Book contents
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
8 - Case Studies on Light Alloy Design
Published online by Cambridge University Press: 29 June 2023
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
Summary
Chapter 8 focuses on the design of important Al- and Mg-based light alloys. Selected examples show how CALPHAD simulation tools can be used to understand and predict the effect of alloying elements and processing conditions on alloy properties and how to use that in the design of alloys. For Al alloys, two case study examples using the extended CALPHAD-type databases are demonstrated. For cast alloy A356 (Al–Si,Mg), the solidification simulation involving dedicated microsegregation modeling is presented. For the wrought alloy 7xxx (Al–Zn,Mg/Cu), elaborate heat treatment simulation with precipitation kinetics is the design tool. For Mg alloy structural components, simulations of solidification path and T6 heat treatment of AZ series (Mg–AlZn) and the development of Mg–Al–Sn-based (AT) cast alloys involving also microsegregation simulation are demonstrated. Finally, the design of biomedical Mg alloy implants utilizing the CALPHAD method and the state-of-the-art bioresorbable Mg alloy stent to cure coronary artery disease is presented.
Keywords
- Type
- Chapter
- Information
- Computational Design of Engineering MaterialsFundamentals and Case Studies, pp. 295 - 322Publisher: Cambridge University PressPrint publication year: 2023