Published online by Cambridge University Press: 05 June 2014
Abstract
Economic behavior and market evolution present notoriously difficult complex systems, where physical interacting particles become purpose-pursuing interacting agents, thus providing a kind of a bridge between physics and social sciences.
We systematically develop the mathematical content of the basic theory of financial economics that can be presented rigorously using elementary probability and calculus, that is, the notions of discrete and absolutely continuous random variables, their expectation, notions of independence and of the law of large numbers, basic integration – differentiation, ordinary differential equations and (only occasionally) the method of Lagrange multipliers. We do not assume any knowledge of finance, apart from an elementary understanding of the idea of compound interest, which can be of two types: (i) simple compounding with rate r and a fixed period of time means your capital in this period is multiplied by (1 + r); (ii) continuous compounding with rate r means your capital in a period of time of length t is multiplied by ert.
This chapter is based on several lecture courses for statistics and mathematics students at the University of Warwick and on invited mini-courses presented by the author at various other places. Sections 6.2 and 6.3 are developed from the author's booklet [9]. The chapter is written in a rather concise (but comprehensive) style in attempt to pin down as clear as possible the mathematical relations that govern the laws of financial economics. Numerous heavy volumes are devoted to the detail discussion of the economic content of these mathematical relations, see e.g. [5], [6], [8], [15], [17].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.