Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T06:25:36.107Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Ahmed A. Shabana
Affiliation:
University of Illinois, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, L.K.Rui, X.Hammoudi, Z.S. 2010 Plate/Shell Element of Variable Thickness Based on the Absolute Nodal Coordinate FormulationIMechE Journal of Multibody Dynamics 224 127Google Scholar
Agrawal, O.P.Shabana, A. 1985 Dynamic Analysis of Multi-Body Systems Using Component ModesComputers and Structures 21 1303Google Scholar
Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid MechanicsDover PublicationsNew York
Atkinson, K.E. 1978 An Introduction to Numerical AnalysisJohn Wiley & Sons
Bathe, K.J. 1996 Finite Element ProceduresEnglewood CliffsNew Jersey
Bauchau, O.A.Damilano, G.Theron, N.J. 1995 Numerical Integration of Nonlinear Elastic Multi-Body SystemsInternational Journal for Numerical Methods in Engineering 38 2727Google Scholar
Bauchau, O.A. 1998 Computational Schemes for Flexible, Nonlinear Multi-Body SystemsMultibody System Dynamics 2 169Google Scholar
Bauchau, O.A.Bottasso, C.L.Trainelli, L. 2003 Robust Integration Schemes for Flexible Multibody SystemsComputer Methods in Applied Mechanics and Engineering 192 395Google Scholar
Bayo, E.García de Jalón, J.Serna, M.A. 1988 A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical SystemsComputer Methods in Applied Mechanics and Engineering 71 183Google Scholar
Belytschko, T.Liu, W.K.Moran, B. 2000 Nonlinear Finite Elements for Continua and StructuresJohn Wiley & SonsNew York
Berzeri, M.Shabana, A.A. 2000 Development of Simple Models for the Elastic Forces in the Absolute Nodal Coordinate FormulationSound and Vibration 235 539Google Scholar
Berzeri, M.Shabana, A.A. 2002 Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate FormulationMultibody System Dynamics 7 357Google Scholar
Betsch, P.Steinmann, E. 2001 Constrained Integration of Rigid Body DynamicsComputer Methods in Applied Mechanics and Engineering 191 467Google Scholar
Betsch, P.Steinmann, P. 2002 A DAE Approach to Flexible Multibody DynamicsMultibody System Dynamics 8 367Google Scholar
Betsch, P.Steinmann, P. 2002 Frame-Indifferent Beam Finite Element Based upon the Geometrically Exact Beam TheoryInternational Journal of Numerical Methods in Engineering 54 1775Google Scholar
Bonet, J.Wood, R.D. 1997 Nonlinear Continuum Mechanics for Finite Element AnalysisCambridge University Press
Boresi, A.P.Chong, K.P. 2000 Elasticity in Engineering MechanicsJohn Wiley & Sons
Bottasso, C.L.Borri, M. 1997 Energy Preserving/Decaying Schemes for Non-Linear Beam Dynamics Using the Helicoidal ApproximationComputer Methods in Applied Mechanics and Engineering 143 393Google Scholar
Bottasso, C.L.Borri, M.Trainelli, L. 2001 Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. Part I: FormulationComputer Methods in Applied Mechanics and Engineering 190 3669Google Scholar
Bottasso, C.L.Borri, M.Trainelli, L. 2001 Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. Part II: Numerical Schemes and ApplicationsComputer Methods in Applied Mechanics and Engineering 190 3701Google Scholar
Bridgman, P. 1949 The Physics of High PressureBell and SonsLondon
Campanelli, M.Berzeri, M.Shabana, A.A. 2000 Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody ProblemsASME Journal of Mechanical Design 122 498Google Scholar
Cardona, A.Géradin, M. 1988 A Beam Finite Element Non-Linear Theory with Finite RotationInternational Journal for Numerical Methods in Engineering 26 2403Google Scholar
Cardona, A.Géradin, M. 1989 Time Integration of the Equations of Motion in Mechanism AnalysisComputers and Structures 33 801Google Scholar
Cardona, A.Géradin, M. 1992 A Superelement Formulation for Mechanism AnalysisComputer Methods in Applied Mechanics and Engineering 100 1Google Scholar
Carnahan, B.Luther, H.A.Wilkes, J.O. 1969 Applied Numerical MethodsJohn Wiley & Sons
Cesnik, C.E.S.Hodges, D.H.Sutyrin, V.G. 1996 Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature EffectsAIAA Journal 34 1913Google Scholar
Chung, J.Hulbert, G.M. 1993 A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α MethodJournal of Applied Mechanics 60 371Google Scholar
Cook, R.D.Malkus, D.S.Plesha, M.E. 1989 Concepts and Applications of Finite Element AnalysisJohn Wiley & Sons
Cottrell, J.A.Hughes, T.J.R.Reali, A. 2007 Studies of Refinement and Continuity in the Isogeometric AnalysisComputational Methods in Applied Mechanical Engineering 196 4160Google Scholar
Crisfield, M.A. 1991 Nonlinear Finite Element Analysis of Solids and StructuresJohn Wiley & Sons
Crisfield, M.A.Jelenic, G. 1999 Objectivity of Strain Measures in the Geometrically Exact Three-Dimensional Beam Theory and its Finite Element ImplementationProc. R. Soc. Lond. A 455 1125Google Scholar
Dierckx, P. 1993 Curve and Surface Fitting with SplinesOxford University PressNY
Dmitrochenko, O.N.Pogorelov, D.Y. 2003 Generalization of Plate Finite Elements for Absolute Nodal Coordinate FormulationMultibody System Dynamics 10 17Google Scholar
Dufva, K.Shabana, A.A. 2005 Analysis of Thin Plate Structure Using the Absolute Nodal Coordinate FormulationIMechE Journal of Multi-body Dynamics 219 345Google Scholar
Farhat, C.Crivelli, L.Géradin, M. 1995 Implicit Time Integration of a Class of Constrained Hybrid Formulations – Part I: Spectral Stability TheoryComputer Methods in Applied Mechanics and Engineering 125 71Google Scholar
Farhat, C.H.Roux, F.X. 1991 A Method of Finite Element Tearing and Interconnecting and its Parallel Solution AlgorithmInternational Journal for Numerical Methods in Engineering 32 1205Google Scholar
Farhat, C.H.Roux, F.X. 1994 Implicit Parallel Processing in Structural MechanicsComputational Mechanics Advances 2 1Google Scholar
Farhat, C.H.Wilson, E. 1988 A Parallel Active Column Equation SolverComputers and Structures 28 289Google Scholar
Farin, G. 1999 Curves and Surfaces for CAGDMorgan Kaufmann PublishersSan Francisco
García de Jalón, J.Unda, J.Avello, A.Jiménez, J.M. 1987 Dynamic Analysis of Three-Dimensional Mechanisms in ‘Natural’ CoordinatesJournal of Mechanisms, Transmissions, and Automation in Design 109 460Google Scholar
Garcia-Vallejo, D.Escalona, J.L.Mayo, J.Dominguez, J. 2003 Describing Rigid-Flexible Multibody Systems Using Absolute CoordinatesNonlinear Dynamics 34 75Google Scholar
Garcia-Vallejo, D.Mayo, J.Escalona, J.L.Dominguez, J. 2004 Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate FormulationNonlinear Dynamics 35 313Google Scholar
Garcia-Vallejo, D.Valverde, J.Dominguez, J. 2005 An Internal Damping Model for the Absolute Nodal Coordinate FormulationNonlinear Dynamics 42 347Google Scholar
Geradin, M.Cardona, A. 2001 Flexible Multibody DynamicsJohn Wiley & Sons
Gerstmayr, J.Shabana, A.A. 2006 Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate FormulationNonlinear Dynamics 45 109Google Scholar
Goetz, A. 1970 Introduction to Differential GeometryAddison Wesley
Goldenweizer, A. 1961 Theory of Thin Elastic ShellsPergamon PressOxford, United Kingdom
Goldstein, H. 1950 Classical MechanicsAddison-Wesley
Greenwood, D.T. 1988 Principles of DynamicsPrentice Hall
Hamed, A.M.Shabana, A.A.Jayakumar, P.Letherwood, M.D. 2011
Hilber, H.M.Hughes, T.J.R.Taylor, R.L. 1977 Improved Numerical Dissipation for Time Integration Algorithms in Structural DynamicsEarthquake Engineering and Structural Dynamics 5 282Google Scholar
Holzapfel, G.A. 2000 Nonlinear Solid Mechanics: A Continuum Approach for EngineeringJohn Wiley & Sons
Hughes, T.J.R. 1984 Numerical Implementation of Constitutive Models: Rate Independent Deviatoric PlasticityTheoretical Foundation for Large Scale Computations of Nonlinear Material BehaviorNemat-Nasser, S.Asaro, R.Hegemier, G.Martinus Nijhoff Publishers, DordrechtThe Netherlands29
Hughes, T.J.R.Cottrell, J.A.Bazilevs, Y. 2005 Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh RefinementComputational Methods in Applied Mechanical Engineering 194 4135Google Scholar
Hulbert, G.M. 2004 Computational Structural DynamicsEncyclopedia of Computational MechanicsStein, E.de Borst, R.Hughes, T.J.R. 2 169Google Scholar
Hussein, B.A.Sugiyama, H.Shabana, A.A. 2007 Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Problem DefinitionASME Journal of Computational and Nonlinear Dynamics 2 146Google Scholar
Ibrahimbegovic, A.Mamouri, S. 1998 Finite Rotations in Dynamics of Beams and Implicit Time-Stepping SchemesInternational Journal of Numerical Methods in Engineering 41 781Google Scholar
Ibrahimbegovic, A.Mamour, S.Taylor, R.L.Chen, A.J. 2000 Finite Element Method in Dynamics of Flexible Multibody Systems: Modeling of Holonomic Constraints and Energy Conserving Integration SchemesMulti-body System Dynamics 4 195Google Scholar
Jelenic, G.Crisfield, M.A. 1998 Interpolation of Rotational Variables in Non-Linear Dynamics of 3D BeamsInternational Journal of Numerical Methods in Engineering 43 1193Google Scholar
Jelenic, G.Crisfield, M.A. 2001 Dynamic Analysis of 3D Beams with Joints in Presence of Large RotationsComputer Methods in Applied Mechanics and Engineering 190 4195Google Scholar
Kaplan, W. 1991 Advanced CalculusAddison-WesleyReading, MA
Khan, A.S.Huang, S. 1995 Continuum Theory of PlasticityJohn Wiley & Sons
Kim, S.S.Vanderploeg, M.J. 1986 Decomposition for State Space Representation of Constrained Mechanical Dynamic SystemsASME Journal of Mechanisms, Transmissions, and Automation in Design 108 183Google Scholar
Kreyszig, E. 1991 Differential GeometryDover Publications
Lan, P.Shabana, A.A. 2010 Integration of B-Spline Geometry and ANCF Finite Element AnalysisNonlinear Dynamics193Google Scholar
Leyendecker, S.Betsch, P.Steinmann, P. 2004 Energy-Conserving Integration of Constrained Hamiltonian Systems – A Comparison of ApproachesComputational Mechanics 33 174Google Scholar
Leyendecker, S.Betsch, P.Steinmann, P. 2006 Objective Energy-Momentum Conserving Integration for Constrained Dynamics of Geometrically Exact BeamsComputer Methods in Applied Mechanics and Engineering 195 2313Google Scholar
Mikkola, A.M.Matikainen, M.K. 2006 Development of Elastic Forces for the Large Deformation Plate Element Based on the Absolute Nodal Coordinate FormulationASME Journal of Computational and Nonlinear Dynamics 1 103Google Scholar
Mikkola, A.M.Shabana, A.A. 2003 A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System ApplicationsMultibody System Dynamics 9 283Google Scholar
Milner, H.R. 1981 Accurate Finite Element Analysis of Large Displacements in Skeletal FramesComputers & Structures 14 205Google Scholar
Naghdi, P.M. 1972 The Theory of Shells and PlatesHandbuch der Physik 6 425Google Scholar
Ogden, R.W. 1984 Non-Linear Elastic DeformationsDover Publications
Omar, M.A.Shabana, A.A. 2001 A Two-Dimensional Shear Deform-able Beam for Large Rotation and Deformation ProblemsJ. Sound Vibration 243 565Google Scholar
Ortiz, M.Popov, E.P. 1985 Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive EquationsInternational Journal for Numerical Methods in Engineering 21 1561Google Scholar
Piegl, L.Tiller, W. 1997 The NURBS BookSpringer-VerlagNew York
Rice, J.R.Tracey, D.M. 1973 Computational Fracture MechanicsProceedings of the Symposium on Numerical Methods in Structural MechanicsFenves, S.J.Academic PressUrbana, IL
Roberson, R.E.Schwertassek, R. 1988 Dynamics of Multibody SystemsSpringer-Verlag
Rogers, D.F. 2001 An Introduction to NURBS with Historical PerspectiveAcademic PressSan Diego, CA
Romero, I. 2006 A Study of Nonlinear Rod Models for Flexible Multibody DynamicsProceedings of the Seventh World Congress on Computational MechanicsLos Angeles, CA
Romero, I.Armero, F. 2002 Numerical Integration of the Stiff Dynamics of Geometrically Exact Shells: An Energy-Dissipative Momentum-Conserving SchemeInternational Journal of Numerical Methods in Engineering 54 1043Google Scholar
Romero, I.Armero, F. 2002 An Objective Finite Element Approximation of the Kinematics of Geometrically Exact Rods and its Use in the Formulation of an Energy-Momentum Scheme in DynamicsInternational Journal of Numerical Methods in Engineering 54 1683Google Scholar
Schwab, A.L.Meijaard, J.P. 2005 Proceedings of the ASME 2005 International Design Engineering Technical Conferences & Computer and Information in Engineering Conference
Sanborn, G.G.Shabana, A.A. 2009 On the Integration of Computer-Aided Design and Analysis Using the Finite Element Absolute Nodal Coordinate FormulationMultibody System Dynamics 22 181Google Scholar
Shabana, A. 1985 Automated Analysis of Constrained Inertia-Variant Flexible SystemsASME Journal of Vibration, Acoustics, Stress, and Reliability in Design 107 431Google Scholar
Shabana, A.A. 1982 Dynamics of Large Scale Flexible Mechanical SystemsUniversity of IowaIowa City
Shabana, A.A. 1996 Finite Element Incremental Approach and Exact Rigid Body InertiaASME Journal of Mechanical Design 118 171Google Scholar
Shabana, A.A. 1996 Resonance Conditions and Deformable Body Coordinate SystemsJournal of Sound and Vibration 92 389Google Scholar
Shabana, A.A. 1996 Theory of Vibration: An IntroductionSpringer VerlagNew York
Shabana, A.A. 1998 Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody DynamicsNonlinear Dynamics 16 293Google Scholar
Shabana, A.A. 2001 Computational DynamicsJohn Wiley & Sons
Shabana, A.A. 2005 Dynamics of Multibody SystemsCambridge University Press
Shabana, A.A. 2011
Shabana, A.A.Hamed, A.M.Mohamed, A.A.Jayakumar, P.Letherwood, M.D. 2011
Shabana, A.A.Mikkola, A.M. 2003 Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope DiscontinuityASME Journal of Mechanical Design 125 342Google Scholar
Shabana, A.A.Wehage, R. 1981 Variable Degree of Freedom Component Mode Analysis of Inertia-Variant Flexible Mechanical SystemsCenter for Computer Aided DesignUniversity of Iowa
Shabana, A.A.Yakoub, R.Y. 2001 Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: TheoryASME Journal of Mechanical Design 123 606Google Scholar
Simo, J.C.Hughes, T.J.R. 1986 Computational InelasticitySpringerNew York
Simo, J.C.Taylor, T.J.R. 1986 Return Mapping Algorithm for Plane Stress ElastoplasticityInternational Journal for Numerical Methods in Engineering 22 649Google Scholar
Simo, J.C.Vu-Quoc, L. 1986 On the Dynamics of Flexible Beams under Large Overall Motions-The Plane Case: Parts I and IIASME Journal of Applied Mechanics 53 849Google Scholar
Sopanen, J.T.Mikkola, A.M. 2003 Description of Elastic Forces in Absolute Nodal Coordinate FormulationNonlinear Dynamics 34 53Google Scholar
Stolarski, H.Belytschko, T.Lee, S.H. 1995 A Review of Shell Finite Elements and Corotational TheoriesComputational Mechanics Advances 2 125Google Scholar
Sugiyama, H.Gerstmayr, J.Shabana, A.A. 2006 Deformation Modes in the Finite Element Absolute Nodal Coordinate FormulationSound and Vibration 298 1129Google Scholar
Sugiyama, H.Mikkola, A.M.Shabana, A.A. 2003 A Non-Incremental Nonlinear Finite Element Solution for Cable ProblemsASME Journal of Mechanical Design 125 746Google Scholar
Takahashi, Y.Shimizu, N. 1999 Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable BeamsProceedings of the ASME International Design Engineering Technical Conferences and Computer and Information in Engineering ConferenceLas Vegas, NV
Takahashi, Y.Shimizu, N. 1999 Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable BeamsProceedings of the ASME International Design Engineering Technical Conferences and Computer and Information in Engineering ConferenceLas Vegas, NV
Tian, Q.Chen, L.P.Zhang, Y.Q.Yang, J.Z. 2009 An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate FormulationASME Journal of Computational and Nonlinear Dynamics 4Google Scholar
Tian, Q.Zhang, Y.Chen, L.Yang, J. 2010 Simulation of Planar Flexible Multibody Systems with Clearance and Lubricated Revolute JointsNonlinear Dynamics 60 489Google Scholar
Tseng, F.C.Hulbert, G.M. 2001 A Gluing Algorithm for Network-Distributed Dynamics SimulationMultibody System Dynamics 6 377Google Scholar
Tseng, F.C.Ma, Z.D.Hulbert, G.M. 2003 Efficient Numerical Solution of Constrained Multibody Dynamics SystemsComputer Methods in Applied. Mechanics and Engineering 192 439Google Scholar
Ugural, A.C.Fenster, K. 1979 Advanced Strength and Applied ElasticityElsevier
Von Dombrowski, S. 2002 Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute CoordinatesMultibody System Dynamics 8 409Google Scholar
Wang, J.Z.Ma, Z.D.Hulbert, G.M. 2003 A Gluing Algorithm for Distributed Simulation of Multibody SystemsNonlinear Dynamics 34 159Google Scholar
Weaver, W.Timoshenko, S.P.Young, D.H. 1990 Vibration Problems in EngineeringWiley & SonsNew York
White, F.M. 2003 Fluid MechanicsMcGraw Hill, New York
Yakoub, R.Y.Shabana, A.A. 2001 Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and ApplicationsASME Journal of Mechanichal Design 123 614Google Scholar
Yoo, W.S.Lee, J.H.Park, S.J.Sohn, J.H.Pogorelov, D.Dimitrochenko, O. 2004 Large Deflection Analysis of a Thin Plate: Computer Simulation and ExperimentMultibody System Dynamics 11 185Google Scholar
Zienkiewicz, O.C. 1977 The Finite Element MethodMcGraw HillNew York
Zienkiewicz, O.C.Taylor, R.L. 2000 The Finite Element Method 2

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ahmed A. Shabana, University of Illinois, Chicago
  • Book: Computational Continuum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059992.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ahmed A. Shabana, University of Illinois, Chicago
  • Book: Computational Continuum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059992.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ahmed A. Shabana, University of Illinois, Chicago
  • Book: Computational Continuum Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139059992.010
Available formats
×