Book contents
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
2 - Fundamentals of Atomistic Simulation Methods
Published online by Cambridge University Press: 29 June 2023
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
Summary
The basics of atomistic simulation methods, density functional theory and molecular dynamics, are first presented in Chapter 2. Then we demonstrate how to calculate some basic materials properties (including lattice parameter, thermodynamic properties, elastic properties, and defect properties) through first-principles (FP) methods. Because of the remarkable accuracy in predicting such physical and chemical properties of materials, FP is widely used in computational materials science. Finally, we take the design of Mg–Li alloys for ultralightweight application as an example to show the important role of atomistic simulation methods in material design.
Keywords
- Type
- Chapter
- Information
- Computational Design of Engineering MaterialsFundamentals and Case Studies, pp. 12 - 45Publisher: Cambridge University PressPrint publication year: 2023