Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T01:38:06.332Z Has data issue: false hasContentIssue false

8 - Case Studies on Light Alloy Design

Published online by Cambridge University Press:  29 June 2023

Yong Du
Affiliation:
Central South University, China
Rainer Schmid-Fetzer
Affiliation:
Clausthal University of Technology, Germany
Jincheng Wang
Affiliation:
Northwestern Polytechnical University, China
Shuhong Liu
Affiliation:
Central South University, China
Jianchuan Wang
Affiliation:
Central South University, China
Zhanpeng Jin
Affiliation:
Central South University, China
Get access

Summary

Chapter 8 focuses on the design of important Al- and Mg-based light alloys. Selected examples show how CALPHAD simulation tools can be used to understand and predict the effect of alloying elements and processing conditions on alloy properties and how to use that in the design of alloys. For Al alloys, two case study examples using the extended CALPHAD-type databases are demonstrated. For cast alloy A356 (Al–Si,Mg), the solidification simulation involving dedicated microsegregation modeling is presented. For the wrought alloy 7xxx (Al–Zn,Mg/Cu), elaborate heat treatment simulation with precipitation kinetics is the design tool. For Mg alloy structural components, simulations of solidification path and T6 heat treatment of AZ series (Mg–AlZn) and the development of Mg–Al–Sn-based (AT) cast alloys involving also microsegregation simulation are demonstrated. Finally, the design of biomedical Mg alloy implants utilizing the CALPHAD method and the state-of-the-art bioresorbable Mg alloy stent to cure coronary artery disease is presented.

Type
Chapter
Information
Computational Design of Engineering Materials
Fundamentals and Case Studies
, pp. 295 - 322
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, W., Chen, S. L., Zhang, F., Wu, K., Yang, Y., Chang, Y. A., Schmid-Fetzer, R., and Oates, W. A. (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. CALPHAD, 33(2), 328342.CrossRefGoogle Scholar
Cao, W., Zhang, F., Chen, S. L., Zhang, C., and Chang, Y. A. (2011) An integrated computational tool for precipitation simulation. JOM, 63(7), 2934.CrossRefGoogle Scholar
Carter, J. (2017) Magnesium Die-Cast Side-Door Inner Panels, award presentation at 2017 World Magnesium Conference, Singapore, May 21–23.Google Scholar
Chen, S. L., Daniel, S., Zhang, F., Chang, Y. A., Yan, X. Y., Xie, F. Y., Schmid-Fetzer, R., and Oates, W. A. (2002) The PANDAT software package and its applications. CALPHAD, 26(2), 175188.CrossRefGoogle Scholar
Chen, T., Yuan, Y., Liu, T., Li, D., Tang, A., Chen, X., Schmid-Fetzer, R., and Pan, F. (2021) Effect of Mn addition on melt purification and Fe tolerance in Mg alloys. JOM, 73, 892902.CrossRefGoogle Scholar
Clyne, T. W., and Kurz, W. (1981) Solute redistribution during solidification with rapid solid-state diffusion. Metallurgical Transactions A, 12(6), 965971.CrossRefGoogle Scholar
Deschamps, A., Dumont, D., Brechet, Y., Sigli, C., and Dubost, B. (2001) Process modeling of age-hardening aluminum alloys: from microstructure evolution to mechanical and fracture properties, Proceedings of the James T. Staley Honorary Symposium on Aluminum Alloys. Russell Township: ASM International, 298305.Google Scholar
Djurdjevic, M. B., and Schmid-Fetzer, R. (2006) Thermodynamic calculation as a tool for thixoforming alloy and process development. Materials Science and Engineering A, 417(1), 2433.CrossRefGoogle Scholar
Du, Y., Chang, Y. A., Liu, S. H., Huang, B. Y., Xie, F. Y., Yang, Y., and Chen, S. L. (2005) Thermodynamic description of the Al–Fe–Mg–Mn–Si system and investigation of microstructure and microsegregation during directional solidification of an Al–Fe–Mg–Mn–Si alloy. Zeitschrift f?r Metallkunde, 96(12), 13511362.CrossRefGoogle Scholar
Gröbner, J., Janz, A., Kozlov, A., Mirkovic, D. and Schmid-Fetzer, R. (2008) Phase diagrams of advanced magnesium alloys containing Al, Ca, Sn, Sr, and Mn. JOM, 60(12), 3238.CrossRefGoogle Scholar
Hänzi, A. C., Dalla Torre, F. H., Sologubenko, A. S., Gunde, P., Schmid-Fetzer, R., Kuehlein, M., Loffler, J. F., and Uggowitzer, P. J. (2009a) Design strategy for microalloyed ultra-ductile magnesium alloys. Philosophy Magazine Letters, 89(6), 377390.CrossRefGoogle Scholar
Hänzi, A. C., Gunde, P., Schinhammer, M., and Uggowitzer, P. J. (2009b) On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomaterialia, 5(1), 162171.CrossRefGoogle ScholarPubMed
Hillert, M., Höglund, M. H. L., and Schalin, M. (1999) Role of back-diffusion studied by computer simulation. Metallurgical and Materials Transactions A, 30(6), 16351641.CrossRefGoogle Scholar
Janz, A., Gröbner, J., Mirković, D., Medraj, M., Zhu, J., Chang, Y. A., and Schmid-Fetzer, R. (2007) Experimental study and thermodynamic calculation of Al–Mg–Sr phase equilibria. Intermetallics, 15(4), 506519.CrossRefGoogle Scholar
Janz, A., Gröbner, J., and Schmid-Fetzer, R. (2009) Thermodynamics and constitution of Mg–Al–Ca–Sr–Mn alloys: Part II. Procedure for multicomponent key sample selection and application to the Mg–Al–Ca–Sr and Mg–Al–Ca–Sr–Mn systems. Journal of Phase Equilibria and Diffusion, 30(2), 157175.CrossRefGoogle Scholar
Janz, A., Groebner, J., and Schmid-Fetzer, R. (2008) The Mg–Al–Zn–Mn–Ca–Sr alloy system: backbone of understanding phase formation in AXJ alloys and modifications of AZ and AM alloys with Ca or Sr, in Pekguleryuz, M. O., Neelameggham, N. R., Beals, R. S., and Nyberg, E. A. (eds), Magnesium Technology. Pittsburgh: Minerals, Metals and Materials Society, 427429.Google Scholar
Kampmann, R., and Wagner, R. (1984) Kinetics of precipitation in metastable binary alloys – theory and application to Cu-1.9 at % Ti and Ni-14 at % Al, in Haasen, P., Wagner, V. G. R., and Ashby, M. F. (ed), Decomposition of Alloys: The Early Stages. Oxford: Pergamon, 91103.CrossRefGoogle Scholar
Klarner, A., Sun, W., Meier, J., and Luo, A. (2016) Development of Mg–Al–Sn–Si alloys using a CALPHAD approach, in Singh, A., Solanki, K., Manuel, M. V., and Neelameggham, N. R. (eds), Magnesium Technology 2016. Carmel: John Wiley & Sons, Inc., 7982.CrossRefGoogle Scholar
Klarner, A. D., Sun, W., Miao, J., and Luo, A. A. (2017) Microstructure and mechanical properties of high pressure die cast Mg–Al–Sn–Si alloys, in Solanki, K. N., Orlov, D., Singh, A., and Neelameggham, N. R. (eds), Magnesium Technology 2017. Cham: Springer, 289295.CrossRefGoogle Scholar
Klaumünzer, D., Hernandez, J. V., Yi, S., Letzig, D., Kim, S.-h., Kim, J. J., Seo, M. H., and Ahn, K. (2019) Magnesium process and alloy development for applications in the automotive industry, in Joshi, V. V., Jordon, J. B., Orlov, D., and Neelameggham, N. R. (eds), Magnesium Technology 2019. Cham: Springer, 1520.CrossRefGoogle Scholar
Kraft, T., and Chang, Y. A. (1997) Predicting microstructure and microsegregation in multicomponent alloys. JOM, 49(12), 2028.CrossRefGoogle Scholar
Kraft, T., Rettenmayr, M., and Exner, H. E. (1996a) An extended numerical procedure for predicting microstructure and microsegregation of multicomponent alloys. Modelling and Simulation in Materials Science and Engineering, 4(2), 161177.CrossRefGoogle Scholar
Kraft, T., Roósz, A., and Rettenmayr, M. (1996b) Undercooling effects in microsegregation modelling. Scripta Materialia, 35(1), 7782.CrossRefGoogle Scholar
Li, P., Zhou, N., Qiu, H., Maitz, M. F., Wang, J., and Huang, N. (2018) In vitro and in vivo cytocompatibility evaluation of biodegradable magnesium-based stents: a review. Science China Materials, 61(4), 501515.CrossRefGoogle Scholar
Liang, H., Kraft, T., and Chang, Y. A. (2000) Importance of reliable phase equilibria in studying microsegregation in alloys: Al–Cu–Mg. Materials Science and Engineering A, 292(1), 96103.CrossRefGoogle Scholar
Luo, A. A. (2004) Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 49(1), 1330.CrossRefGoogle Scholar
Luo, A. A., Fu, P., Peng, L., Kang, X., Li, Z., and Zhu, T. (2012) Solidification microstructure and mechanical properties of cast magnesium–aluminum–tin alloys. Metallurgical and Materials Transactions A, 43(1), 360368.CrossRefGoogle Scholar
Luthringer, B. J. C., Feyerabend, F., and Willumeit-Romer, R. (2014) Magnesium-based implants: a mini-review. Magnesium Research, 27(4), 142154.Google ScholarPubMed
Lyon, P., King, J. F., and Fowler, G. A. (1991) Developments in magnesium based materials and processes, in Magnesium Based Materials and Processes: Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, volume 5. New York: American Society of Mechanical Engineers, V005T12A002.Google Scholar
Ma, Y. Q., Chen, R. S., and Han, E.-H. (2007) Keys to improving the strength and ductility of the AZ64 magnesium alloy. Materials Letters, 61(11), 25272530.CrossRefGoogle Scholar
Mao, L., Shen, L., Chen, J., et al. (2017) A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Scientific Reports, 7(1), 46343.CrossRefGoogle ScholarPubMed
Mirković, D., and Schmid-Fetzer, R. (2007) Solidification curves for commercial Mg alloys determined from differential scanning calorimetry with improved heat-transfer modeling. Metallurgical and Materials Transactions A, 38(10), 25752592.CrossRefGoogle Scholar
Ohno, M., Mirkovic, D., and Schmid-Fetzer, R. (2006) Liquidus and solidus temperatures of Mg-rich Mg–Al–Mn–Zn alloys. Acta Materialia, 54(15), 38833891.CrossRefGoogle Scholar
Park, S. S., Park, W. J., Kim, C. H., You, B. S., and Kim, N. J. (2009) The twin-roll casting of magnesium alloys. JOM, 61(8), 1418.CrossRefGoogle Scholar
Pekguleryuz, M. O., and Baril, E. (2001) Development of creep resistant Mg–Al–Sr alloys. In Mathaudhu, S. N., Luo, A. A., Neelameggham, N. R., Nyberg, E. A., and Sillekens, W. H. (eds), Essential Readings in Magnesium Technology 2001. Pittsburgh: Minerals, Metals, and Materials Society, 119125.CrossRefGoogle Scholar
Pekguleryuz, M. O., Kainer, K., and Kaya, A. A. (2013) Fundamentals of Magnesium Alloy Metallurgy. Cambridge: Woodhead.CrossRefGoogle Scholar
Polmear, I., StJohn, D., Nie, J.-F., and Qian, M. (2017) Light Alloys: Metallurgy of the Light Metals, fifth edition. Woburn: Butterworth-Heinemann.Google Scholar
Schmid-Fetzer, R. (2014) Phase diagrams: the beginning of wisdom. Journal of Phase Equilibria and Diffusion, 35(6), 735760.CrossRefGoogle Scholar
Schmid-Fetzer, R. (2019) Recent progress in development and applications of Mg alloy thermodynamic database, in Joshi, V. V., Jordon, J. B., Orlov, D., and Neelameggham, N. R. (eds), Magnesium Technology 2019. Cham: Springer, 249255.CrossRefGoogle Scholar
Schmid-Fetzer, R., and Kozlov, A. (2011) Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification. Acta Materialia, 59(15), 61336144.CrossRefGoogle Scholar
Schmid-Fetzer, R., and Zhang, F. (2018) The light alloy CALPHAD databases PanAl and PanMg. CALPHAD, 61, 246263.CrossRefGoogle Scholar
Sonderegger, B., and Kozeschnik, E. (2009a) Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent Fcc and Bcc structures. Metallurgical and Materials Transactions A, 40(3), 499510.CrossRefGoogle Scholar
Sonderegger, B., and Kozeschnik, E. (2009b) Size dependence of the interfacial energy in the generalized nearest-neighbor broken-bond approach. Scripta Materialia, 60(8), 635638.CrossRefGoogle Scholar
StJohn, D. H., Qian, M., Easton, M. A., Cao, P., and Hildebrand, Z. (2005) Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A, 36(7), 16691679.CrossRefGoogle Scholar
Witte, F. (2010) The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 6(5), 16801692.CrossRefGoogle ScholarPubMed
Witte, F., Hort, N., Vogt, C., et al. (2008) Degradable biomaterials based on magnesium corrosion. Current Opinion on Solid State Materials Science, 12(5), 6372.CrossRefGoogle Scholar
Yan, X., Chen, S., Xie, F., and Chang, Y. A. (2002) Computational and experimental investigation of microsegregation in an Al-rich Al–Cu–Mg–Si quaternary alloy. Acta Materialia, 50(9), 21992207.CrossRefGoogle Scholar
Zhang, C., Miao, J., Chen, S., Zhang, F., and Luo, A. A. (2019) CALPHAD-based modeling and experimental validation of microstructural evolution and microsegregation in magnesium alloys during solidification. Journal of Phase Equilibria and Diffusion, 40(4), 495507.CrossRefGoogle Scholar
Zhang, F., Zhang, C., Liang, S. M., Lv, D. C., Chen, S. L., and Cao, W. S. (2020) Simulation of the composition and cooling rate effects on the solidification path of casting aluminum alloys. Journal of Phase Equilibria and Diffusion, 41, 793803.CrossRefGoogle Scholar
Zhao, D., Witte, F., Lu, F., Wang, J., Li, J., and Qin, L. (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials, 112, 287302.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×