Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T11:58:48.328Z Has data issue: false hasContentIssue false

Section 3 - Left-Sided Obstructive Lesions

Published online by Cambridge University Press:  09 September 2021

Laura K. Berenstain
Affiliation:
Cincinnati Children's Hospital Medical Center
James P. Spaeth
Affiliation:
Cincinnati Children's Hospital Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Congenital Cardiac Anesthesia
A Case-based Approach
, pp. 83 - 136
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Saung, M. T., McCracken, C., Sachdeva, R., et al. Outcomes following balloon aortic valvuloplasty vs surgical valvotomy in congenital aortic valve stenosis: a meta-analysis. J Invasive Cardiol 2019; 31: E133–44.Google Scholar
Ewert, P., Bertram, H., Breuer, J., et al. Balloon valvuloplasty in the treatment of congenital aortic valve stenosis: a retrospective multicenter survey of more than 1000 patients. Int J Cardiol 2011; 149: 182185.CrossRefGoogle ScholarPubMed
Nykanen, D. G., Forbes, T. J., Du, W., et al. CRISP: catheterization risk score for pediatrics: a report from the congenital cardiac interventional study consortium (CCISC). Catheter Cardio Inte 2016; 87: 302–9.CrossRefGoogle ScholarPubMed
Ramamoorthy, C., Haberkern, C. M., Bhananker, S. M., et al. Anesthesia-related cardiac arrest in children with heart disease: data from the pediatric perioperative cardiac arrest (POCA) registry. Anesth Analg 2010; 110: 1376–82.CrossRefGoogle ScholarPubMed
Odegard, K. C., Vincent, R., Baijal, R., et al. SCAI/CCAS/SPA expert consensus statement for anesthesia and sedation practice: recommendations for patients undergoing diagnostic and therapeutic procedures in the pediatric and congenital cardiac catheterization laboratory. Catheter Cardio Inte 2016; 88: 912–22.CrossRefGoogle ScholarPubMed

Suggested Reading

Daaboul, D. G., Dinardo, J. A., and Nasr, V. G. Anesthesia for high-risk procedures in the catheterization laboratory. Pediatric Anesthesia 2019; 29: 491–8.CrossRefGoogle ScholarPubMed
Odegard, K. C., Bergersen, L., Thiagarajan, R., et al. The frequency of cardiac arrests in patients with congenital heart disease undergoing cardiac catheterization. Anesth Analg 2014; 118: 175–82.CrossRefGoogle ScholarPubMed
Vergnat, M., Asfour, B., Arenz, C., et al. Aortic stenosis of the neonate: a single-center experience. J Thorac and Cardiovasc Surg 2019; 157: 318–26.CrossRefGoogle ScholarPubMed

References

Singh, G. K.. Congenital aortic valve stenosis. Children 2019; 6: 112.CrossRefGoogle ScholarPubMed
Vlahos, A. P., Marx, G. R., McElhinney, D., et al. Clinical utility of Doppler echocardiography in assessing aortic stenosis severity and predicting need for intervention in children. Pediatr Cardiol 2008; 29: 507–14.CrossRefGoogle ScholarPubMed
Rao, P. S.. Management of congenital heart disease: state of the art; Part I – ACYANOTIC heart defects. Children 2019; 6: 127.Google ScholarPubMed
Bouhout, I., Salmane, P., El-Hamamsy, I., et al. Aortic valve interventions in pediatric patients. Semin Thorac Cardiovasc Surg 2018; 31: 277–87.Google ScholarPubMed
Woods, R. K., Pasquali, S. K., Jacobs, M. L., et al. Aortic valve replacement in neonates and infants: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg 2012; 144: 1084–90.CrossRefGoogle Scholar
Nelson, J. S., Pasquali, S. K., Pratt, C. N., et al. Long-term survival and reintervention after the Ross procedure across the pediatric age spectrum. Ann Thorac Surg 2015; 99: 2086–95.CrossRefGoogle ScholarPubMed

Suggested Reading

Gottlieb, E. A. and Andropoulos, D. B. Anesthesia for the patient with congenital heart disease presenting for noncardiac surgery. Curr Opin Anesthesiol 2013; 26: 318–26.CrossRefGoogle ScholarPubMed
Mavroudis, C., Mavroudis, C. D., and Jacobs, J. P. The Ross, Konno, and Ross-Konno operations for congenital left ventricular outflow tract abnormalities. Cardiol Young 2014; 24: 1121–33.Google ScholarPubMed
Stulak, J. M., Burkhart, H. M., Sundt, T. M., et al. Spectrum and outcome of reoperations after the Ross procedure. Circulation 2010; 122: 1153–58.CrossRefGoogle ScholarPubMed

Suggested Reading

Bengur, A. R., Snider, A. R., Serwer, G. A., et al. Usefulness of the Doppler mean gradient in evaluation of children with aortic valve stenosis and comparison to gradient at catheterization. Am J Cardiol 1989; 64: 756–61.CrossRefGoogle ScholarPubMed
Braunwald, E., Goldblatt, A., Aygen, M. M., et al. Congenital aortic stenosis. I. Clinical and hemodynamic findings in 100 patients. II Surgical treatment and the results of operation. Circulation 1963; 27: 42662.CrossRefGoogle ScholarPubMed
Lopes, R., Lourenço, P., Gonçalves, A., et al. The natural history of congenital subaortic stenosis. Congenit Heart Di 2011; 6: 417–23.Google ScholarPubMed
Nishimura, R. A., Otto, C. M., Bobo, R. O., et al. 2014 AHA/ACC guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: e57-e185.CrossRefGoogle Scholar
Pickard, S. S., Geva, A., Gauvreau, K., et al. Long-term outcomes and risk factors for aortic regurgitation after discrete subvalvular aortic stenosis resection in children. Heart 2015; 101: 1547–53.CrossRefGoogle ScholarPubMed
Talwar, S., Anand, A., Gupta, S. K., et al. Resection of subaortic membrane for discrete subaortic stenosis. J Card Surg 2017; 32: 43035.CrossRefGoogle ScholarPubMed
Uysal, F., Bostan, O. M., Signak, I. S., et al. Evaluation of subvalvular aortic stenosis in children: a 16-year single-center experience. Pediatr Cardiol 2013; 34: 1409–14.CrossRefGoogle ScholarPubMed
Vincent, W. R., Buckberg, G. D., and Hoffman, J. I. Left ventricular subendocardial ischemia in severe valvar and supravalvar aortic stenosis: a common mechanism. Circulation 1974; 49: 32633.Google Scholar
Vlahos, A. P., Marx, G. R., McElhinney, D., et al. Clinical utility of Doppler echocardiography in assessing aortic stenosis severity and predicting need for intervention in children. Pediatr Cardiol 2008; 29: 50714.CrossRefGoogle ScholarPubMed

References

Williams, J. C. P., Barratt-Boyes, B. G., and Lowe, J. B.. Supravalvular aortic stenosis. Circulation 1961; 24: 1311–18.CrossRefGoogle ScholarPubMed
Beuren, A. J., Apitz, J., and Harmjanz, D.. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 1962; 26: 1235–40.CrossRefGoogle Scholar
Stromme, P., Bjornstad, P. G., and Ramstad, K.. Prevalence estimation of Williams syndrome. J Child Neurol 2002; 17: 269–71.CrossRefGoogle ScholarPubMed
Twite, M. D., Stenquist, S., and Ing, R. J.. Williams syndrome. Pediatr Anesth 2019; 29: 483–90.CrossRefGoogle ScholarPubMed
Taylor, D. and Habre, W.. Risk associated with anesthesia for noncardiac surgery in children with congenital heart disease. Pediatr Anesth 2019; 29: 426–34.CrossRefGoogle ScholarPubMed
Ewart, A. K., Morris, C. A., Atkinson, D., et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 1993; 5: 1116.Google Scholar
Urbán, Z., Zhang, J., Davis, E. C., et al. Supravalvular aortic stenosis: genetic and molecular dissection of a complex mutation in the elastin gene. Hum Genet 2001; 109: 512–20.CrossRefGoogle ScholarPubMed
Collins, R. T., Kaplan, P., Somes, G. W., et al. Long-term outcomes of patients with cardiovascular abnormalities and Williams syndrome. Am J Cardiol 2010; 105: 874–8.CrossRefGoogle ScholarPubMed
Horowitz, P. E., Akhtar, S., Wulff, J. A., et al. Coronary artery disease and anesthesia-related death in children with Williams syndrome. J Cardiothorac Vasc Anesth 2002; 16: 739–41.Google Scholar
Baum, V. C. and O’Flaherty, J. E.. Anesthesia for Genetic, Metabolic, and Dysmorphic Syndromes of Childhood. 3rd ed. Philadelphia: Wolters Kluwer 2015; 475–6.Google Scholar
Collins, R. T., Aziz, P. F., Gleason, M. M., et al. Abnormalities of cardiac repolarization in Williams syndrome. Am J Cardiol 2010; 106: 1029–33.CrossRefGoogle ScholarPubMed
Latham, G. J., Ross, F. J., Eisses, M. J., et al. Perioperative morbidity in children with elastin arteriopathy. Pediatr Anesth 2016; 26: 926–35.CrossRefGoogle ScholarPubMed
Wessel, A., Gravenhorst, V., Buchhorn, R., et al. Risk of sudden death in the Williams-Beuren syndrome. Am J Med Genet 2004; 127A: 234–7.CrossRefGoogle ScholarPubMed
Hornik, C. P., Collins, R. T., Jaquiss, R. D. B., et al. Adverse cardiac events in children with Williams syndrome undergoing cardiovascular surgery: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg 2015; 149: 1516–22.Google Scholar
Bird, L. M., Billman, G. F., Lacro, R. V., et al. Sudden death in Williams syndrome: report of ten cases. J Pediatr 1996; 129: 926–31.CrossRefGoogle ScholarPubMed
Castañeda, A. R., Jonas, R. A., Mayer, J. E., et al. Cardiac Surgery of the Neonate and Infant. 1st ed. Philadelphia: W.B. Saunders, 1994; 327–32.Google Scholar
Pober, B. R.. Williams-Beuren syndrome. N Engl J Med 2010; 362: 239–52.Google Scholar
Medley, J., Russo, P., and Tobias, J. D.. Perioperative care of the patient with Williams syndrome. Pediatr Anesth 2005; 15: 243–7.CrossRefGoogle ScholarPubMed
Committee on Genetics. American Academy of Pediatrics: healthcare supervision for children with Williams syndrome. Pediatrics 2001; 107: 1192–204.Google Scholar
Brown, M. L., Nasr, V. G., Toohey, R., et al. Williams syndrome and anesthesia for non-cardiac surgery: high risk can be mitigated with appropriate planning. Pediatr Cardiol 2018; 39: 1123–8.Google Scholar
Collins, R. T., Collins, M. G., Schmitz, M. L., et al. Peri-procedural risk stratification and management of patients with Williams syndrome. Congenit Heart Dis 2017; 12: 133–42.CrossRefGoogle Scholar

Suggested Reading

Brown, M. L., Nasr, V. G., Toohey, R., et al. Williams syndrome and anesthesia for non-cardiac surgery: high risk can be mitigated with appropriate planning. Pediatr Cardiol 2018; 39: 1123–28.CrossRefGoogle ScholarPubMed
Burch, T. M., McGowan, F. X., Kussman, B. D., et al. Congenital supravalvular aortic stenosis and sudden death associated with anesthesia: what’s the mystery? Anesth Analg 2008; 107: 1848–54.CrossRefGoogle ScholarPubMed
Collins, R. T., Collins, M. G., Schmitz, M. L., et al. Peri-procedural risk stratification and management of patients with Williams syndrome. Congenit Heart Dis 2017; 12: 133–42.CrossRefGoogle Scholar
Latham, G. J., Ross, F. J., Eisses, M. J., et al. Perioperative morbidity in children with elastin arteriopathy. Pediatr Anesth 2016; 26: 926–35.CrossRefGoogle ScholarPubMed
Matisoff, A. J., Olivieri, L., Schwartz, J. M., et al. Risk assessment and anesthetic management of patients with Williams syndrome: a comprehensive review. Pediatr Anesth 2015; 25: 1207–15.CrossRefGoogle ScholarPubMed
Pober, B. R. Williams-Beuren syndrome. N Engl J Med 2010; 362: 239–52.Google Scholar
Twite, M. D., Stenquist, S., and Ing, R. J. Williams syndrome. Pediatr Anesth 2019; 29: 483–90.CrossRefGoogle ScholarPubMed

References

Poliac, L. C., Barron, M. E., and Maron, B. J.. Hypertrophic cardiomyopathy. Anesthesiology 2006; 104 : 183–92.CrossRefGoogle ScholarPubMed
Cooper, R. M., Raphael, C. E., Liebregts, M., et al. New developments in hypertrophic cardiomyopathy. Can J Cardiol 2017; 33: 1254–65.CrossRefGoogle ScholarPubMed
Maron, B. J., Maron, M. S., and Semsarian, C.. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 2012; 60: 705–15.CrossRefGoogle ScholarPubMed
Varnava, A. M., Elliott, P. M., Mahon, N., et al. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 2001; 88: 275–79.CrossRefGoogle ScholarPubMed
Johansson, B., Morner, S., Waldenstrom, A., et al. Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis. Int J Cardiol 2008; 126: 252–7.Google Scholar
Colan, S. D., Lipshultz, S. E., Lowe, A. M., et al. Epidemiology and cause-specific outcome of cardiomyopathy in children. Findings from the Pediatric Cardiomyopathy Registry. Circulation 2007; 115: 773–81.Google Scholar
Maron, M. S., Maron, B. J., Harrigan, C., et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 2009; 54: 220–8.CrossRefGoogle ScholarPubMed
Maron, B. J. and Maron, M. S.. Hypertrophic cardiomyopathy. Lancet 2013; 381: 242–55.Google Scholar
Gersh, B. J., Maron, B. J., Dearani, J. A., et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive Summary, a Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardio 2011; 58: 2703–38.Google Scholar
Hreybe, H., Zahid, M., Sonel, A., et al. Noncardiac surgery and the risk of death and other cardiovascular events in patients with hypertrophic cardiomyopathy. Clin Cardiol 2006; 29: 65–8.Google Scholar
Norrish, B., Forshaw, N., Woo, C., et al. Outcomes following general anesthesia in children with hypertrophic cardiomyopathy. Arch Dis Child 2019; 104: 471–5.Google Scholar
Dhillon, A., Khanna, A., Randhawa, M. S., et al. Perioperative outcomes of patients with hypertrophic cardiomyopathy undergoing non-cardiac surgery. Heart 2016; 102: 1627–32.CrossRefGoogle ScholarPubMed
Crossley, G. H., Poole, J. E., Rozner, M. A., et al. The Heart Rhythm Society (HRS)/American Society of Anesthesiologists (ASA) Expert Consensus Statement on the perioperative management of patients with implantable defibrillators, pacemakers and arrhythmia monitors. Heart Rhythm 2011; 8: 1114–54.Google Scholar
Madigan, J. D., Choudhri, A. F., Chen, J., et al. C. Surgical management of the patient with an implanted cardiac device Ann Surg 1999; 230: 639–47.CrossRefGoogle Scholar

Suggested Reading

Dhillon, A., Khanna, A., Randhawa, M. S., et al. Perioperative outcomes of patients with hypertrophic cardiomyopathy undergoing non-cardiac surgery. Heart 2016; 102: 1627–32.Google Scholar
Norrish, B., Forshaw, N., Woo, C., et al. Outcomes following general anesthesia in children with hypertrophic cardiomyopathy. Arch Dis Child 2019; 104: 471–75.CrossRefGoogle ScholarPubMed

References

Fox, E. B., Latham, G. J., Ross, F. J., et al. Perioperative and anesthetic management of coarctation of the aorta. Semin Cardiothorac Vasc Anesth 2019; 23: 221–4.CrossRefGoogle ScholarPubMed
Boris, J. R.. Primary-care management of patients with coarctation of the aorta. Cardiol Young 2016; 26: 1537–42.CrossRefGoogle ScholarPubMed
Padua, L. M. S., Garcia, L. C., Rubira, C. J., et al. Stent placement versus surgery for coarctation of the thoracic aorta (review). Cochrane Database Syst Rev 2012; 5: 118.Google Scholar
Astengo, M., Berntsson, C., Johnsson, A. A., et al. Ability of noninvasive criteria to predict hemodynamically significant aortic obstruction in adults with coarctation of the aorta. Congenit Heart Dis 2017; 12: 174–80.Google Scholar
Stout, K. K., Daniels, C. J., Aboulhosn, J. A., et al. 2018 AHA/ACC Guideline for the management of adults with congenital heart disease. J Am Coll Cardiol 2019; 73: e81192.CrossRefGoogle ScholarPubMed
Fiore, A. C., Fischer, L. K., Schwartz, T., et al. Comparison of angioplasty and surgery for neonatal aortic coarctation. Ann Thorac Surg 2005; 80: 1659–65.CrossRefGoogle ScholarPubMed
Koh, J. L. and Gries, H.. Perioperative management of pediatric patients with craniosynostosis. Anesthesiol Clin 2007; 25: 465–81.Google Scholar
Pearson, A. and Matava, C. T.. Anaesthetic management for craniosynostosis repair in children. BJA Educ 2016; 16: 410–16.CrossRefGoogle Scholar

Suggested Reading

Fox, E. B., Latham, G. J., Ross, F. J., et al. Perioperative and anesthetic management of coarctation of the aorta. Semin Cardiothorac Vasc Anesth 2019; 23: 221–4.Google Scholar
Koh, J. L. and Gries, H. Perioperative management of pediatric patients with craniosynostosis. Anesthesiol Clin 2007; 25: 465–81.CrossRefGoogle ScholarPubMed
Pearson, A. and Matava, C. T. Anaesthetic management for craniosynostosis repair in children. BJA Educ 2016; 16: 410–16.CrossRefGoogle Scholar

References

Shone, J. D., Sellers, R. D., Anderson, R. C., et al. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol 1963; 11: 714–25.CrossRefGoogle ScholarPubMed
Ikemba, C. M., Eidem, B. W., Fraley, J. K., et al. Mitral valve morphology and morbidity/mortality in Shone’s complex. Am J Cardiol 2005; 95: 541–3.CrossRefGoogle ScholarPubMed
Grimaldi, A., Vermi, A. C., Ho, S. Y., et al. Surgical outcome of partial Shone complex. Interact Cardiovasc Thorac Surg 2012; 14: 440–4.CrossRefGoogle ScholarPubMed
Marino, B. S., Kruge, L. E., Cho, C. J., et al. Parachute mitral valve: morphologic descriptors, associated lesions, and outcomes after biventricular repair. J Thorac Cardiovasc Surg 2009; 137: 385–93.CrossRefGoogle ScholarPubMed
Oosthoek, P. W., Wenink, A. C., Wisse, L. J., et al. Development of the papillary muscles of the mitral valve: morphogenetic background of parachute-like asymmetric mitral valves and other mitral valve anomalies. J Thorac Cardiovasc Surg 1998; 116: 3646.Google Scholar
Brauner, R. A., Laks, H., Drinkwater, D. C., et al. Multiple left heart obstructions (Shone’s anomaly) with mitral valve involvement: long-term surgical outcome. Ann Thorac Surg 1997; 64: 721–9.CrossRefGoogle ScholarPubMed
Jenkins, N. P. and Ward, C.. Coarctation of the aorta: natural history and outcome after surgical treatment. QJM 1999; 92: 365–71.CrossRefGoogle ScholarPubMed
Nicholson, G. T., Kelleman, M. S., De la Uz, C. M., et al. Late outcomes in children with Shone’s complex: a single-centre, 20-year experience. Cardiol Young 2017; 27: 697705.CrossRefGoogle Scholar
Ramamoorthy, C., Haberkern, C. M., and Bhananker, S. M.. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg 2010; 110: 1376–82.CrossRefGoogle ScholarPubMed
Relland, L. M., Tobias, J. D., Martin, D., et al. Ultrasound-guided rectus sheath block, caudal analgesia, or surgical site infiltration for pediatric umbilical herniorrhaphy: a prospective, double-blinded, randomized comparison of three regional anesthetic techniques. J Pain Res 2017; 10: 2629–34.Google Scholar

Suggested Reading

Atkinson, T. M., Giraud, G. D., Togioka, B. M., et al. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation 2017; 135: 700–10.CrossRefGoogle ScholarPubMed
Friesen, R. H. Anesthetic drugs in congenital heart disease. Semin Cardiothorac Vasc Anesth 2014; 18: 363–70.CrossRefGoogle ScholarPubMed
Schimke, A., Majithia, A., Baumgartner, R., et al. Intervention and management of congenital left heart obstructive lesions. Curr Treat Options Cardiovasc Med 2013; 15: 632–45.CrossRefGoogle ScholarPubMed
Shone, J. D., Sellers, R. D., Anderson, R. C., et al. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol 1963; 11: 714–25.Google Scholar
Spaeth, J. P. and Loepke, A. W. Anesthesia for left-sided obstructive lesions. In Andropoulos, D. B., Stayer, S., Mossad, E. B., et al., eds. Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2015; 497515.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×