Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:15:53.828Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 March 2016

Tore Schweder
Affiliation:
Universitetet i Oslo
Nils Lid Hjort
Affiliation:
Universitetet i Oslo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Confidence, Likelihood, Probability
Statistical Inference with Confidence Distributions
, pp. 471 - 488
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Annals of Statistics, 6:701–726.Google Scholar
Aalen, O. O., Borgan, Ø., and Gjessing, H. K. (2008). Survival and Event History Analysis: A Process Point of View. Springer-Verlag, Berlin.
Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood 1912–1922. Statistical Science, 12:162–176.Google Scholar
Aldrich, J. (2000). Fisher's “inverse probability” of 1930. International Statistical Review, 68:155–172.Google Scholar
Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer-Verlag, Berlin.
Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: A large sample study. Annals of Statistics, 10:1100–1120.Google Scholar
Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, New York.
Anderson, T. W. and Goodman, L. A. (1957). Statistical inference about Markov chains. Annals of Mathematical Statistics, 28:89–110.Google Scholar
Baddeley, A. J.Rubak, E. and Turner, R. (2015). Analyzing Spatial Point Patterns with R. Chapman & Hall/CRC, London.
Baddeley, A. J. and Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12:1–42.Google Scholar
Bai, Z. D. (1999). Methodologies in spectral analysis or large dimensional random matrices, a review [with discussion and a rejoinder]. Statitica Sinica, 9:611–677.Google Scholar
Ball, F. K., Britton, T. and O'Neill, P. C. (2002). Empty confidence sets for epidemics, branching processes and Brownian motion. Biometrika, 89:211–224.Google Scholar
Banerjee, M. and McKeague, I. W. (2007). Confidence sets for split points in decision trees. Annals of Statistics, 35:543–574.Google Scholar
Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. JohnWiley & Sons, New York.
Barnard, G. A. (1967). The use of the likelihood function in statistical practice. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, pp. 27–40. University of California Press, Berkeley.
Barndorff-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70:343–365.Google Scholar
Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standarized signed log-likelihood ratio. Biometrika, 73:307–322.Google Scholar
Barndorff-Nielsen, O. E. (2014). Information and Exponential Families in Statistical Theory. John Wiley & Sons, New York. A re-issue of the 1978 edition, with a new preface.
Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and saddle-point approximations with statistical applications [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 41:279–312.Google Scholar
Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. Chapman & Hall, London.
Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics. Chapman & Hall, London.
Barndorff-Nielsen, O. E. and Cox, D. R. (1996). Prediction and asymptotics. Bernoulli, 2:319–340.Google Scholar
Barndorff-Nielsen, O. E. and Wood, T. A. (1998). On large deviations and choice of ancillary for p* and r*. Bernoulli, 4:35–63.Google Scholar
Barry, D. and Hartigan, J. A. (1987). Asynchronous distance between homologous DNA sequences. Biometrics, 43:261–276.Google Scholar
Barth, E. and Moene, K. O. (2012). Employment as a price or a prize of equality. Nordic Journal of Working Life Studies, 2:5–33.Google Scholar
Bartlett, M. S. (1936). The information available in small samples. Proceedings of the Cambridge Philosphical Society, 32:560–566.Google Scholar
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A, 160:268–282.Google Scholar
Bartlett, M. S. (1939). Complete simultaneous fiducial distributions. Annals of Mathematical Statistics, 10:129–138.Google Scholar
Bartlett, M. S. (1965). R.A. Fisher and the last fifty years of statistical methodology. Journal of the American Statistical Association, 60:395–409.Google Scholar
Bartlett, M. S. (1966). Review of Hacking's ‘Logic of Statistical Inference’. Biometrika, 53:631–633.Google Scholar
Basharin, G. P., Langville, A. N. and Naumov, V. A. (2004). The life and work of A. A. Markov. Linear Algebra and Its Applications, 386:3–26.Google Scholar
Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a densithy power divergence. Biometrika, 85:549–559.Google Scholar
Basu, A., Shioya, H. and Park, C. (2011). Statistical Inference: TheMinimum Distance Approach. Chapman & Hall/CRC, London.
Bayarri, M. J. and Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statistical Science, 19:58–80.Google Scholar
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57:290–300.Google Scholar
Beran, R. J. (1977). Minimum Hellinger distance estimates for parametric models. Annals of Statistics, 5:445–463.Google Scholar
Beran, R. J. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 83:687–697.Google Scholar
Beran, R. J. (1988a). Balanced simultaneous confidence sets. Journal of the American Statistical Association, 83:679–686.Google Scholar
Beran, R. J. (1988b). Prepivoting test statistics: A bootstrap view of asymptotic refinements. Journal of the American Statistical Association, 74:457–468.Google Scholar
Beran, R. J. (1990). Calibrating prediction regions. Journal of the American Statistical Association, 85:715–723.Google Scholar
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, Berlin.
Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors [with discussion and a rejoinder]. In Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M., editors, Bayesian Statistics 4, pp. 35–60. Oxford University Press, Oxford.
Berger, J. O., Liseo, B. and Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters [with discussion and a rejoinder]. Statistical Science, 14:1–28.Google Scholar
Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model. Annals of Statistics, 36:963–982.Google Scholar
Berger, J. O. and Wolpert, R. (1984). The Likelihood Principle. Institute of Mathematical Statistics, Hayward, CA.
Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference. Annals of Statistics, 41:802–837.Google Scholar
Bernstein, P. L. (1996). Against the Gods. John Wiley & Sons, New York.
Berry, G. and Armitage, P. (1995). Mid-p confidence intervals: A brief review. The Statistician, 44:417–423.Google Scholar
Bickel, P. J. and Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas and Selected Topics, Vol. I [2nd ed.]. Prentice-Hall, London.
Bie, O., Borgan, Ø. and Liestøl, K. (1987). Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties. Scandinavian Journal of Statistics, 14:221–233.Google Scholar
Billingsley, P. (1961). Statistical Inference for Markov Processes. University of Chicago Press, Chicago.
Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New York.
Birnbaum, A. (1961). Confidence curves: An omnibus technique for estimation and testing statistical hypotheses. Journal of the American Statistical Association, 56:246–249.Google Scholar
Birnbaum, A. (1962). On the foundations of statistical inference. Journal of the American Statistical Association, 57:269–306.Google Scholar
Bjørnsen, K. (1963). 13 år med Kuppern & Co. Nasjonalforlaget, Oslo.
Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation. Annals of Mathematical Statistics, 18:105–110.Google Scholar
Blaisdell, B. E. (1985). A method for estimating from two aligned present day DNA sequences their ancestral composition and subsequent rates of composition and subsequent rates of substitution, possibly different in the two lineages, corrected for multiple and parallel substitutions at the same site. Journal of Molecual Evolution, 22:69–81.Google Scholar
Bogstad, B., Dingsør, G. E., Ingvaldsen, R. B. and Gjøsæter, H. (2013). Changes in the relationship between sea temperature and recruitment of cod, haddock and herring in the Barents Sea. Marine Biology Research, 9:895–907.Google Scholar
Boitsov, V. D., Karsakov, A. L. and Trofimov, A. G. (2012). Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES Journal of Marine Science, 69:833–840.Google Scholar
Bolt, U. (2013). Faster Than Lightning: My Autobiography. HarperSport, London.
Boole, G. (1854). The Laws of Thought [reprinted by Dover, New York, 1958]. Macmillan, London.
Borenstein, M., Hedges, L. V., Higgins, J. and Rothstein, H. (2009). Introduction to Meta-Analysis. John Wiley & Sons, New York.
Borgan, Ø. (1984). Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data. Scandinavian Journal of Statistics, 11:1–16.Google Scholar
Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 26:211–252.Google Scholar
Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces. John Wiley & Sons, New York.
Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Models. John Wiley & Sons, New York.
Brandon, J. R. and Wade, P. R. (2006). Assessment of the Bering-Chukchi-Beaufort Seas stock of bowhead whales using Bayesian model averaging. Journal of Cetacean Resources Management, 8:225–239.Google Scholar
Brazzale, A. R. and Davison, A. C. (2008). Accurate parametric inference for small samples. Statistical Science, 23:465–484.Google Scholar
Brazzale, A. R., Davison, A. C. and Reid, N. (2007). Applied Asymptotics: Case Studies in Small-Sample Statistics. Cambridge University Press, Cambridge.
Breiman, L. (1992). The little bootstrap and other methods for dimensionality reduction in regression: X-fixed prediction error. Journal of the American Statistical Association, 87:738–754.Google Scholar
Breiman, L. (2001). Statistical modeling: The two cultures [with discussion and a rejoinder]. Statistical Science, 16:199–231.Google Scholar
Breslow, N. E. (1981). Odds ratio estimators when the data are sparse. Biometrika, 68:73–84.Google Scholar
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25.Google Scholar
Breuer, P. T. and Bowen, J. P. (2014). Empirical patterns in Google Scholar citation counts. arxiv.org.
Brillinger, D. R. (1962). Examples bearing on the definition of fiducial probability with a bibliography. Annals of Mathematical Statististics, 33:1349–1355.Google Scholar
Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. SIAM, London.
Browman, H. I. (2014). Commemorating 100 years since Hjort's 1914 treatise on fluctuations in the great fisheries of northern Europe: Where we have been, where we are, where we are going. ICES Journal of Marine Science, 71:1989–1992.Google Scholar
Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayward, CA.
Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis. Chapman & Hall/CRC, Boca Raton, FL.
Cheng, X. and Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequentist model averaging approach. Journal of Econometrics, 186:280–293.Google Scholar
Claeskens, G. and Hjort, N. L. (2003). The focused information criterion [with discussion and a rejoinder]. Journal of the American Statistical Association, 98:900–916.Google Scholar
Claeskens|G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge University Press, Cambridge.
Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confidence bands for regression curves and their derivatives. Annals of Statistics, 31:1852–1884.Google Scholar
Collett, D. (2003). Modelling Survival Data in Medical Research (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL.
Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation. Houghton Mifflin, Boston.
Cornish, E. A. and Fisher, R. A. (1938). Moments and cumulants in the specification of distributions. Review of the International Statistical Institute, 5:307–320.Google Scholar
Cox, D. R. (1958). Some problems with statistical inference. Annals of Mathematical Statistics, 29:357–372.Google Scholar
Cox, D. R. (1977). The role of significance tests [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 4:49–70.Google Scholar
Cox, D. R. (2006). Principles of Statistical Inference. Cambridge University Press, Cambridge.
Cox, D. R. (2013). Discussion of M. Xie and K. Singh's paper. International Statistical Review, 81:40–41.Google Scholar
Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 49:1–39.Google Scholar
Cox, D. R. and Snell, E. J. (1981). Analysis of Binary Data. Chapman & Hall, London.
Cox, D. R. and Snell, E. J. (1989). Applied Statistics: Principles and Examples. Chapman & Hall, London.
Cramér|H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ.
Cramér, H. and Wold, H. (1936). Some theorems on distribution functions. Journal of the London Mathematical Society, 1:290–294.Google Scholar
Creasy, M. A. (1954). Limits for the ratio of normal means. Journal of the Royal Statistical Society, Series B, 16:186–194.Google Scholar
Cressie, N. (1993). Statistics for Spatial Data [revised ed.]. John Wiley & Sons, New York.
Cunen, C. M. L. and Hjort, N. L. (2015). Optimal inference via confidence distributions for two-by-two tables modelled as poisson pairs: Fixed and random effects. In Proceedings 60th World Statistics Congress, 26–31 July 2015, Rio de Janeiro, volume I. International Statistical Institute, Amsterdam.
Darmois, G. (1935). Sur les lois de probabilitéà estimation exhaustive. Comptes Rendus de l'Académie des Sciences Paris 2, 200:1265–1266.Google Scholar
Darroch, J. N. (1958). The multiple-recapture census. I: Estimation of a closed population. Biometrika, 45:343–359.Google Scholar
da Silva, C. Q., Zeh, J. E., Madigan, D., Lake, J., Rugh, D., Baraff, L., Koski, W. and Miller, G. (2000). Capture-recapture estimation of bowhead whale population size using photo-identification data. Journal of Cetacean Reserve Management, 2:45–61.Google Scholar
David, H. A. and Nagaraja, H. N. (2003). Order Statistics [3rd ed.]. John Wiley & Sons, New York.
Davies, P. L. (2008). Approximating data [with discussion and a rejoinder]. Journal of the Korean Statistical Society, 37:191–211.Google Scholar
Davison, A. C. (2001). Biometrika centenary: Theory and general methodology. Biometrika, 13–52.Google Scholar
Davison, A. C. (2003). Statistical Models. Cambridge University Press, Cambridge.
Davison, A. C. and Hinkley, D. V. (1997). BootstrapMethods and Their Application. Cambridge University Press, Cambridge.
De Blasi, P. and Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with logistic relative risk. Scandinavian Journal of Statistics, 34:229–257.Google Scholar
De Blasi, P. and Schweder, T. (2015). Tail symmetry of confidence curves based on the log-likelihood ratio. Submitted.
De Leeuw, J., Hornik, K. and Mair, P. (2009). Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and active set methods. Journal of Statistical Software, 21:1–23.Google Scholar
Dempster, A. P. (1963). Further examples of inconsistencies in the fiducial argument. Annals of Mathematical Statistics, 34:884–891.Google Scholar
Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38:325–339.Google Scholar
Dennis, J. E. and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.
DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals [with discussion and a rejoinder]. Statistical Science, 11:189–228.Google Scholar
Diggle, P. (2013). Statistical Analysis of Spatial and Spatio-Temporal Point Patterns [3rd ed.]. Chapman & Hall/CRC, London.
Dufour, J. M. (1997). Some impossibility theorems in econometrics with applications to structural and dynamic models. Econometrica, 65:1365–1387.Google Scholar
Dyrrdal, A. V. and Vikhamar-Scholer, D. V. (2009). Analysis of long-term snow series at selected stations in Norway. Technical report, Norwegian Meteorological Institute, Oslo.
Eddington, A. S. (1914). Stellar Movements and the Structure of the Universe. Macmillan, New York.
Edgeworth, F. Y. (1909). Addendum on ‘Probable errors of frequency constants’. Journal of the Royal Statistical Society, 72:81–90.Google Scholar
Edwards, A. W. F. (1992). Likelihood [expanded edition]. Johns Hopkins University Press, Baltimore.
Efron, B. (1982). Maximum likelihood theory and decision theory. Annals of Statistics, 10:340–356.Google Scholar
Efron, B. (1987). Better bootstrap confidence intervals [with discussion and a rejoinder]. Journal of the American Statistical Association, 82:171–200.Google Scholar
Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika, 80:3–26.Google Scholar
Efron, B. (1996). Empirical Bayes methods for combining likelihoods. Journal of the American Statistical Association, 91:538–550.Google Scholar
Efron, B. (1998). R.A. Fisher in the 21st century [with discussion and a rejoinder]. Statistical Science, 13:95–122.Google Scholar
Efron, B. (2013). Discussion of M. Xie and K. Singh's paper. International Statistical Review, 81:41–42.Google Scholar
Efron, B. (2014). Estimation and accuracy after model selection [with discussion and a rejoinder]. Journal of the American Statistical Association, 109:991–1007.Google Scholar
Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information [with discussion and a rejoinder]. Biometrika, 65:457–487.Google Scholar
Efron, B. and Morris, C. (1973). Stein's estimation rule and its competitors – an empirical Bayes approach. Journal of the American Statistical Association, 68:117–130.Google Scholar
Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, London.
Einmahl, J. H. J. and Magnus, J. R. (2008). Records in athletics through extreme-value theory. Journal of the American Statistical Association, 103:1382–1391.Google Scholar
Einmahl, J. H. J. and Smeets, S. G. W. R. (2011). Ultimate 100 m world records through extreme-value theory. Statistica Neerlandica, 65:32–42.Google Scholar
Einstein, A. (1934). On the method of theoretical physics. The Philosophy of Science, 1:163–169.Google Scholar
Elstad, M., Whitelaw, A. and Thoresen, M. (2011). Cerebral Resistance Index is less predictive in hypothermic encephalopathic newborns. Acta Paediatrica, 100:1344–1349.Google Scholar
Elvik, R. (2011). Publication bias and time-trend bias in meta-analysis of bicycle helmet efficacy: A re-analysis of Attewell, Glase and McFadden. Accident Analysis and Prevention, 43:1245–1251.Google Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer-Verlag, London.
Ericsson, N. R., Jansen, E. S., Kerbesian, N. A. and Nymoen, R. (1998). Interpreting a monetary condition index in economic policy. Technical report, Department of Economics, University of Oslo.
Ezekiel, M. (1930). Methods of Correlation Analysis. John Wiley & Sons, New York.
Fahrmeier, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer-Verlag, Berlin.
Feigl, P. and Zelen, M. (1965). Estimation of exponential survival probabilities with concomitant information. Biometrics, 21:826–838.Google Scholar
Feller, W. (1950). An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New York.
Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, MA.
Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York.
Ferguson, T. S. (1996). A Course in Large Sample Theory. Chapman & Hall, London.
Fieller, E. C. (1940). The biologial standardization of insuline. Journal of the Royal Statistical Society Supplement, 7:1–64.Google Scholar
Fieller, E. C. (1954). Some problems in interval estimation. Journal of the Royal Statistical Society, Series B, 16:175–185.Google Scholar
Fine, T. L. (1977). Book review of Shafer: A mathematical theory of evidence. Bulletin of the American Statistical Society, 83:667–672.Google Scholar
Fischer, H. (2011). A History of the Central Limit Theorem: From Classical to Modern Probability Theory. Springer, Science & Business Media, New York.
Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves. Messenger of Mathematics, 41:155–160.Google Scholar
Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in small samples. Biometrika, 10:507–521.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of London, 52:399–433.Google Scholar
Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Monthly Notices of the Royal Astronomical Society, 80:758–770.Google Scholar
Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society of Edinburgh, Series A, 222:309–368.Google Scholar
Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh.
Fisher, R. A. (1930). Inverse probability. Proceedings of the Cambridge Philosophical Society, 26:528–535.Google Scholar
Fisher, R. A. (1933). The concepts of inverse probability and fiducial probability referring to unknown parameters. Proceedings of the Royal Society, Series A, 139:343–348.Google Scholar
Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proceedings of the Royal Society of London, Series A, 144:285–307.Google Scholar
Fisher, R. A. (1935). The fiducial argument in statistical inference. Annals of Eugenics, 6:391–398.Google Scholar
Fisher, R. A. (1941). The asymptotic approach to Behrens's integral, with further tables of for the d test of significance. Annals of Eugenics, 11:141–172.Google Scholar
Fisher, R. A. (1954). Contribution to a discussion of a paper on interval estimation byM. A. Creasy. Journal of the Royal Statistical Society, Series B, 16:212–213.Google Scholar
Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Hafner Press, New York.
Fisher, R. A. (1958). Cigarettes, cancer and statistics. Centennial Review, 2:151–166.Google Scholar
Fisher, R. A. (1973). Statistical Methods and Scientific Inference (3rd ed.). Hafner Press, New York Extended version of the 1956 edition.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. John Wiley & Sons, New York.
Fraser, D. A. S. (1961a). The fiducial method and invariance. Biometrika, 48:261–280.Google Scholar
Fraser, D. A. S. (1961b). On fiducial inference. Annals of Mathematical Statistics, 32:661–676.Google Scholar
Fraser, D. A. S. (1966). Some remarks on pivotal models and the fiducial argument in relation to structural models. International Statistical Review, 64:231–236.Google Scholar
Fraser, D. A. S. (1968). The Structure of Inference. John Wiley & Sons, New York.
Fraser, D. A. S. (1998). Contribution to the discussion of Efron's paper. Statistial Science, 13:120–122.Google Scholar
Fraser, D. A. S. (2011). Is Bayes posterior just quick and dirty confidence? [with discussion and a rejoinder]. Statistial Science, 26:249–316.Google Scholar
Friesinger, A. (2004). Mein Leben, mein Sport, meine besten Fitness-Tipps. Goldmann, Berlin.
Frigessi, A. and Hjort, N. L. (2002). Statistical methods for discontinuous phenomena. Journal of Nonparametric Statistics, 14:1–5.Google Scholar
Galton, F. (1889). Natural Inheritance. Macmillan, London.
Gauss, C. F. (1816). Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift Astronomischen Verwandte Wissenschaften, 1:185–196.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis [2nd ed.]. Chapman & Hall/CRC, London.
Gelman, A. and Nolan, D. (2002). Teaching Statistics: A Bag of Tricks. Oxford University Press, Oxford.
Gilbert, R., Salanti, G., Harden, M. and See, S. (2005). Infant sleeping position and the sudden infant death syndrome: Systematic review of observational studies and historical review of recommendations from 1940 to 2002. International Journal of Epidemiology, 34:874–887.Google Scholar
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
Girón, J., Ginebra, J. and Riba, A. (2005). Bayesian analysis of a multinomial sequence and homogeneity of literary style. The American Statistician, 59:19–30.Google Scholar
Givens, H., Huebinger, R. M., Patton, J. C., Postma, L. D., Lindsay, M., Suydam, R. S., C., G. J., Matson, C. W. and Bickham, J. W. (2010). Population genetics of Bowhead whales (Balaena mysticetus) in the Western Arctic. Arctic, 63:1–12.Google Scholar
Glad, I. K., Hjort, N. L. and Ushakov, N. G. (2003). Correction of density estimators that are not densities. Scandinavian Journal of Statistics, 30:415–427.Google Scholar
Goldstein, H. (2011). Multilevel Statistical Models [4th ed.]. John Wiley & Sons, London.
Good, I. J. (1983). Good Thinking: The Foundations of Probability and Its Applications. University of Minnesota Press, Minneapolis.
Goodman, L. A. (1954). Some practical techniques in serial number analysis. Journal of the American Statistical Association, 49:97–112.Google Scholar
Gould, S. J. (1995). The median isn't the message. In Adam's Navel and Other Essays, pp. 15–21. Penguin Classics, London. First published in Discover Magazine, June 1985.
Gould, S. J. (2003). The Hedgehog, the Fox, and the Magister's Pox. Harmony Books, New York.
Green, P. J., Hjort, N. L. and Richardson, S. (2003). Highly Structured Stochastic Systems. Oxford University Press.
Gujarati, X. (1968). The relation between help-wanted index and the unemployment rate: A statistical analysis, 1962–1967. The Quarterly Review of Economics and Business, 8:67–73.Google Scholar
Guttman, L. (1985). The illogic of statistical inference for cumulative science. Applied Stochastic Models and Data Analysis, 1:3–9.Google Scholar
Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica, 11:1–12.Google Scholar
Haavelmo, T. (1944). The probability approach in econometrics. Econometrica, 12:iii–vi+1–115.Google Scholar
Hacking, I. (1975). The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge.
Hacking, I. (2006). The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge. This is the third edition of the book, with an extended preface.
Hacking, I. M. (1965). Logic of Statistical Inference. Cambridge University Press, Cambridge.
Hald, A. (1990). A History of Probability and Statistics and Their Applications Before 1750. John Wiley & Sons, New York.
Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. John Wiley & Sons, New York.
Hald, A. (1999). On the history of maximum likelihood in relation to inverse probability and least squares. Statistical Science, 14:214–222.Google Scholar
Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Annals of Statistics, 16:927–953.Google Scholar
Hall, P. (1992). The Bootstrap and Edgeworth Expansions. Springer-Verlag, Budapest.
Hampel, F. (2001). An outline of a unifying statistical theory. Technical Report 95, Seminar für Statistik, ETH Zürich.
Hampel, F. (2006). The proper fiducial argument. In Ahlswede, R. (ed.), General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, No. 4123, pp. 512–526. Springer-Verlag, Heidelberg.
Hampel, F. R., Ronchetti, E., Rousseuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. John Wiley, New York.
Hand, D. J., Daly, F., Lunn, A., McConway, K. J. and Ostrowski, E. (1994). A Handbook of Small Data Sets. Chapman & Hall, London.
Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19:491–544.Google Scholar
Hannig, J., Iyer, H. and Patterson, P. (2006). Fiducial generalized confidence intervals. Journal of the American Statistical Association, 101:254–269.Google Scholar
Hannig, J. and Lee, T. C. M. (2009). Generalized fiducial inference for wavelet regression. Biometrika, 96:847–860.Google Scholar
Hannig, J. and Xie, M. (2012). A note on Dempster–Shafer recombination of confidence distributions. Electronic Journal of Statistics, 6:1943–1966.Google Scholar
Hansen, B. E. (2008). Least squares forecast averaging. Journal of Econometrics, 146:342–350.Google Scholar
Härdle, W. K. and Simar, L. (2012). Applied Multivariate Statistical Analysis (3rd ed.). Springer-Verlag, Berlin.
Harris, R. R. and Harding, E. F. (1984). The fiducial argument and Hacking's principle of irrelevance. Journal of Applied Statistics, 11:170–181.Google Scholar
Hary, A. (1960). 10,0. Copress, München.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 9:97–109.Google Scholar
Heger, A. (2011). Jeg og jordkloden. Dagsavisen, December 16.
Helland, I. S. (1982). Central limit theorems for martingales with discrete or continuous time. Scandinavian Journal of Statistics, 9:79–94.Google Scholar
Helland, I. S. (2015). Epistemic Processes: A Basis for Statistics and for Quantum Mechanics. Springer, Science & Business Media, New York.
Hermansen, G. H. and Hjort, N. L. (2015). Focused information criteria for time series. Submitted.
Hermansen, G. H., Hjort, N. L. and Kjesbu, O. S. (2015). Modern statistical methods applied on extensive historic data: Hjort liver quality time series 1859–2012 and associated influential factors. Canadian Journal of Fisheries and Aquatic Sciences, 72.Google Scholar
Hjort, J. (1914). Fluctuations in the Great Fisheries of Northern Europe, Viewed in the Light of Biological Research. Conseil Permanent International Pour l'Exploration de la Mer, Copenhagen.
Hjort, J. (1933).Whales and whaling. Hvalr°adets skrifter: Scientific Results of Marine Biological Research.
Hjort, J. (1937). The story of whaling: A parable of sociology. The Scientific Monthly, 45: 19–34.Google Scholar
Hjort, N. L. (1985). Discussion contribution to P. K. Andersen and Ø. Borgan's article ‘counting process models for life history data: A review’. Scandinavian Journal of Statistics, 12:97–158.Google Scholar
Hjort, N. L. (1986a). Bayes estimators and asymptotic efficiency in parametric counting process models. Scandinavian Journal of Statistics, 13:63–85.Google Scholar
Hjort, N. L. (1986b). Statistical Symbol Recognition [Research Monograph]. The Norwegian Computing Centre, Oslo.
Hjort, N. L. (1988a). The eccentric part of the noncentral chi square. The American Statistician, 42:130–132.Google Scholar
Hjort, N. L. (1988b). On large-sample multiple comparison methods. Scandinavian Journal of Statistics, 15:259–271.Google Scholar
Hjort, N. L. (1990a). Goodness of fit tests in models for life history data based on cumulative hazard rates. Annals of Statistics, 18:1221–1258.Google Scholar
Hjort, N. L. (1990b). Nonparametric Bayes estimators based on Beta processes in models for life history data. Annals of Statistics, 18:1259-1294.Google Scholar
Hjort, N. L. (1992). On inference in parametric survival data models. International Statistical Review, 60:355–387.Google Scholar
Hjort, N. L. (1994a). The exact amount of t-ness that the normal model can tolerate. Journal of the American Statistical Association, 89:665–675.Google Scholar
Hjort|N. L. (1994b). Minimum L2 and robust Kullback–Leibler estimation. In Lachout, P. and Vísek, J. A. (eds.), Proceedings of the 12th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, pp. 102–106. Academy of Sciences of the Czech Republic, Prague.
Hjort, N. L. (1994c). Should the Olympic sprint skaters run the 500 m twice? Technical report, Department of Mathematics, University of Oslo.
Hjort, N. L. (2003). Topics in nonparametric Bayesian statistics. In Green, P. J., Hjort, N. L., and Richardson, S. (eds.), Highly Structured Stochastic Systems, pp. 455–478. Oxford University Press, Oxford.
Hjort, N. L. (2007). And quiet does not flow the Don: Statistical analysis of a quarrel between Nobel laureates. In Østreng, W. (ed.) Concilience, pp. 134–140. Centre for Advanced Research, Oslo.
Hjort, N. L. (2008). Discussion of P.L. Davies’ article ‘Approximating data’. Journal of the Korean Statistical Society, 37:221–225.Google Scholar
Hjort, N. L. (2014). Discussion of Efron's ‘Estimation and accuracy after model selection’. Journal of the American Statistical Association, 109:1017–1020.Google Scholar
Hjort, N. L. and Claeskens, G. (2003a). Frequentist model average estimators [with discussion and a rejoinder]. Journal of the American Statistical Association, 98:879–899.Google Scholar
Hjort, N. L. and Claeskens, G. (2003b). Rejoinder to the discussion of ‘Frequentist model average estimators’ and ‘The focused information criterion’. Journal of the American Statistical Association, 98:938–945.Google Scholar
Hjort, N. L. and Claeskens, G. (2006). Focused information criteria and model averaging for Cox's hazard regression model. Journal of the American Statistical Association, 101:1449–1464.Google Scholar
Hjort, N. L. and Fenstad, G. (1992). On the last time and the number of times an estimator is more than e from its target vaule. Annals of Statistics, 20:469–489.Google Scholar
Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start. Annals of Statistics, 23:882–904.Google Scholar
Hjort, N. L., Holmes, C., Müller, P. and Walker, S. (2010). Bayesian Nonparametrics. Cambridge University Press, Cambridge.
Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. Annals of Statistics, 24:1619–1647.Google Scholar
Hjort, N. L. and Koning, A. J. (2002). Tests for constancy of model parameters over time. Journal of Nonparametric Statistics, 14:113–132.Google Scholar
Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Annals of Statistics, 37:1079–1111.Google Scholar
Hjort, N. L. and Omre, H. (1994). Topics in spatial statistics [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 21:289–357.Google Scholar
Hjort, N. L. and Petrone, S. (2007). Nonparametric quantile inference using Dirichlet processes. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 463–492. World Scientific, Hackensack, NJ.
Hjort, N. L. and Pollard, D. B. (1993). Asymptotics for minimisers of convex processes. Technical report, Department of Mathematics, University of Oslo.
Hjort, N. L. and Rosa, D. (1998). Who won?Speedskating World, 4:15–18.Google Scholar
Hjort, N. L. and Varin, C. (2008). ML, PL, QL in Markov chain models. Scandinavian Journal of Statistics, 35:64–82.Google Scholar
Hjort, N. L. and Walker, S. (2009). Quantile pyramids for Bayesian nonparametrics. Annals of Statistics, 37:105–131.Google Scholar
Hobolth, A. and Jensen, J. L. (2005). Statistical inference in evolutionary models of DNA sequences via the EM algorithm. Technical report, Department of Theoretical Statistics, University of Aarhus.
Hoeting, J. A., Madigan, D., Raftery, A. E. and Chris, T.Volinsky, C. T. (1999). Bayesian model averaging: A tutorial [with discussion and a rejoinder]. Statistical Science, 14:382–417.Google Scholar
Hollings, X. and Triggs, X. (1993). Influence of the new rules in international rugby football: Implications for conditioning. Technical report.
Holum, D. (1984). The Complete Handbook of Speed Skating. High Peaks Cyclery, Lake Placid.
Hosmer, D. W. and Lemeshow, S. (1999). Applied Logistic Regression. John Wiley & Sons, New York.
Hotelling, H. (1931). The generalization of Student's ratio. Annals of Mathematical Statistics, 2:360–378.Google Scholar
Houde, E. D. (2008). Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery Science, 41:53–70.Google Scholar
Huber, P. J. (1967). The behavior of maximum likelihood estimators under nonstandard conditions. In Le Cam, L. and Neyman, J. (eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, pp. 221–233. University of California Press, Berkeley.
Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York.
IPCC (2007). Climate Change 2007: Fourth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations, New York. Published by Cambridge University Press, New York.
IPCC (2013). Climate Change 2013: Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations, New York. Published by Cambridge University Press, New York.
Jansen, D. (1994). Full Circle. Villard Books, New York.
Jeffreys, H. (1931). Theory of Probability. Cambridge University Press, Cambridge.
Jeffreys, H. (1961). Scientific Inference. Oxford University Press, Oxford.
Jensen, J. L. (1993). A historical sketch and some new results on the improved likelihood ratio statistic. Scandinavian Journal of Statistics, 20:1–15.Google Scholar
Johansen, S. (1979). Introduction to the Theory of Regular Exponential Families. Institute of Mathematical Statistics, University of København, København.
Jones, M. C. (1992). Estimating densities, quantiles, quantile densities and density quantiles. Annals of the Institute of Statistical Mathematics, 44:721–727.Google Scholar
Jones, M. C., Hjort, N. L., Harris, I. R. and Basu, A. (2001). A comparison of related density-based minimum divergence estimators. Biometrika, 88:865–873.Google Scholar
Jordan, S. M. and Krishnamoorthy, K. (1996). Exact confidence intervals for the common mean of several normal populations. Biometrics, 52:77–86.Google Scholar
Jorde, P. E., Schweder, T., Bickham, J. W., Givens, G. H., Suydam, R., Hunter, D. and Stenseth, N. C. (2007). Detecting genetic structure in migrating bowhead whales off the coast of Barrow, Alaska. Molecular Ecology, 16:1993–2004.Google Scholar
Joshi, V. M. (1967). Inadmissibility of the usual confidence sets for the mean of a multivariate normal population. Annals of Mathematical Statistics, 38:1868–1875.Google Scholar
Jøssang, A. and Pope, S. (2012). Dempster's rule as seen by little colored balls. Computational Intelligence, 4:453–474.Google Scholar
Joyce, P. and Marjoram, P. (2008). Approximately sufficient statistics and Bayesian computation. Statistical Applications in Genetics and Molecular Biology, 7:1–18.Google Scholar
Jullum, M. and Hjort, N. L. (2015). Parametric or nonparametric? A focussed information criterion approach. Submitted.
Kagan, J. (2009). The Three Cultures: Natural Sciences, Social Sciences, and the Humanities in the 21st Century. Cambridge University Press, Cambridge.
Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux, New York.
Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47:263–291.Google Scholar
Kahneman, D. and Tversky, A. (1984). Choices, values and frames. American Psychologist, 39:341–350.Google Scholar
Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). John Wiley & Sons, New York.
Kalbfleisch, J. G. and Sprott, D. A. (2006). Fiducial probability. In General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, pp. 99–109. Springer-Verlag, Heidelberg.
Kardaun, O. J. W. F., Salomé, D., Schaafsma, E., Steerneman, A. G. M., Willems, J. C. and Cox, D. R. (2003). Reflections on fourteen cryptic issues concerning the nature of statistical inference [with discussion and a rejoinder]. International Statistical Review, 71:277–318.Google Scholar
Karlin, S. and Matessi, C. (1983). The eleventh R. A. Fisher memorial lecture: Kin selection and altruism. Proceedings of the Royal Society of London, 219:327–353.Google Scholar
Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes. Academic Press, New York.
Kass, R. (2011). Statistical inference: The big picture. Statistical Science, 26:1–9.Google Scholar
Kavvoura, F. K. and Ioannidis, J. P. A. (2008). Methods for meta-analysis in genetic association studies: A review of their potential and pitfalls. Human Genetics, 123:1–14.Google Scholar
Kelly, F. P. and Ripley, B. D. (1976). On Strauss's model for clustering. Biometrika, 63:357–360.Google Scholar
Keynes, J. M. (1921). Treatise on Probability. Macmillan & Co., London.
Kim, J. and Pollard, D. (1990). Cube root asymptotics. Annals of Statistics, 18:191–219.Google Scholar
Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences USA, 78:454–458.Google Scholar
Kjesbu, O. S., Opdal, A. F., Korsbrekke, K., Devine, J. A. and Skjæraasen, J. E. (2014). Making use of Johan Hjort's ‘unknown’ legacy: Reconstruction of a 150-year coastal time-series on northeast Arctic cod (Gadus morhua) liver data reveals long-term trends in energy allocation patterns. ICES Journal of Marine Science, 71:2053–2063.Google Scholar
Knutsen, H., Olsen, E. M., Jorde, P. E., Espeland, S. H., André, C. and Stenseth, N. C. (2011). Are low but statistically significant levels of genetic differentiation in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. Molecular Ecology, 20:768–783.Google Scholar
Kohler, R. E. (1994). Lords of the Fly: ‘Drosophila’ Genetics and the Experimental Life. University of Chicago Press, Chicago.
Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin. Translation of OCHOBHLIe ΠOHЯTИЯ TeopИИ BepoИTHOCTeЙ, Nauka, Moskva.
Kolmogorov, A. N. (1998). OCHOBHLIe ΠOHЯTИЯ TeopИИ BepoИTHOCTeЙ Fazis, Moskva. 3rd edition of the Russian 1936 original, containing more material than the 1933 German edition.
Konishi, K., Tamura, T., Zenitani, R., Bano, T., Kato, H. and Walløe, L. (2008). Decline in energy storage in the Antarctic minke whale (Balaenoptera bonaerensis) in the Southern Ocean. Polar Biology, 31:1509–1520.Google Scholar
Konishi, K. and Walløe, L. (2015). Substantial decline in energy storage and stomach fullness in Antarctic minke whales during the 1990s. Submitted.
Koopman, B. (1936). On distribution admitting a sufficient statistic. Transactions of the American Mathematical Society, 39:399–409.Google Scholar
Koschat, M. A. (1987). A characterisation of the Fieller solution. Annals of Statistics, 15:462–468.Google Scholar
Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics, 95:391–413.Google Scholar
Langaas, M., Lindqvist, B. H. and Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society, Series B, 67:555–572.Google Scholar
Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les év‘evemens. Mémoires de Mathmátique et de Physique, Tome Sixi`eme, Paris.
Lawless, J. F. and Fredette, M. (2005). Frequentist prediction intervals and predictive distributions. Biometrika, 92:529–542.Google Scholar
Laws, R. M. (1977). Seals and whales of the Southern Ocean. Philosophical Transactions of the Royal Society, Series B, 279:81–96.Google Scholar
Le Cam, L. (1964). Sufficiency and approximate sufficiency. Annals of Mathematical Statistics, 35:1419–1455.Google Scholar
Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts. Springer-Verlag, Berlin.
Lee, Y., Nelder, J. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood. Chapman & Hall/CRC, Boca Raton, FL.
Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 58:619–678.Google Scholar
Lehmann, E. L. (1959). Testing Statistical Hypotheses. John Wiley & Sons, New York.
Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco.
Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley & Sons, New York.
Lehmann, E. L. (1993). The Fisher, Neyman–Pearson theories of testing hypotheses: One theory or two?Journal of the American Statistical Association, 88:1242–1249.Google Scholar
Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer-Verlag, Berlin.
Lehmann, E. L. (2011). Fisher, Neyman, and the Creation of Classical Statistics, Springer-Verlag, New York.
Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation (2nd ed.). Springer, Berlin.
Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses (3rd ed.). John Wiley & Sons, New York.
Le May Doan, C. (2002). Going for Gold. McClelland & Stewart Publisher, Toronto.
Lerudjordet, M. (2012). Statistical analys of track and field data [master's thesis]. Technical report, Department of Mathematics, University of Oslo.
Liang|H., Zou|G., Wan|A. T. K. and Zhang|X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 106:1053–1066.
Lindley|D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B, 20:102–107.
Lindqvist, B. H. and Taraldsen, G. (2006). Monte Carlo conditioning on a sufficient statistic. Biometrika, 92:451–464.Google Scholar
Lindqvist, B. H. and Taraldsen, G. (2007). Conditional Monte Carlo based on sufficient statistics with applications. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 545–562. World Scientific, Hackensack, NJ.
Linnik, Y. V. (1963). On the Behrens–Fisher problem. Bulletin of the Institute of International Statistics, 40:833–841.Google Scholar
Liu, C.-A. (2015). Distribution theory of the least squares averaging estimator. Journal of Econometrics, 186:142–159.Google Scholar
Liu, D., Liu, R. Y. and Xie, M. (2014a). Exact meta-analysis approach for discrete data and its application to 2×2 tables with rare events. Journal of the American Statistical Association, 109:1450–1465.Google Scholar
Liu, D., Liu, R. Y. and Xie, M. (2015). Multivariate meta-analysis of heterogeneous studies using only summary statistics: Efficiency and robustness. Journal of the American Statistical Association, 110:326–340.Google Scholar
Mandelkern, M. (2002). Setting confidence intervals for bounded parameters [with discussion and a rejoinder]. Statistical Science, 17:149–159.Google Scholar
Manley, G. (1974). Central england temperatures: Monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society, 100:389–405.Google Scholar
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, New York.
Marin, J.-M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012). Approximate Bayesian computational methods. Statistics and Computing, 22:1167–1180.Google Scholar
Markov, A. A. (1906). Распространие зaKOHa бoлLшиx чиceл Ha BeличиHLI, заВисЯщие друт OT друтa [Extending the law of large numbers for variables that are dependent of each other]. Известия Физиĸо-математичесκого общества при Казанском университете (2-я серия), 15:124–156.
Markov, A. A. (1913). Пример статистичедования иследования над текстом “Евгения Онегина”, иллюстрирующий связL испLІтаний в цепL [Example of a statistical investigation illustrating the transitions in the chain for the ‘Evgenii Onegin’ text]. Известия Akademii Nauk, Sankt-Peterburg (6-я seriя), 7:153–162.
Marshall, E. C. and Spiegelhalter, D. J. (2007). Identifying outliers in Bayesian hierarchical models: A simulation-based approach. Bayesian Analysis, 2:409–444.Google Scholar
Mayo, D. G. (2010). An error in the argument from conditionality and sufficiency to the likelihood principle. In Mayo, D. G. and Spanos, A. (eds.), Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability and the Objectivity and Rationality of Science, pp. 305–314. Cambridge University Press, Cambridge.
Mayo, D. G. (2014). On the Birnbaum argument for the strong likelihood principle [with discussion and a rejoinder]. Statistical Science, 29:227–239.Google Scholar
McCloskey, R. (1943). Homer Price. Scholastic, New York.
McCullagh, P. (2002). What is a statistial model? [with discussion and a rejoinder]. Annals of Statistics, 30:1225–1308.Google Scholar
McCullagh, P. and Nelder, J. (1989). Generalized Linear Models (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL.
Melville, H. (1857). The Confidence-Man. Dix, Edwards & Co., New York.
Milyukov, V. and Fan, S.-H. (2012). The Newtonian gravitational constant: Modern status of measurement and the new CODATA value. Gravitation and Cosmology, 18:216–224.Google Scholar
Mogstad, E. K. (2013). Mode hunting and density estimation with the focused information criterion [master's thesis]. Technical report, Department of Mathematics, University of Oslo.
Moher, D., Schulz, F. and Altman, D. G. (2010). CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Medicine, 8:8:18 doi:10.1186/1741–7015–8–18.Google Scholar
Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, London.
Moyeed, R. A. and Baddeley, A. J. (1991). Stochastic approximation of the mle for a spatial point pattern. Scandinavian Journal of Statistics, 18:39–50.Google Scholar
Murtaugh, P. A., Dickson, E. R., Van Dam, G. M., Malinchoc, M., Grambsch, P. M., Langworthy, A. L. and Gips, C. H. (1994). Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. Hepatlogy, 20:126–134.Google Scholar
Nadarajah, S., Bityukov, S. and Krasnikov, N. (2015). Confidence distributions: A review. Statistical Methodology, 22:23–46.Google Scholar
Nair, V. N. (1984). Confidence bands for survival functions with censored data: A comparative study. Technometrics, 26:265–275.Google Scholar
Narum, S., Westergren, T. and Klemp, M. (2014). Corticosteroids and risk of gastrointestinal bleeding: A systematic review and meta-analysis. BMJ Open, 4:1–10.Google Scholar
Nelder, J. E. and Wedderburn, W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135:370–384.Google Scholar
Nelson, J. P. and Kennedy, P. E. (2009). The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environmental Resources and Economics, 42:345–377.Google Scholar
Newcomb, S. (1891). Measures of the velocity of light made under the direction of the Secretary of the Navy during the years 1880–1882. Astronomical Papers, 2:107–230.Google Scholar
Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society, Series A, 97:558–625.Google Scholar
Neyman, J. (1941). Fiducial argument and the theory of confidence intervals. Biometrika, 32:128–150.Google Scholar
Neyman, J. and Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series A, 231:289–337.Google Scholar
Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16:1–32.Google Scholar
Niemiro, W. (1992). Asymptotics for M-estimators defined by convex minimization. Annals of Statistics, 20:1514–1533.Google Scholar
Nissen, S. E. and Wolski, K. (2007). Effect of Rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356:2457–2471.Google Scholar
Norberg, R. (1988). Discussion of Schweder's paper ‘A significance version of the basic Neyman–Pearson test theory for cumulative science’. Scandinavian Journal of Statistics, 15:235–241.Google Scholar
Normand, S.-L. T. (1999). Tutorial in biostatistics: Meta-analysis: Formulating, evaluating, combining, and reporting. Statistics in Medicine, 18:321–359.Google Scholar
Oeppen, J. and Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296:1029–1031.Google Scholar
Oja, H. (2010). Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs and Ranks. Springer-Verlag, Berlin.
Ottersen, G., Hjermann, D. Ø. and Stenseth, N. C. (2006). Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fisheries Oceanography, 15:230–243.Google Scholar
Owen, A. (1990). Empirical likelihood ratio confidence regions. Annals of Statistics, 18:90–120.Google Scholar
Owen, A. (1991). Empirical likelihood for linear models. Annals of Statistics, 19:1725–1747.Google Scholar
Owen, A. (1995). Nonparametric likelihood confidence bands for a distribution function. Journal of the American Statistical Association, 90:516–521.Google Scholar
Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC, London.
Paccioli, L. (1494). Summa de arithemetica, geometria et proportionalità, Venezia.
Parmar, M. K. B., Torri, V. and L., S. (1998). Extracting summary statistics to perform meta-analysis of the published literature for survival endpoints. Statistics in Medicine, 17:2815–2834.Google Scholar
Pawitan, Y. (2000). Computing empirical likelihood from the bootstrap. Statistics and Probability Letters, 47:337–345.Google Scholar
Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford.
Paxton, C. G. M., Burt, M. L., Hedley, S. L., Vikingsson, G., Gunnlaugsson, T. and Deportes, G. (2006). Density surface fitting to estimate the abundance of humpback whales based on the NASS-95 and NASS-2001 aerial and shipboard surveys. NAMMCO Scientific Publishing, 7:143–159.Google Scholar
Pearson, E. S. (1966). The Neyman-Pearson story: 1926–34. In Research Papers in Statistics: Festschrift for J. Neyman. John Wiley & Sons, New York.
Pearson, K. (1902). On the change in expectation of life in man during a period of circa 2000 years. Biometrika, 1:261–264.Google Scholar
Pedersen, J. G. (1978). Fiducial inference. International Statistical Review, 146:147–170.Google Scholar
Peplow, M. (2014). Social sciences suffer from severe publication bias. Nature.Google Scholar
Pitman, E. J. G. (1936). Sufficient statistics and intrinsic accuracy. Mathematical Proceedings of the Cambridge Philosophical Society, 32:567–579.Google Scholar
Pitman, E. J. G. (1939). The estimation of location and scale parameters of a continuous population of any given form. Biometrika, 30:391–421.Google Scholar
Pitman, E. J. G. (1957). Statistics and science. Journal of the American Statistical Association, 52: 322–330.
Pollard, D. B. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7:295–314.Google Scholar
Poole, D. and Raftery, A. E. (2000). Inference in deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association, 95:1244–1255.Google Scholar
Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22:300–325.Google Scholar
Quenoille, M. H. (1958). The Fundamentals of Statistical Reasoning. Charles Griffin, London.
Raftery, A. E., Givens, G. H. and Zeh, J. E. (1995). Inference from a deterministic population dynamics model for bowhead whales [with discussion and a rejoinder]. Journal of the American Statistical Association, 90:402–430.Google Scholar
Raftery, A. E. and Schweder, T. (1993). Inference about the ratio of two parameters, with application to whale censusing. The American Statistician, 47:259–264.Google Scholar
Rao, C. R. (1945). Information and accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society, 37:81–91.Google Scholar
Rausand, M. and Høyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley & Sons, Hoboken, NJ.
Rebolledo, R. (1980). Central limit theorems for local martingales. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 51:269–286.Google Scholar
Reeds, J. A. (1985). Asymptotic number of roots of Cauchy likelihood equations. Annals of Statistics, 13:775–784.Google Scholar
Reid, C. (1982). Neyman: From Life. Springer-Verlag, New York.
Reiss, R.-D. (1989). Approximate Distributions of Order Statistics. Springer-Verlag, Heidelberg.
Ripley, B. D. (1977). Modelling spatial patterns [with discussion and a rejoinder]. Journal of the Royal Statistical Society, Series B, 39:172–212.
Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons, New York.
Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge.
Robinson, M. E. and Tawn, J. A. (1995). Statistics for exceptional athletics records. Journal of the Royal Statistical Society, Series C, 44:499–511.Google Scholar
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton.
Rodgers, J. L. and Doughty, D. (2001). Does having boys or girls run in the family?Chance, 8–13.Google Scholar
Romano, J. P. and Wolf, W. (2007). Control of generalized error rates in multiple testing. Annals of Statistics, 35:1378–1408.Google Scholar
Rothstein, H., Sutton, A. J. and Borenstein, M. (2005). Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. John Wiley & Sons, Chichester.
Royall, R. M. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, London.
Rücker, G., Schwarzer, G., Carpenter, J. and Olkin, I. (2008). Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Statistics in Medicine, 28:721–738.Google Scholar
Salomé, D. (1998). Statistical Inference via Fiducial Methods [PhD dissertation]. Technical report, University of Groeningen.
Savage, L. J. (1976). On rereading R. A. Fisher. Annals of Statistics, 4:441–500.Google Scholar
Scheffé, H. (1959). The Analysis of Variance. John Wiley & Sons, New York.
Scheffé, H. (1970). Practical solutions to the Behrens–Fisher problem. Journal of the American Statistical Association, 65:1501–1508.Google Scholar
Schweder, T. (1975). Window estimation of the asymptotic variance of rank estimators of location. Scandinavian Journal of Statistics, 2:113–126.Google Scholar
Schweder, T. (1988). A significance version of the basic Neyman–Pearson theory for scientific hypothesis testing [with discussion and a rejoinder]. Scandinavian Journal of Statistics, 15:225–242.Google Scholar
Schweder, T. (1995). Discussion contribution to ‘Inference from a deterministic population dynamics model for bowhead whales’ by Raftery, Givens, Zeh. Journal of the American Statistical Association, 90:420–423.Google Scholar
Schweder, T. (2003). Abundance estimation from multiple photo surveys: Confidence distributions and reduced likelihood for Bowhead whales off Alaska. Biometrics, 59:974–983.Google Scholar
Schweder, T. (2007). Confidence nets for curves. In Nair, V. (ed.), Advances in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, pp. 593–609. World Scientific, Hackensack, NJ.Google Scholar
Schweder, T. and Hjort, N. L. (1996). Bayesian synthesis or likelihood synthesis – what does Borel's paradox say?Reports of the International Whaling Commission, 46:475–479.Google Scholar
Schweder, T. and Hjort, N. L. (2002). Likelihood and confidence. Scandinavian Journal of Statistics, 29:309–322.Google Scholar
Schweder, T. and Hjort, N. L. (2003). Frequentist analogues of priors and posteriors. In Stigum, B. (ed.), Econometrics and the Philosophy of Economics: Theory Data Confrontation in Economics, pp. 285–217. Princeton University Press, Princeton, NJ.
Schweder, T. and Hjort, N. L. (2013a). Discussion of M. Xie and K. Singh's ‘Confidence distributions, the frequentist estimator of a parameter: A review’. International Statistical Review, 81:56–68.Google Scholar
Schweder, T. and Hjort, N. L. (2013b). Integrating confidence intervals, likelihoods and confidence distributions. In Proceedings 59th World Statistics Congress, 25–30 August 2013, Hong Kong, volume I, pp. 277–282. International Statistical Institute, Amsterdam.
Schweder, T. and Ianelli, J. N. (1998). Bowhead assessment by likelihood synthesis: methods and difficulties. Technical Report 50/AS2 the Scientific Committee of the International Whaling Commission, 16pp.
Schweder, T. and Ianelli, J. N. (2001). Assessing the Bering-Chukchi-Beaufort Seas stock of bowhead whales from survey data, age-readings and photo-identifications using frequentist methods. Technical Report 52/AS13, the Scientific Committee of the International Whaling Commission, 16pp.
Schweder, T., Sadykova, D., Rugh, D. and Koski, W. (2010). Population estimates from aerial photographic surveys of naturally and variably marked bowhead whales. Journal of Agricultural Biological and Environmental Statistics, 15:1–19.Google Scholar
Schweder, T. and Spjøtvoll, E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika, 69:492–502.Google Scholar
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. JohnWiley & Sons, New York.
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ.
Sharma, S. (1980). On Hacking's fiducial theory of inference. The Canadian Journal of Statistics, 8:227–233.Google Scholar
Sheather, S. J. and Marron, J. S. (1990). Kernel quantile estimation. Journal of the American Statistical Association, 85:410–416.Google Scholar
Shmueli, G. (2010). To explain or to predict?Statistical Science, 25:289–310.Google Scholar
Shumway, R. H. (1988). Applied Statistical Time Series Analysis. Prentice-Hall, Englewood Cliffs, NJ.
Simpson, R. J. S. and Pearson, K. (1904). Report on certain enteric fever inoculation statistics. The British Medical Journal, 2:1243–1246.Google Scholar
Sims, C. A. (2012). Statistical modeling of monetary policy and its effects [Nobel Prize Lecture in Economics]. American Economic Review, 102:1187–1205.Google Scholar
Singh, K., Xie, M. and Strawderman, W. E. (2005). Combining information from independent sources through confidence distributions. Annals of Statistics, 33:159–183.Google Scholar
Singh, K., Xie, M. and Strawderman, W. E. (2007). Confidence distribution (CD) – distribution estimator of a parameter. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, Vol. 33 of IMS Lecture Notes – Monograph Series, pp. 132–150.
Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M. and Myhre, G. (2014). A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth System Dynamics, 5:139–175.Google Scholar
Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, London.
Smith, R. L. (1999). Bayesian and frequentist approaches to parametric predictive inference. In Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (eds.), Bayesian Statistics 6, pp. 589–612. Oxford University Press, Oxford.
Smith, T. (1994). Scaling Fisheries: The Science of Measuring the Effects of Fishing, 1855–1955. Cambridge University Press, Cambridge.
Snow, C. P. (1959). The Two Cultures and the Scientific Revolution. Cambridge University Press, Cambridge.
Snow, C. P. (1963). The Two Cultures: A Second Look. Cambridge University Press, Cambridge.
Spiegelberg, W. (1901). Aegyptische und Griechische Eigennamen aus Mumientiketten der Römischen Kaiserzeit. Greek Inscriptions, Cairo.
Spiegelhalter, D. J. (2001). Mortality and volume of cases in paediatric cardiac surgery: Retrospective study based on routinely collected data. British Medical Journal, 326:261.Google Scholar
Spiegelhalter, D. J. (2008). Understanding uncertainty. Annals of Family Medicine, 3:196–197.Google Scholar
Spiegelhalter, D. J., Aylin, P., Best, N. G., Evans, S. J. W. and Murray, G. D. (2002). Commissioned analysis of surgical performance using routine data: Lessons from the Bristol inquiry. Journal of the Royal Statistical Society, Series A, 165:191–221.Google Scholar
Spiegelhalter, D. J., Pearson, M. and Short, I. (2011). Visualizing uncertainty about the future. Science, 333:1393–1400.Google Scholar
Spock, B. (1946). The Common Sense Book of Baby and Child Care. Duell, Sloane and Pearce, New York City.
Stein, C. (1959). An example of wild discepancy between fiducial and confidence intervals. Annals of Mathematical Statistics, 30:877–880.Google Scholar
Stigler, S. M. (1973). Studies in the history of probability and statistics, xxxii: Laplace, Fisher and the discovery of the concept of sufficiency. Biometrika, 60:439–445.Google Scholar
Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions. Annals of Statistics, 2:676–693.Google Scholar
Stigler, S. M. (1977). Do robust estimators work with real data? [with discussion and a rejoinder]. Annals of Statistics, 5:1055–1098.Google Scholar
Stigler, S. M. (1986a). The History of Statistics: The Measurement of Uncertainty Before 1900. Harvard University Press, Cambridge, MA.
Stigler, S. M. (1986b). Laplace's 1774 memoir on inverse probability. Statistical Science, 1:359–363.Google Scholar
Stigler, S. M. (1986c). Memoir on the probability of the causes of events [translation of Laplace's 1774 memoir]. Statistical Science, 1:364–378.Google Scholar
Stock, J. and Watson, M. (2012). Introduction to Economics: Global Edition. Pearson Education, Upper Saddle River, NJ.
Stolley, P. D. (1991). When genius errs: R. A. Fisher and the lung cancer controversy. Journal of Epidemiology, 133:416–425.Google Scholar
Stone, M. (1969). The role of significance testing: Some data with a message. Biometrika, 56:485–493.Google Scholar
Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B, 64:479–498.Google Scholar
Stoufer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. and Williams, R. M. J. (1949). Adjustment During Army Life. Princeton University Press, Princeton, NJ.
Strauss, D. J. (1975). A model for clustering. Biometrika, 63:467–475.Google Scholar
Student (1908). The probable error of a mean. Biometrika, 6:1–25.
Sundberg, R. (2010). Flat and multimodal likelihoods and model lack of fit in curved exponential families. Scandinavian Journal of Statistics, 37:632–643.Google Scholar
Sutton, A. J. and Higgins, J. P. T. (2008). Recent developments in meta-analysis. Statistics in Medicine, 27:625–650.Google Scholar
Sweeting, M. J., Sutton, A. J. and Lambert, P. C. (2004). What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Statistics in Medicine, 23:1351–1375.Google Scholar
Taraldsen|G. and Lindqvist, B. H. (2013). Fiducial theory and optimal inference. Annals of Statistics, 41:323–341.Google Scholar
Teasdale, N., Bard, C., La Rue, J. and Fleury, M. (1993). On the cognitive penetrability of posture control. Experimental Aging Research, 19:1–13.Google Scholar
Thomson, A. and Randall-Maciver, R. (1905). Ancient Races of the Thebaid. Oxford University Press, Oxford.
Tian, L., Cai, T., Pfeffer, M. A., Piankov, N., Cremieux, P.-Y. and Wei, L. J. (2009). Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2×2 tables with all available data but without artificial correction. Biostatistics, 10:275–281.Google Scholar
Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76:604–608.Google Scholar
Tocquet, A. S. (2001). Likelihood based inference in non-linear regression models using the p* and r* approach. Scandinavian Journal of Statistics, 28:429–443.Google Scholar
Tukey, J. W. (1986). Sunset salvo. The American Statistician, 40:72–76.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
Veronese, P. and Melilli, E. (2015). Fiducial and confidence distributions for real exponential families. Scandinavian Journal of Statistics, 42:471–484.Google Scholar
Viechtbauer, W. (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine, 26:37–52.Google Scholar
Voldner, N., Frøslie, K. F., Haakstad, L., Hoff, C. and Godang, K. (2008). Modifiable determinants of fetal macrosomia: Role of lifestyle-related factors. Acta Obstetricia et Gynecologica Scandinavica, 87:423–429.Google Scholar
Volz, A. G. (2008). A Soviet estimate of German tank production. The Journal of Slavic Military Studies, 21:588–590.Google Scholar
Wandler, D. V. and Hannig, J. (2012). A fiducial approach to multiple comparison. Journal of Statistical Planning and Inference, 142:878–895.Google Scholar
Wang, C. M., Hannig, J. and Iyer, H. K. (2012). Fiducial prediction intervals. Journal of Statistical Planning and Inference, 142:1980–1990.Google Scholar
Wellner, J. A. and van der Vaart, A.W. (1996). Weak Convergence of Empirical Processes. Springer-Verlag, Berlin.
White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge University Press, Cambridge.
Wilkinson, R. G. and Pickett, K. (2009). The Spirit Level: Why More Equal Societies Almost Always Do Better. Allen Lane, London.
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics, 9:60–62.Google Scholar
Windham, M. P. (1995). Robustifying model fitting. Journal of the Royal Statistical Society, Series B, 57:599–609.Google Scholar
Working, H. and Hotelling, H. (1929). Application of the theory of error to the interpretation of trends. Journal of the American Statistical Association, 24:73–85.Google Scholar
Xie, M. and Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review [with discussion and a rejoinder]. International Statistical Review, 81:3–39.Google Scholar
Xie, M., Singh, K. and Strawderman, W. E. (2011). Confidence distributions and a unifying framework for meta-analysis. Journal of the American Statistical Association, 106:320–333.Google Scholar
Yang, G., Liu, D., Liu, R. Y., Xie, M. and Hoaglin, D. C. (2014). Efficient network meta-analysis: A confidence distribution approach. Statistical Methodology, 20:105–125.Google Scholar
Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge University Press, Cambridge.
Yule, G. U. (1900). On the association of attributes in statistics: With illustrations from the material of the childhood society, & c. Philosophical Transactions of the Royal Society, Series A, 194:357–319.Google Scholar
Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statistical Science, 7:369–387.Google Scholar
Zabell, S. L. (1995). Alan Turing and the central limit theorem. The American Mathematical Monthly, 102:483–494.Google Scholar
Zech, G. (1989). Upper limits in experiments with background or measurement errors. Nuclear Instruments and Methods in Physics Research, Series A, 277:608–610.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tore Schweder, Universitetet i Oslo, Nils Lid Hjort, Universitetet i Oslo
  • Book: Confidence, Likelihood, Probability
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046671.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tore Schweder, Universitetet i Oslo, Nils Lid Hjort, Universitetet i Oslo
  • Book: Confidence, Likelihood, Probability
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046671.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tore Schweder, Universitetet i Oslo, Nils Lid Hjort, Universitetet i Oslo
  • Book: Confidence, Likelihood, Probability
  • Online publication: 05 March 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046671.019
Available formats
×