13251328.CrossRefGoogle Scholar
Pereira, H.C., Hosegood, P.H., & Dagg, M., 1967. Effects of tied ridges, terraces and grass leys on a lateritic soil in Kenya. Experimental Agriculture 3(2), 8998.CrossRefGoogle Scholar
Pijl, A., Tosoni, M., Roder, G., Sofia, G., & Tarolli, P., 2019a. Design of terrace drainage networks using UAV-based high-resolution topographic data. Water 11, 814.CrossRefGoogle Scholar
Pijl, A., Barneveld, P., Mauri, L., Borsato, E., Grigolato, S., & Tarolli, P., 2019b. Impact of mechanisation on soil loss in terraced vineyard landscapes. Cuadernos de Investigación Geográfica 45, 287308.CrossRefGoogle Scholar
Pilon, C., MooreJr., P.A., Pote, D.H., Pennington, J.H., Martin, J.W., Brauer, D.K., Raper, R.L., Dabney, S.M., & Lee, J. 2017. Long-term effects of grazing management and buffer strips on soil erosion from pastures. Journal of Environmental Quality 46(2), 364372.CrossRefGoogle ScholarPubMed
Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43(1), 6484.CrossRefGoogle Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C., 2003. Gully erosion and environmental change: importance and research needs. Catena 50, 91133.CrossRefGoogle Scholar
Poeppl, R.E., Keiler, M., von Elverfeldt, K., Zweimueller, I., & Glade, T., 2012. The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium‐sized agricultural catchment, Austria. Geografiska Annaler: Series A, Physical Geography 94(4), 511529.CrossRefGoogle Scholar
Rodrigo-Comino, J., 2018. Five decades of soil erosion research in “terroir.” The State-of-the-Art. Earth-Science Reviews 179, 436447.CrossRefGoogle Scholar
Rodrigo-Comino, J., Keesstra, S.D., & Cerdà, A., 2018. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms 43, 21932206.CrossRefGoogle Scholar
Rodrigo-Comino, J., Keshavarzi, A., Zeraatpisheh, M., Gyasi-Agyei, Y., & Cerdà, A., 2019. Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards. Computers and Electronics in Agriculture 159, 147156.CrossRefGoogle Scholar
Rodrigo-Comino, J., Lucas Borja, M., Bertalan, L., & Cerdà, A., 2020. Integrating in situ measurements of an index of connectivity to assess soil erosion processes in vineyards. Hydrological Sciences Journal 65(4), 671679.CrossRefGoogle Scholar
Rodrigo-Comino, J., Senciales, J.M., Ramos, M.C., Martínez-Casasnovas, J.A., Lasanta, T., Brevik, E.C., Ries, J.B., & Ruiz Sinoga, J.D., 2017. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 296, 4759.CrossRefGoogle Scholar
Saha, D., & Kukal, S.S., 2015. Soil structural stability and water retention characteristics under different land uses of degraded lower Himalayas of North-west India. Land Degradation and Development 26, 263271.CrossRefGoogle Scholar
Schultz, R.C., Collettil, J.P., Isenhart, T.M., Simpkins, W.W., Mize, C.W., & Thompson, M.L. 1995. Design and placement of a multi-species riparian buffer strip system. Agroforestry Systems 29, 201226.CrossRefGoogle Scholar
Schwertmann, U., Rickson, R.J., & Auerswald, K., 1989. Soil erosion protection measures in Europe. In: Proceedings of the European Community Workshop on Soil Erosion Protection. Freising, Germany, May 24–26, 1988. ISBN: 978-3-510-65384-3. 216 pages.Google Scholar
Shoobridge, D.W., 1951. Mechanical clearing and ground preparation for softwood plantations in the Australian capital territory. Australian Forestry 15(2), 105109.CrossRefGoogle Scholar
Stehle, S., Dabrowski, J.M., Bangert, U., & Schulz, R. 2016. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Science of The Total Environment 545–546, 171183.CrossRefGoogle ScholarPubMed
Straffelini, E., Cucchiaro, S., & Tarolli, P. 2021. Mapping potential surface ponding in agriculture using UAV-SfM. Earth Surface Processes and Landforms 46, 19261940.CrossRefGoogle Scholar
Sun, L., Liu, Y.F., Wang, X.T., Liu, Y., & Wu, G.L., 2022. Soil nutrient loss by gully erosion on sloping alpine steppe in the northern Qinghai-Tibetan Plateau. Catena 208, 105763.CrossRefGoogle Scholar
Suttie, J.M. Reynolds, S.G., & Batello, C., 2005. Grasslands of the World. FAO, Italy, Rome.Google Scholar
Taguas, E.V., Ayuso, J.L., Pérez, R., Giráldez, J.V., & Gómez, J.A., 2013. Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern Spain. Geoderma 206, 4962.CrossRefGoogle Scholar
Taguas, E.V., Yuan, Y., Licciardello, F., & Gómez, J.A., 2015. Curve numbers for olive orchard catchments: case study in Southern Spain. Journal of Irrigation and Drainage Engineering 141, 05015003.CrossRefGoogle Scholar
Tarolli, P. 2018. Agricultural terraces special issue preface. Land Degradation & Development 29(10), 35443548.CrossRefGoogle Scholar
Thornes, J.B., 2007. Modelling soil erosion by grazing: recent developments and new approaches. Geographical Research 45, 1326.CrossRefGoogle Scholar
Vercruysse, K., & Grabowski, R.C., 2019. Temporal variation in suspended sediment transport: linking sediment sources and hydro‐meteorological drivers. Earth Surface Processes and Landforms 44, 25872599.CrossRefGoogle Scholar
Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., & Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews 94, 2338.CrossRefGoogle Scholar
Vicente-Vicente, J.L., García-Ruiz, R., Francaviglia, R., Aguilera, E., & Smith, P., 2016. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 235, 204214.CrossRefGoogle Scholar
Wang, G.X., Hu, H.C., Li, G.S., & Li, N., 2009. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China. Hydrology and Earth System Sciences 13, 327341.Google Scholar
White, R., Murray, S., & Rohweder, M., 2000. Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC.Google Scholar
Wilsey, B.J., 2018. The Biology of Grasslands. Oxford University Press, Oxford.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T.J., Covino, T., Fryirs, K.A., Grant, G., et al. 2019. Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms 44(1), 426.CrossRefGoogle Scholar
Wu, G.L., Liu, Z.H., Zhang, L., Hu, T.M., & Chen, J.M., 2010. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland. Plant Soil 333, 469479.CrossRefGoogle Scholar
Xu, C., Jiang, Y., Su, Z., Liu, Y., & Lyu, J. 2022. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecological Indicators 137, article 108757.CrossRefGoogle Scholar
Yang, K., Zhao, Y., & Gao, L. 2022. Biocrust succession improves soil aggregate stability of subsurface after “Grain for Green” Project in the Hilly Loess Plateau, China. Soil and Tillage Research 217, article 105290.CrossRefGoogle Scholar
Ye, Y.-G., Chen, G.-J., & Fan, F., 2003. Impacts of the “Grain for Green” project on rural communities in the Upper Min River Basin, Sichuan, China. Mountain Research and Development 23(4), 345352.Google Scholar
Zhou, W., Guo, Z., Chen, J., Jiang, J., Hui, D., Wang, X., Sheng, J., et al. 2019. Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Science of The Total Environment 695, 133845.CrossRefGoogle ScholarPubMed

References

Beechie, T.J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P. & Pollock, M.M. (2010). Process-based principles for restoring river ecosystems. BioScience, 60(3), 209222.CrossRefGoogle Scholar
Bilderback, E. L., Pettinga, J. R., Litchfield, N. J., Quigley, M., Marden, M., Roering, J. J., & Palmer, A. S. (2015). Hillslope response to climate-modulated river incision in the Waipaoa catchment, East Coast North Island, New Zealand. Bulletin, 127(1–2), 131148.Google Scholar
Boardman, J., Vandaele, K., Evans, R. & Foster, I. D. (2019). Off‐site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use and Management, 35(2), 245256.CrossRefGoogle Scholar
Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology, 52(4), 632650.CrossRefGoogle Scholar
Bracken, L.J., Turnbull, L., Wainwright, J. & Bogaart, P. (2015). Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40, 177188CrossRefGoogle Scholar
Brooks, A.P. & Brierley, G.J. (1997). Geomorphic responses of lower Bega River to catchment disturbance, 1851–1926. Geomorphology, 18(3–4), 291304.CrossRefGoogle Scholar
Brooks, A. & Brierley, G. (2000). The role of European disturbance in the metamorphosis of the lower Bega River. In Brizga, S. & Finlayson, B. (eds.), River management: The Australasian experience, Chichester: John Wiley & Sons, pp. 221–246.Google Scholar
Brierley, G.J. & Fryirs, K. (2000). River Styles in Bega Catchment, NSW, Australia: Implications for river rehabilitation. Environmental Management, 25 (6), 661679.CrossRefGoogle ScholarPubMed
Brierley, G.J. & Fryirs, K.A. (2005). Geomorphology and River Management: Applications of the River Styles Framework, Oxford, UK: Blackwell Publications. 398 pp.Google Scholar
Brierley, G. & Fryirs, K. (2009). Don’t fight the site: Three geomorphic considerations in catchment-scale river rehabilitation planning. Environmental Management, 43 (6), 12011218.CrossRefGoogle ScholarPubMed
Brierley, G.J. & Fryirs, K.A. (2016). The use of evolutionary trajectories to guide ‘moving targets’ in the management of river futures. River Research and Applications, 32 (5), 823835.CrossRefGoogle Scholar
Brierley, G., Fryirs, K. & Jain, V. (2006). Landscape connectivity: The geographic basis of geomorphic applications. Area, 38 (2), 165174.CrossRefGoogle Scholar
Brierley, G.J., Cohen, T., Fryirs, K. & Brooks, A. (1999). Post‐European changes to the fluvial geomorphology of Bega catchment, Australia: Implications for river ecology. Freshwater Biology, 41 (4), 839848.CrossRefGoogle Scholar
Brierley, G., Tunnicliffe, J., Bizzi, S., Lee, F., Perry, G., Pöppl, R. & Fryirs, K. (2021). Quantifying sediment (dis)connectivity in the modelling of river systems. In Treatise on Geomorphology. Elsevier.Google Scholar
Brierley, G.J., Hikuroa, D.C.H., Friedrich, H., Fuller, I.C., Brasington, B., Hoyle, J., Tunnicliffe, J., Allen, K. & Measures, R. (2021). Why we should release New Zealand’s strangled rivers to lessen the impact of future floods. The Conversation. March 1st, 2021. https://theconversation.com/ – 153077.Google Scholar
Brinson, M.M. (1993). A hydrogeomorphic classification for Wetlands. U.S. Army Corps of Wetlands. Wetlands Research Program Technical Report WRP-DE-4. Vicksburg, MS: U.S. Army Corps of Engineers Waterways Experiment Station.Google Scholar
Chessman, B.C., Fryirs, K. A. & Brierley, G.J. (2006). Linking geomorphic character, behaviour and condition to fluvial biodiversity: Implications for river management. Aquatic Conservation: Maine and Freshwater Ecosystems, 16(3), 267288.CrossRefGoogle Scholar
Clarkson, B.R., Ausseil, A.E. & Gerbeaux, P. (2013). Wetland ecosystem services. In Dymond, J.R. (ed.), Ecosystem Services in New Zealand – Conditions and Trends. Lincoln, New Zealand: Manaaki Whenua Press.Google Scholar
Costanza, R., d’Arge, R., de Groot, R. Farber, S., Grasso, M., Hannon, B., Limburg, K., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253260.CrossRefGoogle Scholar
Costanza, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., & Van Den Belt, M. (1998). The value of the world’s ecosystem services and natural capital. Ecological Economics, 25(1), 315.CrossRefGoogle Scholar
DeRose, R.C. & Basher, L. R. (2011). Measurement of river bank and cliff erosion from sequential LIDAR and historical aerial photography. Geomorphology, 126, 132147.CrossRefGoogle Scholar
DeRose, R.C., Prosser, I.P., Weisse, M. & Hughes, A.O. (2003). Patterns of Erosion and Sediment and Nutrient Transport in the Murray-Darling Basin. Technical Report 32/03, Canberra: CSIRO Land and Water.Google Scholar
Downs, P.W. & Piégay, H. (2019). Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: implications, limitations, prospect. Geomorphology, 338, 88104.CrossRefGoogle Scholar
Engineers, Washington DC (2010). Wetlands research program technical report WRP-DE-4. In Burt, T. & Allison, R. (eds.), Sediment Cascades: An Integrated Approach. Oxford, UK: Wiley-Blackwell, 471 pp.CrossRefGoogle Scholar
Everard, M. (2016). Biodiversity in wetlands. In Finlayson, C. et al. (eds.), The Wetland Book. Dordrecht: Springer.Google Scholar
Evrard, O., Navratil, O., Ayrault, S., Ahmadi, M., Némery, J., Legout, C., Lefévre, I., Poirel, A., Bonté, P. & Esteves, M. (2011). Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment. Earth Surface Processes and Landforms, 36 (8), 10721089.CrossRefGoogle Scholar
Fausch, K. D., Torgersen, C. E., Baxter, C. V. & Li, H.W. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes: a continuous view of the river is needed to understand how processes interacting among scales set the context for stream fishes and their habitat. BioScience, 52 (6), 483498.CrossRefGoogle Scholar
Florsheim, J.L., Mount, J.F. & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58, 519529.CrossRefGoogle Scholar
Florsheim, J.L., Mount, J.F. & Constantine, C.R. (2006). A geomorphic monitoring and adaptive assessment framework to assess the effect of lowland floodplain river restoration on channel–floodplain sediment continuity. River Research and Applications, 22(3), 353375.CrossRefGoogle Scholar
Fryirs, K. (2013). (Dis)connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38 (1), 3046.CrossRefGoogle Scholar
Fryirs, K.A. (2015). Developing and using geomorphic condition assessments for river rehabilitation planning, implementation and monitoring. WiresWater, 2(6), 649667.Google Scholar
Fryirs, K. & Brierley, G. (1998). The character and age structure of valley fills in upper Wolumla Creek catchment, south coast, New South Wales, Australia. Earth Surface Processes and Landforms, 23(3), 271287.3.0.CO;2-5>CrossRefGoogle Scholar
Fryirs, K. & Brierley, G.J. (1999). Slope–channel decoupling in Wolumla catchment, New South Wales, Australia: The changing nature of sediment sources following European settlement. Catena, 35(1), 4163.CrossRefGoogle Scholar
Fryirs, K. & Brierley, G.J. (2001). Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology, 38(3–4), 237265.CrossRefGoogle Scholar
Fryirs, K. & Brierley, G. (2005). Practical application of the River Styles Framework as a tool for catchment-wide river management: a case study from Bega catchment, New South Wales. Macquarie University, 227 pp.Google Scholar
Fryirs, K.A. & Brierley, G.J. (2016). Assessing the geomorphic recovery potential of rivers: forecasting future trajectories of adjustment for use in management. WiresWater, 3(5), 727748.Google Scholar
Fryirs, K.A., Brierley, G.J., Hancock, F., Cohen, T.J., Brooks, A.P., Reinfelds, I., Cook, N. & Raine, A. (2018). Tracking geomorphic recovery in process‐based river management. Land Degradation and Development, 29(9), 32213244.CrossRefGoogle Scholar
Fryirs, K.A., Brierley, G.J., Preston, N.J. & Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 4967.CrossRefGoogle Scholar
Fryirs, K.A., Farebrother, W. & Hose, G.C. (2019). Understanding the spatial distribution and physical attributes of upland swamps in the Sydney Basin as a template for their conservation and management. Australian Geographer, 50, 91110.CrossRefGoogle Scholar
Fryirs, K., Spink, A. & Brierley, G. (2009). Post‐European settlement response gradients of river sensitivity and recovery across the upper Hunter catchment, Australia. Earth Surface Processes and Landforms, 34(7), 897918.CrossRefGoogle Scholar
Fryirs, K., Hancock, F., Healey, M., Mould, S., Dobbs, L., Riches, M., Raine, A. & Brierley, G. (2021). Things we can do now that we could not do before: Developing and using a cross-scalar, state-wide database to support geomorphologically-informed river management. PloS One, 16(1), e0244719.CrossRefGoogle Scholar
Fuller, I.C. & Death, R.G. (2018). The science of connected ecosystems: What is the role of catchment‐scale connectivity for healthy river ecology? Land Degradation & Development, 29(5), 14131426.CrossRefGoogle Scholar
Fuller, I. C. & Marden, M. (2011). Slope–channel coupling in steepland terrain: A field-based conceptual model from the Tarndale gully and fan, Waipaoa catchment, New Zealand. Geomorphology, 128, 105115.CrossRefGoogle Scholar
Fuller, I. C., Strohmaier, F., McColl, S. T., Tunnicliffe, J. & Marden, M. (2020). Badass gully morphodynamics and sediment generation in Waipaoa Catchment, New Zealand. Earth Surface Processes and Landforms, 45, 39173930.CrossRefGoogle Scholar
GDC (2020). Te mahinga arai waipuke o Waipaoa Waipaoa flood control. Available at: www.gdc.govt.nz/council/major-projects/waipaoa-river-flood-control-schemeGoogle Scholar
Gomez, B., Banbury, K., Marden, M., Trustrum, N. A., Peacock, D. H., & Hoskin, P. J. (2003). Gully erosion and sediment production: Te Weraroa Stream, New Zealand. Water Resources Research, 39(7).CrossRefGoogle Scholar
Gomez, B., Coleman, S., Sy, V., Peacock, D. & Kent, M. (2007). Channel change, bankfull and effective discharges on a vertically accreting, meandering, gravel‐bed river. Earth Surface Processes and Landforms, 32, 770785.CrossRefGoogle Scholar
Gomez, B., Cui, Y., Kettner, A., Peacock, D. & Syvitski, J. (2009). Simulating changes to the sediment transport regime of the Waipaoa River, New Zealand, driven by climate change in the twenty-first century. Global and Planetary Change, 67, 153166.CrossRefGoogle Scholar
Gomez, B., Eden, D. N., Peacock, D. H. & Pinkney, E. J. (1998). Floodplain construction by recent, rapid vertical accretion: Waipaoa River, New Zealand. Earth Surface Processes and Landforms, 23, 405413.3.0.CO;2-X>CrossRefGoogle Scholar
Gomez, B. & Livingston, D. M. (2012). The river it goes right on: Post-glacial landscape evolution in the upper Waipaoa River basin, eastern North Island, New Zealand. Geomorphology, 159, 7383.CrossRefGoogle Scholar
Gomez, B., Rosser, B. J., Peacock, D. H., Hicks, D. M. & Palmer, J. A. (2001). Downstream fining in a rapidly aggrading gravel bed river. Water Resources Research, 37, 18131823.CrossRefGoogle Scholar
Gore, D., Brierley, G., Pickard, J. & Jansen, J. (2000). Anatomy of a floodout in semi-arid eastern Australia. Zeitschrift fur Geomorphologie, 122, 113139.Google Scholar
Graves, B.P., Ralph, T.J., Hesse, P.P., Westaway, K.E., Kobayashi, T., Gadd, P.S. & Mazumder, D. (2019). Macro-charcoal accumulation in floodplain wetlands: problems and prospects for reconstruction of fire regimes and environmental conditions. PLoS ONE, 14, e0224011.CrossRefGoogle ScholarPubMed
Gurnell, A. (2014). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1):425.CrossRefGoogle Scholar
Hamilton, D. & Kelman, E. (1952). Soil Conservation Survey of the Waipaoa River Catchment, Poverty Bay-New Zealand. Soil Conservation, Ministry of Works.Google Scholar
Harvey, A.M. (2001). Coupling between hillslopes and channels in upland fluvial systems: Implications for landscape sensitivity illustrated from the Howgill Fells, northwest England. Catena, 42, 225250.CrossRefGoogle Scholar
Harvey, A.M. (2002). Effective timescales of coupling within fluvial systems. Geomorphology, 44, 175201.CrossRefGoogle Scholar
Hesse, P.P., Williams, R., Ralph, T.J., Larkin, Z.T., Fryirs, K.A., Westaway, K.E. & Yonge, D. (2018). Dramatic reduction in size of the lowland Macquarie River in response to Late Quaternary climate-driven hydrologic change. Quaternary Research, 90, 360379.CrossRefGoogle Scholar
Hillman, M., Brierley, G. & Fryirs, K. (2008). Social and biophysical connectivity of river systems. In Brierley, G.J., & Fryirs, K.A. (eds.), River Futures: An Integrative Scientific Approach to River Repair. Washington, DC: Island Press, 125–142.Google Scholar
Hicks, D. M., Gomez, B. & Trustrum, N. A. (2000). Erosion thresholds and suspended sediment yields, Waipaoa River Basin, New Zealand. Water Resources Research, 36, 11291142. www.doi.org/10.1029/1999WR900340CrossRefGoogle Scholar
Hicks, D. M., Shankar, U., McKerchar, A. I., Basher, L., Lynn, I., Page, M. & Jessen, M. (2011). Suspended sediment yields from New Zealand rivers. Journal of Hydrology (New Zealand), 81142.Google Scholar
Hooke, J.M. (2003). Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 56, 7994.CrossRefGoogle Scholar
Jain, V. & Tandon, S.K. (2010). Conceptual assessment of (dis) connectivity and its application to the Ganga River dispersal system. Geomorphology, 118(3–4), 349358.CrossRefGoogle Scholar
James, L.A. (2010). Secular sediment waves, channel bed waves, and legacy sediment. Geography Compass, 4(6), 576598.CrossRefGoogle Scholar
James, L.A. (2013). Legacy sediment: definitions and processes of episodically produced anthropogenic sediment. Anthropocene, 2, 1626.CrossRefGoogle Scholar
Jones, K. E. & Preston, N. J. (2012). Spatial and temporal patterns of off-slope sediment delivery for small catchments subject to shallow landslides within the Waipaoa catchment, New Zealand. Geomorphology, 141, 150159.CrossRefGoogle Scholar
Kasai, M., Brierley, G.J., Page, M.J., Marutani, T. & Trustrum, N.A. (2005). Impacts of land use change on patterns of sediment flux in Weraamaia catchment, New Zealand. Catena, 64(1), 2760.CrossRefGoogle Scholar
Keesstra, S., Nunes, J., Saco, P., Parsons, A., Pöppl, R., Pereira, P., Novara, A., Comino, J.R., Masselink, R. & Cerda, A. (2018). The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572.CrossRefGoogle ScholarPubMed
Kingsford, R.T. (2000). Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology, 25, 109127.CrossRefGoogle Scholar
Kondolf, G.M. (2011). Setting goals in river restoration: when and where can the river “heal itself”. Stream restoration in dynamic fluvial systems: scientific approaches, analyses, and tools. Geophysical Monograph Series, 194, 2943.Google Scholar
Kondolf, G.M. & Micheli, E.R. (1995). Evaluating stream restoration projects. Environmental Management, 19(1), 115.CrossRefGoogle Scholar
Kondolf, G.M., Boulton, A.J., O’Daniel, S., Poole, G.C., Rahel, F.J., Stanley, E.H., Wohl, E., Bång, A., Carlstrom, J., Cristoni, C. & Huber, H. (2006). Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecology and Society, 11(2).CrossRefGoogle Scholar
Kondolf, G.M., Smeltzer, M.W. & Railsback, S.F. (2001). Design and performance of a channel reconstruction project in a coastal California gravel-bed stream. Environmental Management, 28(6), 761776.CrossRefGoogle Scholar
Kobayashi, T., Ryder, D.S., Ralph, T.J., Mazumder, D., Saintilan, N., Iles, J., Knowles, L., Thomas, R., & Hunter, S. (2011). Longitudinal spatial variation in ecological conditions in an in-channel floodplain river system during flow pulses. River Research and Applications, 27, 461472.CrossRefGoogle Scholar
Kobayashi, T., Ralph, T.J., Ryder, D.S., Hunter, S.J., Shiel, R.J., & Segers, H. (2015). Spatial dissimilarities in plankton structure and function during flood pulses in a semi-arid floodplain wetland system. Hydrobiologia, 747, 1931.CrossRefGoogle Scholar
Kuehl, S. A., Alexander, C. R., Blair, N. E., Harris, C. K., Marsaglia, K. M., Ogston, A. S., Orpin, A. R., Roering, J. J., Bever, A. J. & Bilderback, E. L. (2016). A source-to-sink perspective of the Waipaoa River margin. Earth-Science Reviews, 153, 301334.CrossRefGoogle Scholar
Larkin, Z.T., Ralph, T.J., Tooth, S., Fryirs, K.A. & Carthey, J.R. (2020). Identifying threshold responses of Australian dryland rivers to future hydroclimatic change. Scientific Reports, 10, 6653.CrossRefGoogle ScholarPubMed
Larkin, Z.T., Ralph, T.J., Tooth, S. & McCarthy, T.S. (2017). The interplay between extrinsic and intrinsic controls in determining floodplain wetland characteristics in the South African drylands. Earth Surface Processes and Landforms, 42, 10921109.CrossRefGoogle Scholar
Leenman, A. & Tunnicliffe, J. (2020). Tributary‐junction fans as buffers in the sediment cascade: A multi‐decadal study. Earth Surface Processes and Landforms, 45(2), 265279.CrossRefGoogle Scholar
Leenman, A. & Tunnicliffe, J. (2018). Genesis of a major gully mass-wasting complex, and implications for valley filling, East Cape, New Zealand. Geological Society of America Bulletin, 130(7–8), 11211130.CrossRefGoogle Scholar
Lisenby, P.E., Fryirs, K.A. & Thompson, C.J. (2020). River sensitivity and sediment connectivity as tools for assessing future geomorphic channel behavior. International Journal of River Basin Management, 18(3), 279293.CrossRefGoogle Scholar
Lisenby, P.E., Tooth, S. & Ralph, T.J. (2019). Product vs. process? The role of geomorphology in wetland characterization. Science of the Total Environment, 663, 980991.CrossRefGoogle ScholarPubMed
Mach, K.J. & Siders, A.R. (2021). Reframing strategic, managed retreat for transformative climate adaptation. Science, 372(6548), 12941299.CrossRefGoogle ScholarPubMed
Marden, M. (2011). Sedimentation History of Waipaoa Catchment. Landcare Research.Google Scholar
Marden, M. (2012). Effectiveness of reforestation in erosion mitigation and implications for future sediment yields, East Coast catchments, New Zealand: A review. New Zealand Geographer, 68, 2435. www.doi.org/10.1111/j.1745-7939.2012.01218.xCrossRefGoogle Scholar
Marden, M., Arnold, G., Gomez, B. & Rowan, D. (2005). Pre‐and post‐reforestation gully development in Mangatu Forest, East Coast, North Island, New Zealand. River Research and Applications, 21, 757771.CrossRefGoogle Scholar
Marden, M., Fuller, I. C., Herzig, A. & Betts, H. D. (2018). Badass gullies: Fluvio-mass-movement gully complexes in New Zealand’s East Coast region, and potential for remediation. Geomorphology, 307, 1223.CrossRefGoogle Scholar
Marden, M., Herzig, A. & Basher, L. (2014). Erosion process contribution to sediment yield before and after the establishment of exotic forest: Waipaoa catchment, New Zealand. Geomorphology, 226, 162174.CrossRefGoogle Scholar
Mitsch, W.J. & Gosselink, J.G. (2015). Wetlands (5th ed). New York: Wiley, 744 pp.Google Scholar
Olley, J.M. & Wasson, R.J. (2003). Changes in the flux of sediment in the Upper Murrumbidgee catchment, Southeastern Australia, since European settlement. Hydrological Processes, 17, 33073320.CrossRefGoogle Scholar
Oyston, S.M., Ralph, T.J. & Hesse, P.P. (2014). Cutting down, back and out: assessment of channel erosion in a sensitive floodplain wetland. In Vietz, G., Rutherfurd, I.D. & Hughes, R. (eds.), Proceedings of the 7th Australian Stream Managament Conference, 27–30 July 2014. Townsville, QLD: River Basin Management Society, pp. 143149.Google Scholar
Page, M., Trustrum, N., Brackley, H. & Baisden, T. (2004). Erosion-related soil carbon fluxes in a pastoral steepland catchment, New Zealand. Agriculture, Ecosystems & Environment, 103, 561579.CrossRefGoogle Scholar
Piegay, H., Darby, S.E., Mosselman, E., & Surian, N. (2005). A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Research and Applications, 21, 773789.CrossRefGoogle Scholar
Pöppl, R.E., Keesstra, S.D. & Hein, T. (2015). The geomorphic legacy of small dams – An Austrian study. Anthropocene, 10, 4355.CrossRefGoogle Scholar
Pöppl, R.E., Keesstra, S.D. & Maroulis, J.(2017). A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, 237250.CrossRefGoogle Scholar
Pöppl, R.E., Coulthard, T., Keesstra, S.D. & Keiler, M., J. (2019). Modeling the impact of dam removal on channel evolution and sediment delivery in a multiple dam setting. International Journal of Sediment Research, 34(6), 537549.CrossRefGoogle Scholar
Pöppl, R.E., Fryirs, K.A., Tunnicliffe, J. & Brierley, G.J. (2020). Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, 736, 139627.CrossRefGoogle Scholar
Prosser, I.P., Rutherfurd, I.D., Olley, J.M., Young, W.J., Wallbrink, P.J., & Moran, C.J. (2001). Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia. Marine and Freshwater Research, 52, 8199.CrossRefGoogle Scholar
Ralph, T.J., & Hesse, P.P. (2010). Downstream hydrogeomorphic changes along the Macquarie River, southeastern Australia, leading to channel breakdown and floodplain wetlands. Geomorphology, 118, 4864.CrossRefGoogle Scholar
Ralph, T.J., Hesse, P.P., & Kobayashi, T. (2016). Wandering wetlands: Spatial patterns of historical channel and floodplain change in the Ramsar-listed Macquarie Marshes, Australia. Marine and Freshwater Research, 67, 782802.CrossRefGoogle Scholar
Ralph, T.J., Kobayashi, T., García, A., Hesse, P.P., Yonge, D., Bleakley, N., & Ingleton, T. (2011). Paleoecological responses to avulsion and floodplain evolution in a semiarid Australian freshwater wetland. Australian Journal of Earth Sciences, 58, 7591.CrossRefGoogle Scholar
Ralph, T.J., Larkin, Z., Farebrother, W., Ocock, J., Hosking, T., Kobayashi, Y., Hughes, M., Hesse, P. & Fryirs, K. (2021) Exploring the relationship between channel bed control structures and stream power in low-gradient floodplain wetlands. In Proceedings of the 10th Australian Stream Management Conference, 2–4 August 2021, Kingscliff, NSW, 74316, River Basin Management Society, Melbourne, VIC.Google Scholar
Ralph, T.J. & Rogers, K. (2011). Floodplain wetlands of the Murray-Darling Basin and their freshwater biota. In Rogers, K. & Ralph, T. J. (eds.) Floodplain Wetland Biota in the Murray-Darling Basin: Water and Habitat Requirements, Collingwood, VIC: CSIRO Publishing, pp. 116.Google Scholar
Rayburg, S. & Thoms, M. (2009). A coupled hydraulic–hydrologic modelling approach to deriving a water balance model for a complex floodplain wetland system. Hydrology Research, 40, 364379.CrossRefGoogle Scholar
Reid, L. & Page, M. (2003). Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorphology, 49, 7188.CrossRefGoogle Scholar
Rittenhouse, T.A. & Peterman, W.E. (2018). Connectivity of wetlands. In Finlayson, C. et al. (eds.), The Wetland Book. Dordrecht: Springer.Google Scholar
Rogers, K. & Ralph, T.J. (eds.), (2011). Floodplain Wetland Biota in the Murray-Darling Basin: Water and Habitat Requirements. Collingwood, VIC: CSIRO Publishing, 348 pp.Google Scholar
Schmidt, J.C., Webb, R.H., Valdez, R.A., Marzolf, G.R. & Stevens, L.E. (1998). Science and values in river restoration in the Grand Canyon: there is no restoration or rehabilitation strategy that will improve the status of every riverine resource. BioScience, 48(9), 735747.CrossRefGoogle Scholar
Scorpio, V., Aucelli, P. P., Giano, S. I., Pisano, L., Robustelli, G., Rosskopf, C.M. & Schiattarella, M. (2015). River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology, 251, 7790.CrossRefGoogle Scholar
Sear, D.A., Newson, M.D. & Brookes, A. (1995). Sediment‐related river maintenance: the role of fluvial geomorphology. Earth Surface Processes and Landforms, 20(7), 629647.CrossRefGoogle Scholar
Semeniuk, C. & Semeniuk, V. (1995). A geomorphic approach to global classification for inland wetlands. Vegetatio, 118, 103124.CrossRefGoogle Scholar
Simon, A., Doyle, M., Kondolf, M., ShieldsJr, F.D., Rhoads, B. & McPhillips, M. (2007). Critical evaluation of how the Rosgen classification and associated “natural channel design” methods fail to integrate and quantify fluvial processes and channel response. Journal of the American Water Resources Association, 43(5), 11171131.CrossRefGoogle Scholar
Singh, M., Sinha, R. & Tandon, S.K. (2021). Geomorphic connectivity and its application for understanding landscape complexities: a focus on the hydro‐geomorphic systems of India. Earth Surface Processes and Landforms, 46(1), 110130.CrossRefGoogle Scholar
Spink, A., Fryirs, K. & Brierley, G. (2009). The relationship between geomorphic river adjustment and management actions over the last 50 years in the upper Hunter catchment, NSW, Australia. River Research and Applications, 25(7), 904928.CrossRefGoogle Scholar
Taylor, R. J., Massey, C., Fuller, I. C., Marden, M., Archibald, G. & Ries, W. (2018). Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment, New Zealand. Geomorphology, 307, 2437.CrossRefGoogle Scholar
Thompson, C., Fryirs, K. & Croke, J. (2016). The disconnected sediment conveyor belt: Patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the Lockyer Valley, southeast Queensland, Australia. River Research and Applications, 32, 540551.CrossRefGoogle Scholar
Tooth, S., Ellery, W., Grenfell, M., Thomas, A., Kotze, D. & Ralph, T. (2015). 10 reasons Why the Geomorphology of Wetlands Is Important. Wetlands in Drylands Research Network.Google Scholar
Tubridy, D., Scott, M. & Lennon, M. (2021). Managed retreat in response to flooding: lessons from the past for contemporary climate change adaptation. Planning Perspectives, 120.Google Scholar
Tunnicliffe, J., Brierley, G., Fuller, I. C., Leenman, A., Marden, M. & Peacock, D. (2018). Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance. Geomorphology, 307, 5064.CrossRefGoogle Scholar
Turley, M., Hassan, M. A. & Slaymaker, O. (2021). Quantifying Sediment Connectivity: Moving Towards a Holistic Assessment Through a Mixed Methods Approach. Earth Surface Processes and Landforms.CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T.G., Lexartza-Artza, I., Thornton, S.F. & Brazier, R.E. (2011). Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3–4), 387404.CrossRefGoogle Scholar
Walling, D.E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209237.CrossRefGoogle Scholar
Walter, R.C. & Merritts, D.J. (2008). Natural streams and the legacy of water-powered mills. Science, 319(5861), 299304.CrossRefGoogle ScholarPubMed
Warrick, J.A., Bountry, J.A., East, A.E., Magirl, C.S., Randle, T.J., Gelfenbaum, G., Ritchie, A.C., Pess, G.R., Leung, V. & Duda, J.J. (2015). Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis. Geomorphology, 246, 729750.CrossRefGoogle Scholar
Wethered, A.S., Ralph, T.J., Smith, H.G., Fryirs, K.A. & Heijnis, H. (2015). Quantifying fluvial (dis)connectivity in an agricultural catchment using a geomorphic approach and sediment source tracing. Journal of Soils and Sediments, 15, 20522066.CrossRefGoogle Scholar
Wheaton, J.M., Bennett, S., Bouwes, N., Maestas, J.D. & Shahverdian, S.M. (eds.), (2019). Low-Tech Process-Based Restoration of Riverscapes: Design Manual. Version 1.0. Logan, UT: Utah State University Restoration Consortium. Available at: http://lowtechpbr.restoration.usu.edu/manualGoogle Scholar
Williams, R.T. & Fryirs, K.A. (2020). The morphology and geomorphic evolution of a large chain-of-ponds river system. Earth Surface Processes and Landforms, 45, 17321748.CrossRefGoogle Scholar
Wohl, E, (2015). Legacy effects on sediments in river corridors. Earth Science Reviews, 147, 3053.CrossRefGoogle Scholar
Wohl, E. (2018). Geomorphic context in rivers. Progress in Physical Geography: Earth and Environment, 42(6), 841857.CrossRefGoogle Scholar
Wohl, E. & Beckman, N.D. (2014). Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology, 205, 2735.CrossRefGoogle Scholar
Wohl, E., Bledsoe, B.P., Jacobson, R.B., Poff, N. L., Rathburn, S.L., Walters, D.M. & Wilcox, A.C. (2015). The natural sediment regime in rivers: broadening the foundation for ecosystem management. BioScience, 65(4), 358371.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T., Covino, T., Fryirs, K., Grant, G., Pöpplet al. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes Landforms, 44, 426.CrossRefGoogle Scholar
Xu, X., Chen, M., Yang, G., Jiang, B. & Zhang, J. (2020). Wetland ecosystem services research: a critical review. Global Ecology and Conservation, 22, e01027.CrossRefGoogle Scholar
Ziliani, L. & Surian, N. (2012). Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology, 173, 104117.CrossRefGoogle Scholar
Ziliani, L. & Surian, N. (2016). Reconstructing temporal changes and prediction of channel evolution in a large Alpine river: The Tagliamento River, Italy. Aquatic Sciences, 78(1), 8394.CrossRefGoogle Scholar

References

Alados, C. L., Saiz, H., Gartzia, M., Nuche, P., Escós, J., Navarro, T., & Pueyo, Y. (2017). Plant–plant interactions scale up to produce vegetation spatial patterns: the influence of long- and short-term process. Ecosphere, 8 (8), p. e01915. www.doi.org/10.1002/ecs2.1915CrossRefGoogle Scholar
Ali, G. A., & Roy, A. G. (2009). Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geography Compass, 3 (1), pp. 350374. www.doi.org/10.1111/j.1749-8198.2008.00180.xCrossRefGoogle Scholar
Baartman, J. E., Temme, A. J., & Saco, P. M. (2018). The effect of landform variation on vegetation patterning and related sediment dynamics. Earth Surface Processes and Landforms, 43(10), pp. 21212135.CrossRefGoogle Scholar
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C., Degré, A., Cantreul, V., et al. (2020). What do models tell us about water and sediment connectivity? Geomorphology, 367, p. 107300. www.doi.org/10.1016/j.geomorph.2020.107300CrossRefGoogle Scholar
Bainbridge, D. A. (2007). Arid lands research needs next twenty-five years. Annals of Arid Zone, 46 (3&4), pp. 128.Google Scholar
Bautista, S., & Mayor, Á. G. (2021). El papel de la (des)conectividad ecohidrológica en el funcionamiento y el manejo de las zonas áridas. Ecosistemas, 30 (3), pp. 2265. www.doi.org/10.7818/ECOS.2265CrossRefGoogle Scholar
Belnap, J., Büdel, B., & Lange, O. L. (2003). Biological soil crusts: Characteristics and distribution. In Belnap, J. & Lange, O. L. (eds.), Biological Soil Crusts: Structure, Function, and Management (pp. 330). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Berdugo, M., Kéfi, S., Soliveres, S., & Maestre, F. T. (2017). Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology & Evolution, 1 (2), p. 3. www.doi.org/10.1038/s41559-016-0003CrossRefGoogle ScholarPubMed
Bergametti, G., & Gillette, D. A. (2010). Aeolian sediment fluxes measured over various plant/soil complexes in the Chihuahuan desert. Journal of Geophysical Research: Earth Surface, 115 (F3). www.doi.org/10.1029/2009JF001543CrossRefGoogle Scholar
Bestelmeyer, B. T., Okin, G. S., Duniway, M. C., Archer, S. R., Sayre, N. F., Williamson, J. C., & Herrick, J. E. (2015). Desertification, land use, and the transformation of global drylands. Frontiers in Ecology and the Environment, 13 (1), pp. 2836. www.doi.org/10.1890/140162CrossRefGoogle Scholar
Bhark, E. W., & Small, E. E. (2003). Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan desert, New Mexico. Ecosystems, 6 (2), pp. 01850196. www.doi.org/10.1007/s10021-002-0210-9CrossRefGoogle Scholar
Birch, J. D., Lutz, J. A., Hogg, E. H., Simard, S. W., Pelletier, R., LaRoi, G. H., & Karst, J. (2019). Decline of an ecotone forest: 50 years of demography in the southern boreal forest. Ecosphere, 10 (4), pp. e02698. www.doi.org/10.1002/ecs2.2698CrossRefGoogle Scholar
Borgogno, F., D’Odorico, P., Laio, F., & Ridolfi, L. (2009). Mathematical models of vegetation pattern formation in ecohydrology. Reviews of Geophysics, 47 (1). www.doi.org/10.1029/2007RG000256CrossRefGoogle Scholar
Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA, 75 (3), pp. 268277. www.doi.org/10.1016/j.catena.2008.07.006CrossRefGoogle Scholar
Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, 21 (13), pp. 17491763. www.doi.org/10.1002/hyp.6313CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, pp. 1734. www.doi.org/10.1016/j.earscirev.2013.02.001CrossRefGoogle Scholar
Bradley, E. F., & Mulhearn, P. J. (1983). Development of velocity and shear stress distribution in the wake of a porous shelter fence. Journal of Wind Engineering and Industrial Aerodynamics, 15 (1), pp. 145156. www.doi.org/10.1016/0167-6105(83)90185-XCrossRefGoogle Scholar
Burrell, A. L., Evans, J. P., & De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 11 (1), pp. 3853. www.doi.org/10.1038/s41467-020-17710-7CrossRefGoogle ScholarPubMed
Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Timmermann, A., et al. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5 (2), pp. 132137. www.doi.org/10.1038/nclimate2492CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M. E., Calvo-Cases, A., & Estrany, J. (2018a). Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation & Development, 29 (4), pp. 11981210. www.doi.org/10.1002/ldr.2840CrossRefGoogle Scholar
Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., Calvo-Cases, A., & Estrany, J. (2018b). Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology, 318, pp. 162171. www.doi.org/10.1016/j.geomorph.2018.06.011CrossRefGoogle Scholar
Calsamiglia, A., Lucas-Borja, M. E., Fortesa, J., García-Comendador, J., & Estrany, J. (2017). Changes in soil quality and hydrological connectivity caused by the abandonment of terraces in a Mediterranean burned catchment. Forests, 8 (9), p. 333CrossRefGoogle Scholar
Cammeraat, L. H., & Imeson, A. C. (1999). The evolution and significance of soil–vegetation patterns following land abandonment and fire in Spain. CATENA, 37 (1), pp. 107127. www.doi.org/10.1016/S0341-8162(98)00072-1CrossRefGoogle Scholar
Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, pp. 3141. www.doi.org/10.1016/j.geomorph.2012.05.007CrossRefGoogle Scholar
Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G., Handcock, R. N., Leys, J. F., & Butler, H. J. (2018). Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, pp. 756768. www.doi.org/10.1016/j.rse.2017.09.026CrossRefGoogle Scholar
Dickinson, R. E. (1984). Modeling evapotranspiration for three-dimensional global climate models. In Hansen, J. E. & Takahashi, T. (Eds.), Climate Processes and Climate Sensitivity (Vol. 5, pp. 5872). Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Dunkerley, D. L. (2002). Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia: evidence for complex internal rainwater redistribution in a runoff–runon landscape. Journal of Arid Environments, 51 (2), pp. 199219. www.doi.org/10.1006/jare.2001.0941CrossRefGoogle Scholar
Fensham, R. J., Fairfax, R. J., & Archer, S. R. (2005). Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. Journal of Ecology, 93 (3), pp. 596606. www.doi.org/10.1111/j.1365-2745.2005.00998.xCrossRefGoogle Scholar
Fick, S. E., Decker, C., Duniway, M. C., & Miller, M. E. (2016). Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland. Ecosphere, 7 (6), pp. e01354. www.doi.org/10.1002/ecs2.1354CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. CATENA, 70 (1), pp. 4967. www.doi.org/10.1016/j.catena.2006.07.007CrossRefGoogle Scholar
Fuentes, D., Smanis, A., & Valdecantos, A. (2017). Recreating sink areas on semiarid degraded slopes by restoration. Land Degradation & Development, 28 (3), pp. 10051015. www.doi.org/https://doi.org/10.1002/ldr.2671CrossRefGoogle Scholar
Gherardi, L. A., & Sala, O. E. (2015). Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences, 112 (41), pp. 12735–12740. www.doi.org/10.1073/pnas.1506433112CrossRefGoogle ScholarPubMed
Gillette, D. A., Adams, J., Endo, A., Smith, D., & Kihl, R. (1980). Threshold velocities for input of soil particles into the air by desert soils. Journal of Geophysical Research: Oceans, 85 (C10), pp. 56215630. www.doi.org/10.1029/JC085iC10p05621CrossRefGoogle Scholar
Gillette, D. A., Herrick, J. E., & Herbert, G. A. (2006). Wind characteristics of mesquite streets in the Northern Chihuahuan Desert, New Mexico, USA. Environmental Fluid Mechanics, 6 (3), pp. 241275. www.doi.org/10.1007/s10652-005-6022-7CrossRefGoogle Scholar
Havstad, K. M., Peters, D. P. C., Skaggs, R., Brown, J., Bestelmeyer, B., Fredrickson, E., Herrick, J., & Wright, J. (2007). Ecological services to and from rangelands of the United States. Ecological Economics, 64 (2), pp. 261268. www.doi.org/10.1016/j.ecolecon.2007.08.005CrossRefGoogle Scholar
Herrick, J. E., van Zee, J. W., McCord, S. E., Courtright, E. M., Karl, J. W., & Burkett, L. M. (2005). Monitoring manual for grassland, shrubland and savanna ecosystems: Vol. I: Core Methods. Las Cruces, New Mexico: USDA-ARS Jornada Experimental Range.Google Scholar
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., et al. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55 (3), pp. 719778. www.doi.org/10.1002/2016RG000550CrossRefGoogle Scholar
Huang, L., He, B., Chen, A., Wang, H., Liu, J., , A., & Chen, Z. (2016). Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6 (1), pp. 24639. www.doi.org/10.1038/srep24639CrossRefGoogle ScholarPubMed
Imeson, A. C., & Prinsen, H. A. M. (2004). Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agriculture, Ecosystems & Environment, 104 (2), pp. 333342. www.doi.org/10.1016/j.agee.2004.01.033CrossRefGoogle Scholar
IPCC. (2019). Summary for policymakers. In Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., & Malley, J. (eds.), Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: In Press.Google Scholar
IPCC. (2021). Summary for policymakers. In Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 332). Cambridge, UK and New York: Cambridge University Press.Google Scholar
Iwaniec, D. M., Gooseff, M., Suding, K. N., Samuel Johnson, D., Reed, D. C., Peters, D. P. C., Adams, B., et al. (2021). Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 12 (5), pp. e03432. www.doi.org/10.1002/ecs2.3432CrossRefGoogle Scholar
Johnson, J. C., Williams, C. J., Guertin, D. P., Archer, S. R., Heilman, P., Pierson, F. B., & Wei, H. (2021). Restoration of a shrub-encroached semi-arid grassland: Implications for structural, hydrologic, and sediment connectivity. Ecohydrology, 14 (4), pp. e2281. www.doi.org/10.1002/eco.2281CrossRefGoogle Scholar
Kawamura, R. (1951). Study of Sand Movement by Wind: University of California.Google Scholar
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of The Total Environment, 644, pp. 15571572. www.doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Kéfi, S., Holmgren, M., & Scheffer, M. (2016). When can positive interactions cause alternative stable states in ecosystems? Functional Ecology, 30 (1), pp. 8897. www.doi.org/10.1111/1365-2435.12601CrossRefGoogle Scholar
Kimiti, D. W., Riginos, C., & Belnap, J. (2017). Low-cost grass restoration using erosion barriers in a degraded African rangeland. Restoration Ecology, 25 (3), pp. 376384. www.doi.org/10.1111/rec.12426CrossRefGoogle Scholar
Lavee, H., Imeson, A. C., & Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degradation & Development, 9 (5), pp. 407422. www.doi.org/10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Leenders, J. K., Sterk, G., & Van Boxel, J. H. (2011). Modelling wind-blown sediment transport around single vegetation elements. Earth Surface Processes and Landforms, 36 (9), pp. 12181229. www.doi.org/10.1002/esp.2147CrossRefGoogle Scholar
Li, J., Okin, G. S., Alvarez, L., & Epstein, H. (2008). Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry, 88 (1), pp. 7388. www.doi.org/10.1007/s10533-008-9195-6CrossRefGoogle Scholar
Lisenby, P. E., & Fryirs, K. A. (2017). ‘Out with the Old?’ Why coarse spatial datasets are still useful for catchment-scale investigations of sediment (dis)connectivity. Earth Surface Processes and Landforms, 42 (10), pp. 15881596. www.doi.org/10.1002/esp.4131CrossRefGoogle Scholar
Locosselli, G. M., Brienen, R. J. W., Leite, M. D. S., Gloor, M., Krottenthaler, S., de Oliveira, A. A., Barichivich, J., et al. (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences, 117 (52), pp. 33358–33364. www.doi.org/10.1073/pnas.2003873117CrossRefGoogle ScholarPubMed
Ludwig, J. A., Bastin, G. N., Chewings, V. H., Eager, R. W., & Liedloff, A. C. (2007). Leakiness: A new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecological Indicators, 7 (2), pp. 442454. www.doi.org/10.1016/j.ecolind.2006.05.001CrossRefGoogle Scholar
Ludwig, J. A., & Tongway, D. J. (1996). Rehabilitation of semiarid landscapes in australia. ii. restoring vegetation patches. Restoration Ecology, 4 (4), pp. 398406. www.doi.org/10.1111/j.1526-100X.1996.tb00192.xCrossRefGoogle Scholar
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., & Imeson, A. C. (2005). Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86 (2), pp. 288297. www.doi.org/10.1890/03-0569CrossRefGoogle Scholar
Maestre, F. T., Bowker, M. A., Puche, M. D., Belén Hinojosa, M., Martínez, I., García-Palacios, P., Castillo, A. P., et al. (2009). Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 12 (9), pp. 930941. www.doi.org/10.1111/j.1461-0248.2009.01352.xCrossRefGoogle ScholarPubMed
Magliano, P. N., Whitworth-Hulse, J. I., & Baldi, G. (2019). Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. Journal of Hydrology, 568, pp. 638645. www.doi.org/10.1016/j.jhydrol.2018.10.042CrossRefGoogle Scholar
Marchamalo, M., Hooke, J. M., & Sandercock, P. J. (2016). Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degradation & Development, 27 (4), pp. 10321044. www.doi.org/10.1002/ldr.2352CrossRefGoogle Scholar
Masselink, R. J. H., Keesstra, S. D., Temme, A. J. A. M., Seeger, M., Giménez, R., & Casalí, J. (2016). Modelling discharge and sediment yield at catchment scale using connectivity components. Land Degradation & Development, 27 (4), pp. 933945. www.doi.org/10.1002/ldr.2512CrossRefGoogle Scholar
Mayaud, J. R., Wiggs, G. F. S., & Bailey, R. M. (2017). A field-based parameterization of wind flow recovery in the lee of dryland plants. Earth Surface Processes and Landforms, 42 (2), pp. 378386. www.doi.org/10.1002/esp.4082CrossRefGoogle Scholar
Mayor, A. G., Bautista, S., Rodriguez, F., & Kéfi, S. (2019). Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems, 22 (7), pp. 14971511. www.doi.org/10.1007/s10021-019-00366-wCrossRefGoogle Scholar
Mayor, Á. G., Bautista, S., Small, E. E., Dixon, M., & Bellot, J. (2008). Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for assessing potential water and soil losses in drylands. Water Resources Research, 44 (10). www.doi.org/10.1029/2007WR006367CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S. D., Baartman, J. E. M., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation & Development, 28 (2), pp. 708717. www.doi.org/10.1002/ldr.2629CrossRefGoogle Scholar
Merino-Martín, L., Moreno-de las Heras, M., Espigares, T., & Nicolau, J. M. (2015). Overland flow directs soil moisture and ecosystem processes at patch scale in Mediterranean restored hillslopes. CATENA, 133, 7184. www.doi.org/10.1016/j.catena.2015.05.002CrossRefGoogle Scholar
Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., & Zarmi, Y. (2004). Vegetation patterns along a rainfall gradient. Chaos, Solitons & Fractals, 19 (2), pp. 367376. www.doi.org/10.1016/S0960-0779(03)00049-3CrossRefGoogle Scholar
Misra, R. (1983). Indian savannas. In Bourliere, F. (ed.), Ecosystems of the world (pp. 151166). New York: Elsevier.Google Scholar
Monger, C., Sala, O. E., Duniway, M. C., Goldfus, H., Meir, I. A., Poch, R. M., Throop, H. L., & Vivoni, E. R. (2015). Legacy effects in linked ecological–soil–geomorphic systems of drylands. Frontiers in Ecology and the Environment, 13 (1), pp. 1319. www.doi.org/10.1890/140269CrossRefGoogle Scholar
Moreno-de las Heras, M., Díaz-Sierra, R., Nicolau, J. M., & Zavala, M. A. (2011). Evaluating restoration of man-made slopes: a threshold approach balancing vegetation and rill erosion. Earth Surface Processes and Landforms, 36 (10), pp. 13671377. https://doi.org/10.1002/esp.2160CrossRefGoogle Scholar
Moreno-de las Heras, M., Lindenberger, F., Latron, J., Lana-Renault, N., Llorens, P., Arnáez, J., Romero-Díaz, A., & Gallart, F. (2019). Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology, 333, pp. 7391. www.doi.org/10.1016/j.geomorph.2019.02.014CrossRefGoogle Scholar
Moreno-de las Heras, M., Merino-Martín, L., Saco, P. M., Espigares, T., Gallart, F., & Nicolau, J. M. (2020). Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems. Hydrology and Earth System Sciences, 24 (5), pp. 28552872. www.doi.org/10.5194/hess-24-2855-2020CrossRefGoogle Scholar
Moreno-de las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J. (2011). Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecological Applications, 21 (7), pp. 27932805. www.doi.org/10.1890/10-2113.1CrossRefGoogle ScholarPubMed
Moreno-de las Heras, M., Saco, P. M., Willgoose, G. R., & Tongway, D. J. (2012). Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. Journal of Geophysical Research: Biogeosciences, 117 (G3). www.doi.org/10.1029/2011JG001839CrossRefGoogle Scholar
Moreno-de las Heras, M., Turnbull, L., & Wainwright, J. (2016). Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Ecology, 97 (9), 23032318. https://doi.org/10.1002/ecy.1446CrossRefGoogle ScholarPubMed
Okin, G. S. (2008). A new model of wind erosion in the presence of vegetation. Journal of Geophysical Research: Earth Surface, 113 (F2). www.doi.org/10.1029/2007JF000758CrossRefGoogle Scholar
Okin, G. S., Moreno de las Heras, M., Saco, P. M., Throop, H. L., Vivoni, E. R., Parsons, A. J., Wainwright, J., & Peters, D. P. (2015). Connectivity in dryland landscapes: shifting concepts of spatial interactions. Frontiers in Ecology and the Environment, 13 (1), pp. 2027. www.doi.org/10.1890/140163CrossRefGoogle Scholar
Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B. T., Peters, D. C., & Fredrickson, E. L. (2009). Do changes in connectivity explain desertification? BioScience, 59 (3), pp. 237244. www.doi.org/10.1525/bio.2009.59.3.8CrossRefGoogle Scholar
Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J., & Bhattachan, A. (2018). The interactive role of wind and water in functioning of drylands: What does the future hold? BioScience, 68 (9), pp. 670677. www.doi.org/10.1093/biosci/biy067CrossRefGoogle Scholar
Paz-Kagan, T., Ohana-Levi, N., Shachak, M., Zaady, E., & Karnieli, A. (2017). Ecosystem effects of integrating human-made runoff-harvesting systems into natural dryland watersheds. Journal of Arid Environments, 147, pp. 133143. www.doi.org/10.1016/j.jaridenv.2017.07.015CrossRefGoogle Scholar
Peng, H.-Y., Li, X.-Y., Li, G.-Y., Zhang, Z.-H., Zhang, S.-Y., Li, L., Zhao, G.-Q., et al. (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. CATENA, 109, pp. 3948. www.doi.org/10.1016/j.catena.2013.05.008CrossRefGoogle Scholar
Peters, D. P., Havstad, K. M., Archer, S. R., & Sala, O. E. (2015). Beyond desertification: new paradigms for dryland landscapes. Frontiers in Ecology and the Environment, 13 (1), pp. 412. www.doi.org/10.1890/140276CrossRefGoogle Scholar
Peters, D. P., Sala, O. E., Allen, C. D., Covich, A., & Brunson, M. (2007). Cascading events in linked ecological and socioeconomic systems. Frontiers in Ecology and the Environment, 5 (4), pp. 221224. www.doi.org/10.1890/1540-9295(2007)5[221:CEILEA]2.0.CO;2CrossRefGoogle Scholar
Peters, D. P. C., Okin, G. S., Herrick, J. E., Savoy, H. M., Anderson, J. P., Scroggs, S. L. P., & Zhang, J. (2020). Modifying connectivity to promote state change reversal: the importance of geomorphic context and plant–soil feedbacks. Ecology, 101 (9), pp. e03069. www.doi.org/10.1002/ecy.3069CrossRefGoogle ScholarPubMed
Peters, D. P. C., Yao, J., & Havstad, K. M. (2004). Insights to invasive species dynamics from desertification studies. Weed Technology, 18 (sp1), pp. 12211225.CrossRefGoogle Scholar
Pi, H., Webb, N. P., Huggins, D. R., & Sharratt, B. (2020). Critical standing crop residue amounts for wind erosion control in the inland Pacific Northwest, USA. CATENA, 195, pp. 104742. www.doi.org/10.1016/j.catena.2020.104742CrossRefGoogle Scholar
Poeppl, R. E., Keesstra, S. D., & Maroulis, J. (2017). A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, 277, pp. 237250. www.doi.org/10.1016/j.geomorph.2016.07.033CrossRefGoogle Scholar
Power, S., Delage, F., Chung, C., Kociuba, G., & Keay, K. (2013). Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502 (7472), pp. 541545. www.doi.org/10.1038/nature12580CrossRefGoogle ScholarPubMed
Puigdefabregas, J., Sole, A., Gutierrez, L., Del Barrio, G., & Boer, M. (1999). Scales and processes of water and sediment redistribution in drylands: Results from the Rambla Honda field site in Southeast Spain. Earth Science Reviews, 48 (1–2), pp. 3970. www.doi.org/10.1016/S0012-8252(99)00046-XCrossRefGoogle Scholar
Rango, A., Chopping, M., Ritchie, J., Havstad, K., Kustas, W., & Schmugge, T. (2000). Morphological Characteristics of shrub coppice dunes in desert grasslands of Southern New Mexico derived from scanning LIDAR. Remote Sensing of Environment, 74 (1), pp. 2644. www.doi.org/10.1016/S0034-4257(00)00084-5CrossRefGoogle Scholar
Ratajczak, Z., D’Odorico, P., Collins, S. L., Bestelmeyer, B. T., Isbell, F. I., & Nippert, J. B. (2017). The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecological Monographs, 87 (2), pp. 198218. www.doi.org/10.1002/ecm.1249CrossRefGoogle Scholar
Raupach, M. R., Gillette, D. A., & Leys, J. F. (1993). The effect of roughness elements on wind erosion threshold. Journal of Geophysical Research: Atmospheres, 98 (D2), pp. 30233029. www.doi.org/10.1029/92JD01922CrossRefGoogle Scholar
Ravi, S., D’Odorico, P., & Okin, G. S. (2007). Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophysical Research Letters, 34 (24). www.doi.org/10.1029/2007GL031023CrossRefGoogle Scholar
Reynolds, J. F., & Stafford Smith, D. M. (2002). Global desertification: Do humans cause deserts? Dahlem Workshop Report 88. Berlin, Germany: Dahlem University Press.Google Scholar
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., et al. (2007). Global desertification: Building a science for dryland development. Science, 316 (5826), pp. 847851. www.doi.org/10.1126/science.1131634CrossRefGoogle ScholarPubMed
Rietkerk, M., Dekker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305 (5692), pp. 19261929. www.doi.org/10.1126/science.1101867CrossRefGoogle ScholarPubMed
Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43 (10), pp. 21932206. www.doi.org/10.1002/esp.4385CrossRefGoogle Scholar
Rodríguez, F., Mayor, Á. G., Rietkerk, M., & Bautista, S. (2018). A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecological Indicators, 94, pp. 512519. www.doi.org/10.1016/j.ecolind.2017.10.023CrossRefGoogle Scholar
Rossi, M. J., Ares, J. O., Jobbágy, E. G., Vivoni, E. R., Vervoort, R. W., Schreiner-McGraw, A. P., & Saco, P. M. (2018). Vegetation and terrain drivers of infiltration depth along a semiarid hillslope. Science of the Total Environment, 644, pp. 13991408CrossRefGoogle ScholarPubMed
Saco, P. M., & Moreno-de las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49 (1), pp. 115126. www.doi.org/10.1029/2012WR012001CrossRefGoogle Scholar
Saco, P. M., Moreno-de las Heras, M., Keesstra, S., Baartman, J., Yetemen, O., & Rodríguez, J. F. (2018). Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Current Opinion in Environmental Science & Health, 5, pp. 6772. www.doi.org/10.1016/j.coesh.2018.06.001CrossRefGoogle Scholar
Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartman, J., Rodrigo-Comino, J., et al. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. CATENA, 186, pp. 104354. www.doi.org/10.1016/j.catena.2019.104354CrossRefGoogle Scholar
Saco, P. M., Willgoose, G. R., & Hancock, G. R. (2007). Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrology and Earth System Sciences, 11 (6), pp. 17171730. www.doi.org/10.5194/hess-11-1717-2007CrossRefGoogle Scholar
Saintilan, N., Bowen, S., Maguire, O., Karimi, S. S., Wen, L., Powell, M., Colloff, M. J., et al. (2021). Resilience of trees and the vulnerability of grasslands to climate change in temperate Australian wetlands. Landscape Ecology, 36 (3), pp. 803814. www.doi.org/10.1007/s10980-020-01176-5CrossRefGoogle Scholar
Scanlon, T. M., Caylor, K. K., Levin, S. A., & Rodriguez-Iturbe, I. (2007). Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature, 449 (7159), pp. 209212. www.doi.org/10.1038/nature06060CrossRefGoogle ScholarPubMed
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413 (6856), pp. 591596. www.doi.org/10.1038/35098000CrossRefGoogle ScholarPubMed
Schneider, F. D., & Kéfi, S. (2016). Spatially heterogeneous pressure raises risk of catastrophic shifts. Theoretical Ecology, 9 (2), pp. 207217. www.doi.org/10.1007/s12080-015-0289-1CrossRefGoogle Scholar
Seager, R., Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir, Y., & Ting, M. (2014). Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. Journal of Climate, 27 (12), pp. 46554676. www.doi.org/10.1175/JCLI-D-13-00446.1CrossRefGoogle Scholar
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., et al. (2015). Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12 (3), pp. 653679. www.doi.org/10.5194/bg-12-653-2015CrossRefGoogle Scholar
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560 (7720), pp. 639643.CrossRefGoogle ScholarPubMed
Stavi, I., Siad, S. M., Kyriazopoulos, A. P., & Halbac-Cotoara-Zamfir, R. (2020). Water runoff harvesting systems for restoration of degraded rangelands: A review of challenges and opportunities. Journal of Environmental Management, 255, pp. 109823. www.doi.org/10.1016/j.jenvman.2019.109823CrossRefGoogle ScholarPubMed
Stewart, J., Parsons, A. J., Wainwright, J., Okin, G. S., Bestelmeyer, B. T., Fredrickson, E. L., & Schlesinger, W. H. (2014). Modeling emergent patterns of dynamic desert ecosystems. Ecological Monographs, 84 (3), pp. 373410. www.doi.org/10.1890/12-1253.1CrossRefGoogle Scholar
Suding, K. N., & Hobbs, R. J. (2009). Threshold models in restoration and conservation: a developing framework. Trends in Ecology & Evolution, 24 (5), pp. 271279. www.doi.org/10.1016/j.tree.2008.11.012CrossRefGoogle ScholarPubMed
Tongway, D. J., & Hindley, N. (2004). Landscape function analysis: procedures for monitoring and assessing landscapes. Canberra, Australia: CSIRO Sustainable Ecosystems.Google Scholar
Tongway, D. J., & Ludwig, J. A. (2001). Theories on the origins, maintenance, dynamics, and functioning of banded landscapes. In Tongway, D. J., Valentin, C., & Seghieri, J. (eds.), Banded Vegetation Patterning in Arid and Semiarid Environments: Ecological Processes and Consequences for Management (pp. 2031). New York: Springer.CrossRefGoogle Scholar
Tongway, D. J., & Ludwig, J. A. (2011). Restoring disturbed landscapes: putting principles into practice. Island Press.CrossRefGoogle Scholar
Turnbull, L., & Wainwright, J. (2019). From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity. Ecological Indicators, 98, pp. 608618. www.doi.org/10.1016/j.ecolind.2018.11.039CrossRefGoogle Scholar
Turnbull, L., Wainwright, J., & Brazier, R. E. (2008). A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology, 1 (1), pp. 2334. www.doi.org/10.1002/eco.4CrossRefGoogle Scholar
Turnbull, L., Wilcox, B. P., Belnap, J., Ravi, S., D’Odorico, P., Childers, D., Gwenzi, W., et al. (2012). Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology, 5 (2), pp. 174183. www.doi.org/10.1002/eco.265CrossRefGoogle Scholar
Urgeghe, A. M., & Bautista, S. (2015). Size and connectivity of upslope runoff-source areas modulate the performance of woody plants in Mediterranean drylands. Ecohydrology, 8 (7), pp. 12921303. www.doi.org/10.1002/eco.1582CrossRefGoogle Scholar
Urgeghe, A.M., Mayor, A.G., Turrión, D., Rodríguez, F., & Bautista, S.(2021).Disentangling the independent effects of vegetation cover and pattern on runoff and sediment yield in dryland systems – Uncovering processes through mimicked plant patches. Journal of Arid Environment, 193, pp. 104585.CrossRefGoogle Scholar
Valentin, C., d’Herbès, J. M., & Poesen, J. (1999). Soil and water components of banded vegetation patterns. CATENA, 37 (1), pp. 124. www.doi.org/10.1016/S0341-8162(99)00053-3CrossRefGoogle Scholar
van Auken, O. W. (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90 (10), pp. 29312942. www.doi.org/10.1016/j.jenvman.2009.04.023CrossRefGoogle ScholarPubMed
van den Elsen, E., Stringer, L. C., De Ita, C., Hessel, R., Kéfi, S., Schneider, F. D., Bautista, S., et al. (2020). Advances in understanding and managing catastrophic ecosystem shifts in Mediterranean ecosystems. Frontiers in Ecology and Evolution, 8. Original Research. www.doi.org/10.3389/fevo.2020.561101CrossRefGoogle Scholar
Vicente, E., Moreno-de las Heras, M., Merino-Martín, L., Nicolau, J. M., & Espigares, T. (2022). Assessing the effects of nurse shrubs, sink patches and plant water-use strategies for the establishment of late-successional tree seedlings in Mediterranean reclaimed mining hillslopes. Ecological Engineering, 176, pp. 106538. www.doi.org/10.1016/j.ecoleng.2021.106538CrossRefGoogle Scholar
Wainwright, J. (2009). Desert ecogeomorphology. In Parsons, A. J. & Abrahams, A. D. (eds.), Geomorphology of Desert Environments (pp. 2166). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., & Abrahams, A. D. (1999). Rainfall energy under creosotebush. Journal of Arid Environments, 43 (2), pp. 111120. www.doi.org/10.1006/jare.1999.0540CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011). Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126 (3), pp. 387404. www.doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Webb, N. P., McCord, S. E., Edwards, B. L., Herrick, J. E., Kachergis, E., Okin, G. S., & Van Zee, J. W. (2021). Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangeland Ecology & Management, 76, pp. 7883. www.doi.org/10.1016/j.rama.2021.02.003CrossRefGoogle Scholar
Wilcox, B. P., Breshears, D. D., & Allen, C. D. (2003). Ecohydrology of a resource-coserving semiarid woodland: Effects of scale and disturbance. Ecological Monographs, 73 (2), pp. 223239. www.doi.org/10.1890/0012-9615(2003)073[0223:EOARSW]2.0.CO;2CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., et al. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44 (1), pp. 426. www.doi.org/10.1002/esp.4434CrossRefGoogle Scholar
Xu, C., van Nes, E. H., Holmgren, M., Kéfi, S., & Scheffer, M. (2015). Local facilitation may cause tipping points on a landscape level preceded by early-warning indicators. The American Naturalist, 186 (4), pp. E81–E90. www.doi.org/10.1086/682674CrossRefGoogle ScholarPubMed
Yahdjian, L., Sala, O. E., & Havstad, K. M. (2015). Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Frontiers in Ecology and the Environment, 13 (1), pp. 4451. www.doi.org/10.1890/140156CrossRefGoogle Scholar
Ye, J.-S., Reynolds, J. F., Maestre, F. T., & Li, F.-M. (2016). Hydrological and ecological responses of ecosystems to extreme precipitation regimes: A test of empirical-based hypotheses with an ecosystem model. Perspectives in Plant Ecology, Evolution and Systematics, 22, pp. 3646. www.doi.org/10.1016/j.ppees.2016.08.001CrossRefGoogle Scholar
Zobell, R. A., Cameron, A., Goodrich, S., Huber, A., & Grandy, D. (2020). Ground cover – What are the critical criteria and why does it matter? Rangeland Ecology & Management, 73 (4), pp. 569576. www.doi.org/10.1016/j.rama.2020.02.002CrossRefGoogle Scholar
Zurlini, G., Jones, K. B., Riitters, K. H., Li, B.-L., & Petrosillo, I. (2014). Early warning signals of regime shifts from cross-scale connectivity of land-cover patterns. Ecological Indicators, 45, pp. 549560. www.doi.org/10.1016/j.ecolind.2014.05.018CrossRefGoogle Scholar

References

Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4): 761776.CrossRefGoogle Scholar
Asselman, N. E., & Middelkoop, H. (1995). Floodplain sedimentation: Quantities, patterns and processes. Earth Surface Processes and Landforms, 20(6), 481499.CrossRefGoogle Scholar
Bachand, P. A., & Horne, A. J. (1999). Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecological Engineering, 14(1–2), 1732.CrossRefGoogle Scholar
Barbier, E. B. (2015). Valuing the storm protection service of estuarine and coastal ecosystems. Ecosystem Services, 11, 3238.CrossRefGoogle Scholar
Barbier, E. B., Georgiou, I., Enchelmeyer, B., & Reed, D. J. (2013). The value of wetlands in protecting southeast Louisiana from hurricane storm surges. Plos One, 8(3): e58715.CrossRefGoogle ScholarPubMed
Bargu, S., Justic, D., White, J. R., Lane, R., Day, J., Paerl, H., & Raynie, R. (2019). Mississippi River diversions and phytoplankton dynamics in deltaic Gulf of Mexico estuaries: a review. Estuarine, Coastal and Shelf Science, 221, 3952.CrossRefGoogle Scholar
Baumann, R. H., Day, J. W., Jr., & Miller, C. A. (1984). Mississippi deltaic wetland survival: sedimentation versus coastal submergence. Science, 224, 10931095.CrossRefGoogle ScholarPubMed
Baustian, J. J., Mendelssohn, I. A., & Hester, M. W. (2012). Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology, 18, 33773382. doi:10.1111/j.1365-2486.2012.02792.xCrossRefGoogle Scholar
Bernard, R. J., Mortazavi, B., & Kleinhuizen, A. A. (2015). Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3 reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry, 125(1), 4764.CrossRefGoogle Scholar
Bevington, A. E., & Twilley, R. R. (2018). Island Edge Morphodynamics along a Chronosequence in a Prograding Deltaic Floodplain Wetland. Journal of Coastal Research, 34 (4), 806817.CrossRefGoogle Scholar
Bevington, A. E., Twilley, R. R., Sasser, C. E., & Holm, G. O. (2017). Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA. Estuarine, Coastal and Shelf Science, 191, 188200. doi:10.1016/j.ecss.2017.04.010CrossRefGoogle Scholar
Bianchi, T. S., & Allison, M. A. (2009). Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences, 106(20), 80858092.CrossRefGoogle ScholarPubMed
Blair, N. E., & Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4, 401423. doi:10.1146/annurev-marine-120709-142717CrossRefGoogle ScholarPubMed
Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2(7), 488491. doi:10.1038/ngeo553CrossRefGoogle Scholar
Blum, M. D., & Roberts, H. H. (2012). The Mississippi delta region: past, present, and future. Annual Review of Earth and Planetary Sciences, 40, 655683.CrossRefGoogle Scholar
Boesch, D. F., Josselyn, M. N., Mehta, A. J., Morris, J. T., Nuttle, W. K., Simenstad, C. A., & Swift, D. J. P. (1994). Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research, Special issue No 20, 1–103.Google Scholar
Broussard, W., & Turner, R. E. (2009). A century of changing land‐use and water‐quality relationships in the continental US. Frontiers in Ecology and the Environment, 7(6), 302307.CrossRefGoogle Scholar
Bryan, K. R., Nardin, W., Mullarney, J. C., & Fagherazzi, S. (2016). The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam. Continental Shelf Research 147, 128143, ISSN 0278-4343, https://doi.org/10.1016/j.csr.2017.06.014CrossRefGoogle Scholar
Caffey, R. H., Wang, H., & Petrolia, D. R. (2014). Trajectory economics: Assessing the flow of ecosystem services from coastal restoration. Ecological Economics, 100, 7484.CrossRefGoogle Scholar
Cahoon, D. R. (2006). A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29(6A), 889898.CrossRefGoogle Scholar
Cahoon, D. R., White, D. A., & Lynch, J. C. (2011). Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131, 5768. doi:10.1016/j.geomorph.2010.12.002CrossRefGoogle Scholar
Carney, J. A., Twilley, R. R., Agre, C., Hird, J., Georgiou, I., & Shelden, J.. (2018). The giving delta. In Mossop, E. (Ed.), Sustainable Coastal Design and Planning, pp. 239254. CRC Press, Boca Roton, FL.CrossRefGoogle Scholar
Christensen, A., Twilley, R. R., Willson, C. S., & Castañeda-Moya, E. (2020). Simulating hydrological connectivity and water age within a coastal deltaic floodplain of the Mississippi river delta. Estuarine, Coastal and Shelf Science, 245, 106995.CrossRefGoogle Scholar
Coastal Protection and Restoration Authority. (2017). Louisiana’s Comprehensive Master Plan for a Sustainable Coast (Technical Report). Coastal Protection and Restoration Authority of Louisiana. Baton Rouge, LA.Google Scholar
Cornwell, J. C., Kemp, W. M., & Kana, T. M. (1999). Denitrification in coastal ecosysems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology, 33, 4154.CrossRefGoogle Scholar
Covino, T. (2017). Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology, 277, 133144.CrossRefGoogle Scholar
Das, A., Justic, D., Inoue, M., Hoda, A., Huang, H., & Park, D. (2012). Impacts of Mississippi River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management implications. Estuarine, Coastal and Shelf Science, 111, 1726. doi:10.1016/j.ecss.2012.06.005CrossRefGoogle Scholar
Day Jr., J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. D., Mitsch, W. J., & Whigham, D. F. (2007). Restoration of the Mississippi delta: Lessons from Hurricanes Katrina and Rita. Science, 315, 16791684. doi:10.1126/science.1137030Google ScholarPubMed
Day Jr., J. W., Ko, J.-Y. Y., Rybczyk, J., Sabins, D., Bean, R., Berthelot, G., Twilley, R. (2004). The use of wetlands in the Mississippi delta for wastewater assimilation: A review. Ocean & Coastal Management, 47, 671691. doi:10.1016/J.Ocecoaman.2004.12.007Google Scholar
Day, J. W., Cable, J. E., Cowan, J. H., DeLaune, R., de Mutsert, K., Fry, B., Wissel, B. (2009). The impacts of pulsed reintroduction of river water on a Mississippi delta coastal basin. Journal of Coastal Research, 10054, 225243. doi:10.2112/SI54-015.1CrossRefGoogle Scholar
Day, J. W., Kemp, G. P., Reed, D. J., Cahoon, D. R., Boumans, R. M., Suhayda, J. M., & Gambrell, R. (2011). Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering, 37, 229240. doi:10.1016/j.ecoleng.2010.11.021CrossRefGoogle Scholar
Day, J. W., Lane, R. R., D’Elia, C. F., Wiegman, A. R. H., Rutherford, J. S., Shaffer, G. P., Brantley, C. G., & Kemp, G. P. (2018). Large infrequently operated river diversions for Mississippi delta restoration. Mississippi Delta Restoration: Pathways to a Sustainable Future, 2018: 113133.CrossRefGoogle Scholar
de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J., & Steenbeek, J. (2017). Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecological Modelling, 360, 1426.CrossRefGoogle Scholar
DeLaune, R., Sasser, C., Evers-Hebert, E., White, J., & Roberts, H. (2016). Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes. Estuarine, Coastal and Shelf Science, 177, 8389.CrossRefGoogle Scholar
DeLaune, R. D., Smith, C. J., Patrick, W. H., & Roberts, H. H. (1987). Rejuvenated marsh and bay-bottom accretion on the rapidly subsiding coastal plain of U.S. Gulf Coast: A second-order effect of the emerging Atchafalaya Delta. Estuarine, Costal and Shelf Science, 25, 381389.CrossRefGoogle Scholar
Deleersnijder, E., Campin, J.-M., & Delhez, E. J. (2001). The concept of age in marine modelling: I. Theory and preliminary model results. Journal of Marine Systems, 28(3–4), 229267.CrossRefGoogle Scholar
Delhez, E. J., Campin, J.-M., Hirst, A. C., & Deleersnijder, E. (1999). Toward a general theory of the age in ocean modelling. Ocean Modelling, 1(1), 1727.CrossRefGoogle Scholar
Dettmann, E. H. (2001). Effect of water residence time on annual export and denitrification of Nitrogen in Estuaries: A model analysis. Estuaries, 24, 481. doi:10.2307/1353250CrossRefGoogle Scholar
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929.CrossRefGoogle ScholarPubMed
Edmonds, D. A., Paola, C., Hoyal, D. C., & Sheets, B. A. (2011). Quantitative metrics that describe river deltas and their channel networks. Journal of Geophysical Research: Earth Surface, 116(F4).CrossRefGoogle Scholar
Edmonds, D. A., & Slingerland, R. L. (2010). Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 3, 105109. doi:10.1038/ngeo730CrossRefGoogle Scholar
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Mo Siani, S. (2020). Coastal flooding will disproportionately impact people on river deltas. Nature Geoscience, 11, 18, https://doi.org/10.1038/s41467-020-18531-4Google ScholarPubMed
Elsey-Quirk, T., Graham, S. A., Mendelssohn, I. A., Snedden, G., Day, J. W., Twilley, R., Lane, R. (2019). Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs. Estuarine, Coastal and Shelf Science, 221, 170183.CrossRefGoogle Scholar
Ensign, S., Siporin, K., Piehler, M., Doyle, M., & Leonard, L. (2013). Hydrologic versus biogeochemical controls of denitrification in tidal freshwater wetlands. Estuaries and Coasts, 36, 519532.CrossRefGoogle Scholar
Everett, T., Chen, Q., Karimpour, A., & Twilley, R. (2019). Quantification of swell energy and its impact on wetlands in a deltaic estuary. Estuaries and Coasts, 42, 6884. https://doi.org/10.1007/s12237-018-0454-zCrossRefGoogle Scholar
Eyre, B. D., & Ferguson, A. J. P. (2009). Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. In Eutrophication in Coastal Ecosystems: Towards better understanding and management strategies Selected Papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark, pp. 137146. Springer, Netherlands.CrossRefGoogle Scholar
Fagherazzi, S., Edmonds, D. A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., & Slingerland, R. L. (2015). Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), 642672.CrossRefGoogle Scholar
Gagliano, S. M., & Van Beek, J. L. (1975). An approach to multiuse management in the Mississippi Delta system. Houston Geological Society, Deltas: Models for Exploration.Google Scholar
Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., & Brock, D. (2006). Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnology and Oceanography, 51(1), 558568.CrossRefGoogle Scholar
Geleynse, N., Hiatt, M., Sangireddy, H., & Passalacqua, P. (2015). Identifying environmental controls on the shoreline of a natural river delta. Journal of Geophysical Research F: Earth Surface 120, 877893.CrossRefGoogle Scholar
Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., & Hooper, R. P. (2000). Nitrogen flux and sources in the Mississippi River Basin. Science of The Total Environment 248(2–3), 7586. doi:10.1016/S0048-9697(99)00532-XCrossRefGoogle ScholarPubMed
Gosselink, J. G., Coleman, J. M., & StewartJr, R. E. (1998). Coastal Louisiana. Status and Trends of the Nation’s Biological Resources, 2, 385436.Google Scholar
Grimsditch, G., Alder, J., Nakamura, T., Kenchington, R., & Tamelander, J. (2013). The blue carbon special edition – Introduction and overview. Ocean & Coastal Management, 83, 14. doi:10.1016/j.ocecoaman.2012.04.020CrossRefGoogle Scholar
Hanegan, K. & Georgiou, I. (2015). Tidal modulated flow and sediment flux through Wax Lake Delta distributary channels: Implications for delta development. Proceedings of IAHS, 367, 391398, https://doi.org/10.5194/piahs-367-391-2015CrossRefGoogle Scholar
Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81115. doi:10.1016/0304-4203(95)00008-FCrossRefGoogle Scholar
Heiler, G., Hein, T., Schiemer, F., & Bornette, G. (1995). Hydrological connectivity and flood pulses as the central aspects for the integrity of a river‐floodplain system. Regulated Rivers: Research & Management, 11, 351361. doi:10.1002/rrr.3450110309CrossRefGoogle Scholar
Henry, K. M., & Twilley, R. R. (2014). Nutrient biogeochemistry during the early stages of delta development in the Mississippi river deltaic plain. Ecosystems, 17, 327343.CrossRefGoogle Scholar
Hiatt, M., & Passalacqua, P. (2015). Hydrological connectivity in river deltas: The first‐order importance of channel‐island exchange. Water Resources Research, 51(4), 22642282.CrossRefGoogle Scholar
Hiatt, M., & Passalacqua, P. (2017), What controls the transition from confined to unconfined flow? Analysis of hydraulics in a coastal river delta. Journal of Hydraulic Engineering, 143, 6, doi:10.1061/(ASCE)HY.1943-7900.0001309CrossRefGoogle Scholar
Hiatt, M., Castañeda‐Moya, E., Twilley, R., Hodges, B. R., & Passalacqua, P. (2018). Channel‐island connectivity affects water exposure time distributions in a coastal river delta. Water Resources Research, 54(3), 22122232.CrossRefGoogle Scholar
Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J. T., Megonigal, J. P., Drexler, J. (2018). Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 116.Google ScholarPubMed
Horstman, Erik M., Dohmen-Janssen, C. Marjolein, & Hulscher, Suzanne J. M. H. (2013). Flow routing in mangrove forests: A field study in Trang province, Thailand. Continental Shelf Research, 71, 5267, ISSN 0278-4343, https://doi.org/10.1016/j.csr.2013.10.002CrossRefGoogle Scholar
Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient to coastal waters in the United States (implications for achieving coastal water quality goals). Estuaries, 25, 656676. doi:10.1007/BF02804898CrossRefGoogle Scholar
Hu, Kelin, Chen, Qin, & Wang, Hongqing. (2015). A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary. Coastal Engineering, 95, 6676, ISSN 0378-3839, https://doi.org/10.1016/j.coastaleng.2014.09.008CrossRefGoogle Scholar
Islam, S. (2016). Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustainable Water Resources Management, 2(3): 237256.CrossRefGoogle Scholar
Junk, W. J., Bayley, P., & Sparks, R. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110127. doi:10.1371/journal.pone.0028909Google Scholar
Kadlec, R., & Wallace, S. (2008). Treatment Wetlands, Second Edition. doi:10.1201/9781420012514CrossRefGoogle Scholar
Kadlec, R. H. (2010). Nitrate dynamics in event-driven wetlands. Ecological Engineering, 36(4), 503516. doi:10.1016/j.ecoleng.2009.11.020CrossRefGoogle Scholar
Kadlec, R. H. and Knight, , R.L. (1996). Treatment Wetlands. CRC Press LLC, Boca Raton, FL. ISBN 0-87371-930-1. 893 pages.Google Scholar
Kadlec, R. H., & Reddy, K. (2001). Temperature effects in treatment wetlands. Water environment research, 73(5), 543557.CrossRefGoogle ScholarPubMed
Kaushal, S. S., Groffman, P. M., Mayer, P. M., Striz, E., & Gold, A. J. (2008). Effects of stream restoration on denitrification in an urbanizing watershed. Ecological Applications, 18(3), 789804.CrossRefGoogle Scholar
Kelly-Gerreyn, B., Hydes, D., Trimmer, M., & Nedwell, D. (1999). Calibration of an early diagenesis model for high nitrate, low reactive sediments in a temperate latitude estuary (Great Ouse, UK). Marine Ecology Progress Series, 177, 3750.CrossRefGoogle Scholar
Kelly-Gerreyn, B. A., Trimmer, M., & Hydes, D. J. (2001). A diagenetic model discriminating denitrification and dissimilatory nitrate reduction to ammonium in a temperate estuarine sediment. Marine Ecology Progress Series, 220, 3346. doi:10.3354/meps220033CrossRefGoogle Scholar
Klocker, C. A., Kaushal, S. S., Groffman, P. M., Mayer, P. M., & Morgan, R. P. (2009). Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquatic sciences, 71(4), 411424.CrossRefGoogle Scholar
Lane, R. R., Madden, C. J., Day, J. W., Jr., & Solet, D. J. (2011). Hydrologic and nutrient dynamics of a coastal bay and wetland receiving discharge from the Atchafalaya River. Hydrobiologia, 658(1), 5566. doi:10.1007/s10750-010-0468-4CrossRefGoogle Scholar
Li, S., Christensen, A., & Twilley, R. R. (2020). Benthic fluxes of dissolved oxygen and nutrients across hydrogeomorphic zones in a coastal deltaic floodplain within the Mississippi River delta plain. Biogeochemistry, 149, 115140.CrossRefGoogle Scholar
Li, S., & Twilley, R. R. (2021). Nitrogen dynamics of inundated sediments in an emerging coastal deltaic floodplain in mississippi river delta using isotope pairing technique to test response to nitrate enrichment and sediment organic matter. Estuaries and Coasts, 44:18991915.CrossRefGoogle Scholar
Li, S., Twilley, R. R., & Hou, A. (2021). Heterotrophic nitrogen fixation in response to nitrate loading and sediment organic matter in an emerging coastal deltaic floodplain within the Mississippi River Delta plain. Limnology and Oceanography, 66(5), 19611978.CrossRefGoogle Scholar
Liu, K., Chen, Q., Hu, K., Xu, K., & Twilley, R. R. (2018). Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes. Coastal Engineering 135: 7790.CrossRefGoogle Scholar
Ma, H., Larsen, L. G., & Wagner, R. W. (2018). Ecogeomorphic feedbacks that grow deltas. Journal of Geophysical Research: Earth Surface, 123(12), 32283250.CrossRefGoogle Scholar
Madden, C. J., Day, J. W., Jr., & Randall, J. M. (1988). Freshwater and marine coupling in estuaries of the Mississippi River deltaic plain. Limnology and Oceanography, 33(4), 9821004.Google Scholar
Martin, J. F., & Reddy, K. R. (1997). Interaction and spatial distribution of wetland nitrogen processes. Ecological Modelling, 105, 121. doi:10.1016/S0304-3800(97)00122-1CrossRefGoogle Scholar
McKee, K. L., & Cherry, J. A. (2009). Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River Delta. Wetlands, 29(1), 215.CrossRefGoogle Scholar
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., & Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552560. doi:10.1890/110004CrossRefGoogle Scholar
MelanconJr, E., Soniat, T., Cheramie, V., Dugas, R., Barras, J., & Lagarde, M. (1998). Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana. Journal of Shellfish Research, 17(4), 11431148.Google Scholar
Mendelssohn, I. A., & Kuhn, N. L. (2003). Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering, 21(2–3), 115128. doi:10.1016/j.ecoleng.2003.09.006CrossRefGoogle Scholar
Mitsch, W. J., Day, J. W., Zhang, L., & Lane, R. R. (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering, 24, 267278.CrossRefGoogle Scholar
Morris, J. T. (2006). Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine, Coastal and Shelf Science, 69(3–4), 395402. http://dx.doi.org/10.1016/j.ecss.2006.05.025CrossRefGoogle Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., & Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 28692877. doi:10.2307/3072022CrossRefGoogle Scholar
Morton, R. A., & Barras, J. A. (2011). Hurricane Impacts on Coastal Wetlands: A Half-Century Record of Storm-Generated Features from Southern Louisiana. Journal of Coastal Research, 275, 2743. doi:10.2112/JCOASTRES-D-10-00185.1CrossRefGoogle Scholar
Nardin, W., & Edmonds, D. A. (2014). Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nature Geoscience, 7(10), 722.CrossRefGoogle Scholar
Nardin, W., Edmonds, D. A., & Fagherazzi, S. (2016). Influence of vegetation on spatial patterns of sediment deposition in deltaic islands during flood. Advances in Water Resources, 93, 236248.CrossRefGoogle Scholar
Nardin, W., Lera, S., & Nienhuis, J. (2020) Effect of offshore waves and vegetation on the sediment budget in the Virginia Coast Reserve (VA). Earth Surface Processes and Landforms, 45, 30553068. https://doi.org/10.1002/esp.4951CrossRefGoogle Scholar
Noe, G. B., & Hupp, C. R. (2005). Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA. Ecological Applications, 15(4), 11781190. doi:10.1890/04-1677CrossRefGoogle Scholar
Noe, G. B., Hupp, C. R., & Rybicki, N. B. (2013). Hydrogeomorphology Influences Soil Nitrogen and Phosphorus Mineralization in Floodplain Wetlands. Ecosystems, 16(1), 7594. doi:10.1007/s10021-012-9597-0CrossRefGoogle Scholar
Nyman, J. A., Crozier, C. R., & DeLaune, R. D. (1995). Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine, Coastal and Shelf Science, 40, 665679.CrossRefGoogle Scholar
Paerl, H. W. (2006). Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecological Engineering, 26, 4045.CrossRefGoogle Scholar
Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., & Voller, V. R. (2011). Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual Review of Marine Science, 3, 6791. doi:10.1146/annurev-marine-120709-142856CrossRefGoogle ScholarPubMed
Passalacqua, P. (2017). The Delta Connectome: A network-based framework for studying connectivity in river deltas. Geomorphology, 277, 5062. doi:10.1016/j.geomorph.2016.04.001CrossRefGoogle Scholar
Penland, S., Boyd, R., & Suter, J. R. (1988). Transgressive depositional systems of the Mississippi Delta plain; a model for barrier shoreline and shelf sand development. Journal of Sedimentary Research, 58(6), 932949.Google Scholar
Perez, B. C., Day, J. W., Jr., Rouse, L. J., Shaw, R. F., & Wang, M. (2000). Influence of Atchafalaya River discharge and winter frontal passage on suspended sediment concentration and flux in Fourleague Bay, Louisiana. Estuarine, Coastal and Shelf Science, 50, 271290.CrossRefGoogle Scholar
Perez, B. C., Day, J. W., Justic, D., & Twilley, R. R. (2003). Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: the role of winter cold fronts and Atchafalaya River discharge. Estuarine Coastal and Shelf Science, 57(5–6), 10651078. doi:10.1016/S0272-7714(03)00010-6CrossRefGoogle Scholar
Peyronnin, N. S., Caffey, R. H., Cowan, J. H., Justic, D., Kolker, A. S., Laska, S. B., Wilkins, J. G. (2017). Optimizing sediment diversion operations: Working group recommendations for integrating complex ecological and social landscape interactions. Water (Switzerland), 9. doi:10.3390/w9060368Google Scholar
Rabalais, N. N., Turner, R. E., Justić, D., Dortch, Q., Wiseman, W. J., & Gupta, B. K. S. (1996). Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries, 19(2), 386407.CrossRefGoogle Scholar
Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River: Nutrient policy development for the Mississippi River watershed reflects the accumulated scientific evidence that the increase in nitrogen loading is the primary factor in the worsening of hypoxia in the northern Gulf of Mexico. AIBS Bulletin, 52(2), 129142.Google Scholar
Rejmánek, M., Sasser, C. E., & Gosselink, J. G. (1987). Modeling of vegetation dynamics in the Mississippi River deltaic plain. Vegetatio, 69(1–3), 133140.CrossRefGoogle Scholar
Rejmánek, M., Sasser, C. E., & Peterson, G. W. (1988). Hurricane-induced sediment deposition in a Gulf coast marsh. Estuarine, Coastal and Shelf Science, 27(2), 217222.CrossRefGoogle Scholar
Restreppo, G. A., Bentley, S. J., Wang, J., & Xu, K. (2018). Riverine Sediment Contribution to Distal Deltaic Wetlands: Fourleague Bay, LA. Estuaries and Coasts, 113.Google Scholar
Riekenberg, J., Bargu, S., & Twilley, R. (2014). Phytoplankton Community Shifts and Harmful Algae Presence in a Diversion Influenced Estuary. Estuaries and Coasts, 38, 22132226. doi:10.1007/s12237-014-9925-zCrossRefGoogle Scholar
Roberts, B. J., & Doty, S. M. (2015). Spatial and temporal patterns of benthic respiration and net nutrient fluxes in the Atchafalaya River Delta Estuary. Estuaries and Coasts, 38(6), 19181936.CrossRefGoogle Scholar
Roberts, H. H. (1997). Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. Journal of Coastal Research, 605627.Google Scholar
Rose, K. A., Huang, H., Justic, D., & de Mutsert, K. (2014). Simulating fish movement responses to and potential salinity stress from large-scale river diversions. Marine and Coastal Fisheries, 6, 4361. doi:10.1080/19425120.2013.866999CrossRefGoogle Scholar
Ross, M. R. V., Emily, S., Bernhardt, E. S., Doyle, M. W., & Heffernan, J. B. (2015). Designer ecosystems: Incorporating design approaches into applied ecology. Annual Review of Environment and Resources 40, 419443. doi:10.1146/annurev-environ-121012-100957CrossRefGoogle Scholar
Rutherford, J. S., Day, J. W., D’Elia, C. F., Wiegman, A. R., Willson, C. S., Caffey, R. H., Batker, D. (2018). Evaluating trade-offs of a large, infrequent sediment diversion for restoration of a forested wetland in the Mississippi delta. Estuarine, Coastal and Shelf Science, 203, 8089.CrossRefGoogle Scholar
Sasser, C. E., Visser, J. M., Mouton, E., Linscombe, J., & Hartley, S. B. (2008). Vegetation types in coastal Louisiana in 2007. Estuaries, 21, 818828.Google Scholar
Scaroni, A. E., Nyman, J. A., & Lindau, C. W. (2011). Comparison of denitrification characteristics among three habitat types of a large river floodplain: Atchafalaya River Basin, Louisiana. Hydrobiologia, 658(1), 1725.CrossRefGoogle Scholar
Sendrowski, A. & Passalacqua, P. (2017). Process connectivity in a naturally prograding river delta, Water Resources Research, 53(3), 18411863, doi:10.1002/2016WR019768.CrossRefGoogle Scholar
Shaffer, P. W., Kentula, M. E., & Gwin, S. E. (1999). Characterization of wetland hydrology using hydrogeomorphic classification. Wetlands, 19, 490504. doi:10.1007/BF03161688CrossRefGoogle Scholar
Shaw, J. B., & Mohrig, D. (2014). The importance of erosion in distributary channel network growth, Wax Lake Delta, Louisiana, USA. Geology, 42(1), 3134.CrossRefGoogle Scholar
Shen, J., & Haas, L. (2004). Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science, 61(3), 449461.CrossRefGoogle Scholar
Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43, 11491157. doi:10.1002/2015GL067388CrossRefGoogle Scholar
Shields, M.R., Bianchi, T.S., Kolker, A.S., Kenney, W.F., Mohrig, D., Osborne, T.Z., & Curtis, J.H. (2019). Factors controlling storage, sources, and diagenetic state of organic carbon in a prograding subaerial delta: Wax Lake Delta, Louisiana: Journal of Geophysical Research – Biogeosciences, 124, doi:10.1029/2018JG004683CrossRefGoogle Scholar
Shields, M. R., Bianchi, T. S., Mohrig, D., Hutchings, J., Kenney, W. F., Kolker, A. S., & Curtis, J. H. (2017). Carbon storage in the Mississippi River Delta enhanced by ecosystem engineering: Nature Geoscience, 10 (11), doi:10.1038/NGEO3044CrossRefGoogle Scholar
Siikamäki, J., Sanchirico, J. N., Jardine, S. L., Siikamaki, J., Sanchirico, J. N., & Jardine, S. L. (2012). Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proceedings of the National Academy of Sciences, 109, 14369–14374. doi:10.1073/pnas.1200519109CrossRefGoogle ScholarPubMed
Siverd, C. G., Hagen, S. C., Bilskie, M. V., Braud, D. H., Peele, R. H., Foster-Martinez, M. R., & Twilley, R. R. (2019). Coastal Louisiana landscape and storm surge evolution: 1850–2110. Climatic Change, 157(3), 445468.CrossRefGoogle Scholar
Siverd, C. G., Hagen, S. C., Bilskie, M. V., Braud, D. H., & Twilley, R. R. (2020). Quantifying storm surge and risk reduction costs: A case study for Lafitte, Louisiana. Climatic Change, 161(1), 201223.CrossRefGoogle Scholar
Smith, C. J., DeLaune, R. D., & Patrick, W. H., Jr. (1985). Fate of riverine nitrate entering an estuary: I. Denitrification and nitrogen burial. Estuaries, 8, 1521.CrossRefGoogle Scholar
Snedden, G. A., Cable, J. E., Swarzenski, C., & Swenson, E. (2007). Sediment discharge into a subsiding Louisiana seltaic estuary through a Mississippi River diversion. Estuarine, Coastal and Shelf Science, 71, 181193.CrossRefGoogle Scholar
Soniat, T. M., Conzelmann, C. P., Byrd, J. D., Roszell, D. P., Bridevaux, J. L., Suir, K. J., & Colley, S. B. (2013). Predicting the effects of proposed Mississippi River Diversions on Oyster habitat quality; Application of an Oyster habitat suitability index model. Journal of Shellfish Research, 32, 629638. doi:10.2983/035.032.0302CrossRefGoogle Scholar
Stanford, G., Dzienia, S., & Vander Pol, R. A. (1975). Effect of temperature on denitrification rate in soils. Soil Science Society of America Journal, 39(5), 867870.CrossRefGoogle Scholar
Syvitski, J. P., Kettner, A. J., Overeem, I., Hutton, E. W., Hannon, M. T., Brakenridge, G. R., & Giosan, L. (2009). Sinking deltas due to human activities. Nature Geoscience, 2(10), 681686.CrossRefGoogle Scholar
Temmerman, S., Govers, G., Wartel, S., & Meire, P. (2003). Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 28(7): 739755.CrossRefGoogle Scholar
Tornqvist, T. E., Paola, C., Parker, G., Liu, K., Mohrig, D., Holbrook, J. M., & Twilley, R. R. (2007). Comment on “Wetland sedimentation from Hurricanes Katrina and Rita”. Science, 316(5822). doi:10.1126/Science.1136780CrossRefGoogle Scholar
Turner, R. E., Baustian, J. J., Swenson, E., & Spicer, J. S. (2006). Wetland sedimentation from hurricanes Katrina and Rita. Science, 314, 449452.CrossRefGoogle ScholarPubMed
Turner, R. E., & Boyer, M. E. (1997). Mississippi river diversions, coastal wetland restoration/creation and an economy of scale. Ecological Engineering, 8(2), 117128. http://dx.doi.org/10.1016/S0925-8574(97)00258-9CrossRefGoogle Scholar
Tweel, A. W., & Turner, R. E. (2012). Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events. Plos One, 7(11), e50528.CrossRefGoogle ScholarPubMed
Twilley, R., Day, J., Bevington, A., Castañeda-Moya, E., Christensen, A., Holm, G., & Aarons, A. (2019). Ecogeomorphology of coastal deltaic floodplains and estuaries in an active delta: Insights from the Atchafalaya coastal basin. Estuarine, Coastal and Shelf Science, 106341.CrossRefGoogle Scholar
Twilley, R. R., & Rivera-Monroy, V. H. (2009). Sediment and nutrient trade-offs in restoring Mississippi river delta: restoration versus eutrophicaion. Journal of Contemporary Water Research Education, 141, 16.CrossRefGoogle Scholar
Twilley, R. R., Bentley, S. J., Chen, Q., Edmonds, D. A., Hagen, S. C., Lam, N. S., & McCall, A. (2016). Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi river delta plain. Sustainability Science, 11, 711731. doi:10.1007/s11625-016-0374-4CrossRefGoogle ScholarPubMed
Twilley, R.R., Rick, S., Bond, D., Baker, J.. 2021. Benthic Nutrient Fluxes Across Subtidal and Intertidal Habitats in Breton Sound in Response to River-Pulses of a Diversion in Mississippi River Delta. Water (ISSN 2073–4441).CrossRefGoogle Scholar
Verschelling, E., Van der Deijl, E. C., Van der Perk, M., Sloff, K., & Middelkoop, H. (2017). Effects of discharge, wind and tide on sedimentation in a recently restored tidal freshwater wetland. Hydrological Processes, 31, 28272841.CrossRefGoogle Scholar
Viero, D. P., & Defina, A. (2016). Water age, exposure time, and local flushing time in semi-enclosed, tidal basins with negligible freshwater inflow. Journal of Marine Systems, 156, 1629.CrossRefGoogle Scholar
Visser, J. M., Sasser, C. E., Chabreck, R. H., & Linscombe, R. (1998). Marsh vegetation types of the Mississippi river deltaic plain. Estuaries, 21(4), 818828.CrossRefGoogle Scholar
Wagner, W., Lague, D., Mohrig, D., Passalacqua, P., Shaw, J., & Moffett, K. (2017). Elevation change and stability on a prograding delta. Geophysical Research Letters, 44(4), 17861794.CrossRefGoogle Scholar
Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011) Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3–4), 387404, ISSN 0169-555X, https://doi.org/10.1016/j.geomorph.2010.07.027CrossRefGoogle Scholar
Wamsley, T.V., Cialone, M. A., Smith, J. M., Atkinson, J. H. & Rosati, J. D. (2010). The potential of wetlands in reducing storm surge. Ocean Engineering, 37(1): 5968.CrossRefGoogle Scholar
Walker, N. D. (2001). Tropical storm and hurricane wind effects on water level, salinity, and sediment transport in the river-influenced Atchafalaya-Vermilion Bay system, Louisiana, USA. Estuaries, 24(4), 498508.CrossRefGoogle Scholar
Walker, N. D., & Hammack, A. B. (2000). Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay Region, Louisiana, U.S.A., Journal of Coastal Research, 16(4), 9961010.Google Scholar
Wang, H., Steyer, G. D., Couvillion, B. R., Rybczyk, J. M., Beck, H. J., Sleavin, W. J., & Rivera-Monroy, V. H. (2014). Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios. Estuarine, Coastal and Shelf Science, 138, 5768. doi:10.1016/j.ecss.2013.12.020CrossRefGoogle Scholar
Wellner, R., Beaubouef, R., Van Wagoner, J., Roberts, H. H., Sun, T., & Wagoner, J. V. (2005). Jet-plume depositional bodies; the primary building blocks of Wax Lake Delta. Transactions – Gulf Coast Association of Geological Societies, 55, 867909.Google Scholar
White, J. R., DeLaune, R. D., Justic, D., Day, J. W., Pahl, J., Lane, R. R., & Twilley, R. R. (2019). Consequences of Mississippi river diversions on nutrient dynamics of coastal wetland soils and estuarine sediments: A review. Estuarine, Coastal and Shelf Science, 224, 209216.CrossRefGoogle Scholar
Wiegman, A. R., Day, J. W., D’Elia, C. F., Rutherford, J. S., Morris, J. T., Roy, E. D., & Snyder, B. F. (2018). Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging. Science of the Total Environment, 618, 15471559.CrossRefGoogle ScholarPubMed
Xing, Fei, Syvitski, J. P. M., Kettner, A. J., Meselhe, E. A., Atkinson, J. H., & Khadka, A. K. (2017). Morphological responses of the Wax Lake Delta, Louisiana, to Hurricanes Rita. Elementa: Science of the Anthropocene, 5, 80. https://doi.org/10.1525/elementa.125Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×