Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:02:15.615Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 May 2020

Karel Prach
Affiliation:
University of South Bohemia, Czech Republic
Lawrence R. Walker
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, M. & Afsharzadeh, S. (2016). An analysis of vegetation and species diversity patterns in sand dunes and gravel desert ecosystem. Botanical Sciences, 94, 499511.CrossRefGoogle Scholar
Abella, S. R. & Fornwalt, P. J. (2015). Ten years of vegetation assembly after a North American mega fire. Global Change Biology, 21, 789802.Google Scholar
Adachi, N., Terashima, I., & Takahashi, M. (1996). Central die-back of monoclonal stands of Reynoutria japonica in an early stage of primary succession on Mount Fuji. Annals of Botany, 77, 477486.Google Scholar
Adair, E. C., Binkley, D., & Andersen, D. C. (2004). Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers. Oecologia, 139, 108116.CrossRefGoogle ScholarPubMed
Adams, J. (2007). Vegetation – Climate Interactions. New York: Springer.Google Scholar
Adams, P. W. & Sidle, R. C. (1987). Soil conditions in three recent landslides in southeast Alaska. Forest Ecology and Management, 18, 93102.CrossRefGoogle Scholar
Aggenbach, C. J. S., Kooijman, A. M., Fujita, Y., et al. (2017). Does atmospheric nitrogen deposition lead to greater nitrogen and carbon accumulation in coastal sand dunes? Biological Conservation, 212, 416422.Google Scholar
Agresti, A. (2007). An Introduction to Categorical Data Analysis. 2nd ed. New York: Wiley & Sons.Google Scholar
Aiba, S., Hill, D. A., & Agetsuma, N. (2001). Comparison between old-growth stands and secondary stands regenerating after clear-felling in warm-temperate forests of Yakushima, southern Japan. Forest Ecology and Management, 140, 163175.Google Scholar
Albernaz, A. L., Pressey, R. L., Costa, L. R. F., et al. (2012). Tree species compositional change and conservation implications in the white-water flooded forests of the Brazilian Amazon. Journal of Biogeography, 39, 869883.Google Scholar
Albert, A. J., Kelemen, A., Valko, O., et al. (2014). Secondary succession in sandy old-fields: A promising example of spontaneous grassland recovery. Applied Vegetation Science, 17, 214224.Google Scholar
Albornoz, F. E., Gaxiola, A., Seaman, B. J., Pugnaire, F. I., & Armesto, J. J. (2013). Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecology, 214, 765776.Google Scholar
Albrecht, M., Riesen, M., & Schmid, B. (2010). Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos, 119, 16101624.Google Scholar
Alday, J. G. & Marrs, R. H. (2014). A simple test for alternative states in ecological restoration: The use of principal response curves. Applied Vegetation Science, 17, 302311.Google Scholar
Alday, J. G., Marrs, R. H., & Martinez-Ruiz, C. (2010). The importance of topography and climate on short-term revegetation of coal wastes in Spain. Ecological Engineering, 36, 579585.CrossRefGoogle Scholar
Alday, J. G., Marrs, R. H., & Martinez-Ruiz, C. (2011a). Vegetation convergence during early succession on coal wastes: A 6-year permanent plot study. Journal of Vegetation Science, 22, 10721083.Google Scholar
Alday, J. G., Marrs, R. H., & Martinez-Ruiz, C. (2011b). Vegetation succession on reclaimed coal wastes in Spain: The influence of soil and environmental factors. Applied Vegetation Science, 14, 8494.Google Scholar
Alexander, J. M., Lembrechts, J. J., Cavieres, L. A., et al. (2016). Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alpine Botany, 126, 89103.Google Scholar
Allard-Duchêne, A., Pothier, D., Dupuch, A., & Fortin, D. (2014). Temporal changes in habitat use by snowshoe hares and red squirrels during post-fire and post-logging forest succession. Forest Ecology and Management, 313, 1725.Google Scholar
Allen, M. S., Thapa, V., Arévalo, J. R., & Palmer, M. W. (2012). Windstorm damage and forest recovery: Accelerated succession, stand structure, and spatial pattern over 25 years in two Minnesota forests. Plant Ecology, 213, 18331842.Google Scholar
Alpert, P. & Mooney, H. A. (1996). Resource heterogeneity generated by shrubs and topography on coastal sand dunes. Vegetatio, 122, 8393.Google Scholar
Álvarez, R., Munñoz, A., Pesqueira, X. M., García-Duro, J., Reyes, O., & Casal, M. (2009). Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. Forest Ecology and Management, 257, 15961602.Google Scholar
Álvarez-Molina, L. L., Martínez, M. L., Pérez-Maqueo, O., Gallego-Fernández, J. B., & Flores, P. (2012). Richness, diversity, and rate of primary succession over 20 years in tropical coastal dunes. Plant Ecology, 213, 15971608.Google Scholar
Amaral, W. G., Pereira, I. M., Amaral, C. S., Machado, E. L. M., & Rabelo, L. D. O. (2013). Dynamics of the shrub and tree vegetation colonizing an area degraded by gold mined in Diamantina, Minas Gerais State. Ciência Florestal, 23, 713725.CrossRefGoogle Scholar
Amarasekare, P. & Possingham, H. (2001). Patch dynamics and metapopulation theory: The case of successional species. Journal of Theoretical Biology, 209, 333344.Google Scholar
Anawar, H. M., Canha, N., Santa-Regina, I., & Freitas, M. C. (2013). Adaptation, tolerance, and evolution of plant species in a pyrite mine in response to contamination level and properties of mine tailings: Sustainable rehabilitation. Journal of Soils and Sediments, 13, 730741.Google Scholar
Andersen, D. C. & MacMahon, J. A. (1985). Plant succession following the Mount St. Helens volcanic eruption: Facilitation by a burrowing rodent, Thomomys talpoides. The American Midland Naturalist, 114, 6269.Google Scholar
Anderson, K. J. (2007). Temporal patterns in rates of community change during succession. The American Naturalist, 169, 780793.Google Scholar
Angel, R., Conrad, R., Dvorský, M., et al. (2016). The root-associated microbial community of the world’s highest growing vascular plants. Microbial Ecology, 72, 394406.Google Scholar
Angell, A. C. & Kielland, K. (2009). Establishment and growth of white spruce on a boreal forest floodplain: Interactions between microclimate and mammalian herbivory. Forest Ecology and Management, 258, 24752480.Google Scholar
Angiolini, C., Landi, M., Pieroni, G., Frignani, F., Finoia, M. G., & Gaggi, C. (2013). Soil chemical features as key predictors of plant community occurrence in a Mediterranean coastal ecosystem. Estuarine, Coastal and Shelf Science, 119, 91100.Google Scholar
Aplet, G. H. (1990). Alteration of earthworm community biomass by the alien Myrica faya in Hawaii. Oecologia, 82, 414416.Google Scholar
Aplet, G. H., Anderson, S. J., & Stone, C. P. (1991). Association between feral pig disturbance and the composition of some alien plant assemblages in Hawaii Volcanoes National Park. Vegetatio, 95, 5562.Google Scholar
Aplet, G. H., Flint, H. R., & Vitousek, P. M. (1998). Ecosystem development on Hawaiian lava flows: Biomass and species composition. Journal of Vegetation Science, 9, 1726.Google Scholar
Apple, J. L., Wink, M., Wills, S. E., & Bishop, J. G. (2009). Successional change in phosphorus stoichiometry explains the inverse relationship between herbivory and lupin density on Mount St. Helens. PLoS ONE, 4, e7807, 110.Google Scholar
Archambault, L., Morissette, J., & Bernier-Cardou, M. (1998). Forest succession over a 20-year period following clearcutting in balsam fir yellow birch ecosystems of eastern Quebec, Canada. Forest Ecology and Management, 102, 6174.Google Scholar
Archibold, O. (1995). Ecology of World Vegetation. New York: Springer.Google Scholar
Arnone, E., Dialynas, Y. G., Noto, L. V., & Bras, R. L. (2016). Accounting for soil parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides. Hydrological Processes, 30, 927944.Google Scholar
Arroyo, M. T. K., Zedler, P. H., & Fox, M. D., eds. (1995). Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. New York: Springer.Google Scholar
Arunachalam, A. & Upadhyaya, K. (2005). Microbial biomass during revegetation of landslides in the humid tropics. Journal of Tropical Forest Science, 17, 306311.Google Scholar
Asaeda, T., Rashin, Md. H., & Ohta, K. (2106). Nitrogen fixation by Pueraria lobata as a nitrogen source in the midstream sediment bar of a river. Ecohydrology, 9, 9951005.Google Scholar
Aslan, M. (2015). Succession of steppe area after fire in the Gap Region of Turkey. Bangladesh Journal of Botany, 44, 489497.Google Scholar
Atkinson, I. A. E. (1970). Successional trends in the coastal and lowland forest of Mauna Loa and Kilauea Volcanoes, Hawaii. Pacific Science, 24, 387400.Google Scholar
Atkinson, I. A. E. (2004). Successional processes induced by fires on the northern offshore islands of New Zealand. New Zealand Journal of Ecology, 28, 181193.Google Scholar
Augspurger, C. K. (1984). Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps and pathogens. Ecology, 65, 17051712.Google Scholar
Austin, M. P. (1985). Continuum concept, ordination methods, and theory. Annual Review of Ecology and Systematics, 16, 3961.Google Scholar
Avis, A. M. & Lubke, R. A. (1996). Dynamics and succession of coastal dune vegetation in the Eastern Cape, South Africa. Landscape and Urban Planning, 34, 237254.Google Scholar
Ayyad, M. A. (1973). Vegetation and environment of the western Mediterranean coastal land of Egypt. I. The habitat of sand dunes. Journal of Ecology, 61, 509523.Google Scholar
Baar, R., Cordeiro, M. D., Denich, M., & Folster, H. (2004). Floristic inventory of secondary vegetation in agricultural systems of East-Amazonia. Biodiversity and Conservation, 13, 501528.Google Scholar
Baasch, A., Kirmer, A., & Tischew, S. (2012). Nine years of vegetation development in a postmining site: Effects of spontaneous and assisted site recovery. Journal of Applied Ecology, 49, 251260.Google Scholar
Baeten, L., Velghe, D., Vanhellemont, M., De Frenne, P., Hermy, M., & Verheyen, K. (2010). Early trajectories of spontaneous vegetation recovery after intensive agricultural land use. Restoration Ecology, 18, 379386.Google Scholar
Baetz, N., Verrecchia, E. P., & Lane, S. N. (2015). The role of soil in vegetated gravelly river braid plains: More than just a passive response? Earth Surface Processes and Landforms, 40, 143156.Google Scholar
Bagatto, C. & Shorthouse, J. D. (1999). Biotic and abiotic characteristics of ecosystems on acid metalliferous mine tailings near Sudbury, Ontario. Canadian Journal of Botany, 77, 410425.Google Scholar
Bainbridge, E. L. & Strong, W. L. (2005). Pinus contorta understory vegetation dynamics following clearcutting in west-central Alberta, Canada. Forest Ecology and Management, 213, 133150.Google Scholar
Baker, W. L. & Walford, G. M. (1995). Multiple stable states and models of riparian vegetation succession on the Animas River, Colorado. Annals of the Association of American Geographers, 85, 320338.Google Scholar
Baker, W. L., Flaherty, P. H., Lindemann, J. D., Veblen, T. T., Eisenhart, K. S., & Kulakowski, D. W. (2002). Effects of severe blowdown in the southern Rocky Mountains, USA. Forest Ecology and Management, 168, 6375.Google Scholar
Ballesteros, M., Cañadas, E. M., Foronda, A., Peñas, J., Valle, F., & Lorite, J. (2014). Central role of bedding materials for gypsum-quarry restoration: An experimental planting of gypsophile species. Ecological Engineering, 70, 470476.Google Scholar
Banner, A. & LePage, P. (2008). Long-term recovery of vegetation communities after harvesting in the coastal temperate rainforests of northern British Columbia. Canadian Journal of Forest Research, 38, 30983111.Google Scholar
Barbour, M. G. & Billings, W. D. (2000). North American Terrestrial Vegetation. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Barbour, M. G., De Jong, T. M., & Pavlik, B. M. (1985). Marine beach and dune plant communities. In Chabot, B. F. & Mooney, H. A., eds., Physiological Ecology of North American Plant Communities, pp. 296322. New York: Chapman & Hall.Google Scholar
Barbour, M. G., Fernau, R. F., Benayas, J. M. R., Jurjavcic, N., & Royce, E. B. (1998). Tree regeneration following clearcut logging in red fir forests of California. Forest Ecology and Management, 104, 101111.Google Scholar
Bardgett, R. D. & Walker, L. R. (2004). Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biology and Biochemistry, 36, 555559.Google Scholar
Bardgett, R. D. & Wardle, D. A. (2003). Herbivore mediated linkages between above-ground and below-ground communities. Ecology, 84, 22582268.Google Scholar
Bardgett, R. D. & Wardle, D. A. (2010). Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. Oxford: Oxford University Press.Google Scholar
Bardgett, R. D., Richter, A., Bol, R., et al. (2007). Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters, 3, 487490.Google Scholar
Baret, S., Le Bourgeois, T., Rivière, J.-N., Pailler, T., Sarrailh, J.-M., & Strasberg, D. (2007). Can species richness be maintained in logged endemic Acacia heterophylla forests (Reunion Island, Indian Ocean)? Revue D’Écologie-La Terre Et La Vie, 62, 273284.Google Scholar
Bargmann, T., Maren, I. E., & Vandvik, V. (2014). Life after fire: Smoke and ash as germination cues in ericads, herbs and graminoids of northern heathlands. Applied Vegetation Science, 17, 670679.CrossRefGoogle Scholar
Barrett, K., Rocha, A., van de Weg, M. J., & Shaver, G. (2012). Vegetation shifts observed in arctic tundra 17 years after fire. Remote Sensing Letters, 3, 729736.Google Scholar
Bartha, S., Meiners, S. J., Pickett, S. T. A., & Cadenasso, M. L. (2003). Plant colonization windows in a mesic old field succession. Applied Vegetation Science, 6, 205212.Google Scholar
Bartha, S., Szentes, S., Horvath, A., et al. (2014). Impact of mid-successional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Applied Vegetation Science, 17, 201213.CrossRefGoogle Scholar
Barthlott, W., Lauer, W., & Placke, A. (1996). Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity. Erdkunde, 50, 317327.Google Scholar
Bartleman, A.-P., Miyanishi, K., Burn, C. R., & Côté, M. M. (2001). Development of vegetation communities in a retrogressive thaw slump near Mayo, Yukon Territory: A 10-year assessent. Arctic, 54, 149156.Google Scholar
Basher, L. R., Daly, G. T., & Tonkin, P. J. Unpublished. Succession in subalpine scrub and grassland communities, Cropp River, Central Westland, New Zealand. Landcare Research, Lincoln, New Zealand.Google Scholar
Basinger, M. A., Franklin, S. B., & Shimp, J. P. (1996). Vegetation of a sandstone outcrop along the Ohio River in Hardin County, Illinois. Castanea, 61, 327338.Google Scholar
Bates, J. D. & Svejcar, T. J. (2009). Herbaceous succession after burning of cot western juniper trees. Western North American Naturalist, 69, 925.Google Scholar
Batista, W. B. & Platt, W. J. (2003). Tree population responses to hurricane disturbance: Syndromes in a south-eastern USA old-growth forest. Journal of Ecology, 91, 197212.Google Scholar
Battaglia, L. L., Minchin, P. R., & Pritchett, D. W. (2002). Sixteen years of old-field succession and reestablishment of a bottomland hardwood forest in the Lower Mississippi Alluvial Valley. Wetlands, 22, 117.Google Scholar
Bazzaz, F. A. (2006). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge: Cambridge University Press.Google Scholar
Becker, T., Andres, C., & Dierschke, H. (2011). Young and old steppe-like grasslands in the “Badra Lehde-Grosser Eller” Reserve (Kyffhauser Mountains, central Germany). Tuexenia, 31, 173210.Google Scholar
Behnke, R. & Mortimore, M. (2015). The End of Desertification? Disputing Environmental Change in the Drylands. Berlin: Springer.Google Scholar
Bellingham, P. J. & Lee, W. G. (2006). Distinguishing natural processes from impacts of invasive mammalian herbivores. In Allen, R. B. & Lee, W. G., eds., Biological Invasions in New Zealand, pp. 323336. New York: Springer.CrossRefGoogle Scholar
Bellingham, P. J., Kohyama, T., & Aiba, S.-I. (1996a). The effects of a typhoon on Japanese warm temperate forests. Ecological Research, 11, 229247.Google Scholar
Bellingham, P. J., Peltzer, D. A., & Walker, L. R. (2005). Contrasting impacts of a native and an invasive exotic shrub on flood-plain succession. Journal of Vegetation Science, 16, 135142.Google Scholar
Bellingham, P. J., Tanner, E. V. J., & Healey, J. R. (1994). Sprouting of trees in Jamaican montane forests, after a hurricane. Journal of Ecology, 82, 747758.Google Scholar
Bellingham, P. J., Tanner, E. V. J., & Healey, J. R. (1995). Damage and responsiveness of Jamaican montane tree species after disturbance by a hurricane. Ecology, 76, 25622580.Google Scholar
Bellingham, P. J., Tanner, E. V. J., & Healey, J. R. (2005). Hurricane disturbance accelerates invasion by the alien tree Pittosporum undulatum in Jamaican montane rain forests. Journal of Vegetation Science, 16, 675684.Google Scholar
Bellingham, P. J., Walker, L. R., & Wardle, D. A. (2001). Differential facilitation by a nitrogen-fixing shrub during primary succession influences relative performance of canopy tree species. Journal of Ecology, 89, 861875.Google Scholar
Bellingham, P. J., Tanner, E. V. J., Rich, P. M., & Goodland, T. C. R. (1996b). Changes in light below the canopy of a Jamaican montane rainforest after a hurricane. Journal of Tropical Ecology, 12, 699722.Google Scholar
Bellingham, P. J., Tanner, E. V. J., Martin, P. H., Healey, J. R., & Burgea, O. R. (2018). Endemic trees in a tropical biodiversity hotspot imperilled by an invasive tree. Biological Conservation, 217, 47‒53.Google Scholar
Bellingham, P. J., Kardol, P., Bonner, K. I., et al. (2016). Browsing by an invasive herbivore promotes development of plant and soil communities during primary succession. Journal of Ecology, 104, 15051517.Google Scholar
Bellwood, P. (2005). First Farmers: The Origins of Agricultural Societies. Oxford: Blackwell.Google Scholar
Belsky, A. J. & Amundson, R. G. (1986). Sixty years of successional history behind a moving sand dune near Olduvai Gorge, Tanzania. Biotropica, 18, 231235.Google Scholar
Bénito-Espinal, F. P. & Bénito-Espinal, E., eds. (1991). L’Ouragan Hugo: Genese, Incidences Géographiques et Écologiques sur la Guadeloupe. Parc National de la Guadeloupe, Délégation Régionale a l’Action Culturelle, and Agence Guadeloupéenne de l’Environnement du Tourism et des Loisirs. Fort-de-France, Martinique: Imprimerie Désormeaux.Google Scholar
Benjankar, R., Burke, M., Yager, E., et al. (2014). Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 145, 277288.Google Scholar
Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92, 30583070.Google Scholar
Benscoter, B. W. & Vitt, D. H. (2008). Spatial patterns and temporal trajectories of the bog ground layer along a post-fire chronosequence. Ecosystems, 11, 10541064.Google Scholar
Berendse, F. (1998). Effects of dominant plant species on soils during succession in nutrient poor ecosystems. Biogeochemistry, 42, 7388.CrossRefGoogle Scholar
Berendse, F., Lammerts, E. J., & Olff, H. (1998). Soil organic matter accumulation and its implications for nitrogen mineralization and plant species composition during succession in coastal dune slacks. Plant Ecology, 137, 7178.Google Scholar
Bermingham, E., Dick, Ch. W., & Moritz, G. (2005). Rainforests: Past, Present & Future. Chicago: University of Chicago Press.Google Scholar
Bermúdez, A. M., Fernández-Palacios, J. M., González-Mancebo, J. M., Patiño, J., Arévalo, J. R., Otto, R., & Delgado, J. D. (2007). Floristic and structural recovery of a laurel forest community after clear-cutting: A 60 years chronosequence on La Palma (Canary Islands). Annals of Forest Science, 64, 109119.Google Scholar
Bertoldi, W., Siviglia, A., Tettamanti, S., Toffolon, M., Vetsch, D., & Francalanci, S. (2014). Modeling vegetation controls on fluvial morphological trajectories. Geophysical Research Letters, 41, 71677175.CrossRefGoogle Scholar
Berz, G. (1988). List of major natural disasters, 1960–1987. Natural Hazards, 1, 9799.Google Scholar
Beschta, R. L. & Ripple, W. J. (2016). Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biological Conservation, 198, 93103.Google Scholar
Bétard, F. (2013). Patch-scale relationships between geodiversity and biodiversity in hard rock quarries: Case study from a disused quartzite quarry in NW France. Geoheritage, 5, 5971.Google Scholar
Bhaskar, R., Dawson, T. E., & Balvanera, P. (2014). Community assembly and functional diversity along succession post-management. Functional Ecology, 28, 12561265.Google Scholar
Binggeli, P., Eakin, M., Macfadyen, A., Power, J., & McConnell, J. (1992). Impact of the alien sea buckthorn (Hippophaë rhamnoides L.) on sand dune ecosystems in Ireland. In Carter, R. W. G., Curtis, T. G. F., & Sheehy-Skeffington, M. J., eds., Coastal Dunes: Geomorphology, Ecology and Management, pp. 325337. Rotterdam: Balkema.Google Scholar
Binkley, D., Suarez, F., Stottlemyer, R., & Caldwell, B. (1997). Ecosystem development on terraces along the Kugururok River, northwest Alaska. Écoscience, 4, 311318.Google Scholar
Biondini, M. & Kandus, P. (2006). Transition matrix analysis of land-cover change in the accretion area of the lower delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands, 26, 981991.Google Scholar
Birks, H. J. B. (1980). The present flora and vegetation of the moraines of the Klutlan Glacier, Yukon Territory, Canada: A study in plant succession. Quaternary Research, 14, 6086.Google Scholar
Bischoff, A., Warthemann, G., & Klotz, S. (2009). Succession of floodplain grasslands following reduction in land use intensity: The importance of environmental conditions, management and dispersal. Journal of Applied Ecology, 46, 241249.Google Scholar
Bishoff, W., Newbery, D. M., Lingenfelder, M., et al. (2005). Secondary succession and dipterocarp recruitment in Bornean rain forest after logging. Forest Ecology and Management, 218, 174192.Google Scholar
Biswas, C. K., Mishra, S. P., & Mukherjee, A. (2014). Diversity and composition of vegetation on aged coalmine overburden dumps in Sonepur Bazari area, Raniganj, West Bengal. Journal of Environmental Biology, 35, 173177.Google Scholar
Bjarnason, Á. H. (1991). Vegetation on lava fields in the Hekla area, Iceland. Acta Phytogeographica Suecica, 77, 1110.Google Scholar
Bliss, L. C. & Cantlon, J. E. (1957). Succession on river alluvium in northern Alaska. The American Midland Naturalist, 58, 452469.Google Scholar
Blondel, J. & Aronson, J. (1999). Biology and Wildlife of the Mediterranean Region. Oxford: Oxford University Press.Google Scholar
Boccanelli, S., Pire, E., & Lewis, J. (2010). Vegetation changes after 15 years of abandonment of crop fields in the Pampas Region (Argentina). Ciencia E Investigacion Agraria, 37, 4553.Google Scholar
Boccanelli, S. I., Pire, E. F., Torres, P. S., & Lewis, J. P. (1999). Vegetation changes in a field abandoned after a wheat crop. Pesquisa Agropecuaria Brasileira, 34, 151157.Google Scholar
Boecker, D., Centeri, C., Welp, G., & Moseler, B. (2015). Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica, 50, 91106.Google Scholar
Bogar, L. M., Dickie, I. A., & Kennedy, P. G. (2015). Testing the co-invasion hypothesis: Ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand. Diversity and Distributions, 21, 268278.Google Scholar
Boggs, K. & Weaver, T. (1994). Changes in vegetation and nutrient pools during riparian succession. Wetlands, 14, 98109.Google Scholar
Boggs, K., Klein, S. C., Grunblatt, J., et al. (2010). Alpine and subalpine vegetation chronosequences following deglaciation in coastal Alaska. Arctic, Antarctic and Alpine Research, 42, 385395.CrossRefGoogle Scholar
Boiffin, J. & Munson, A. D. (2013). Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere, 4, 120.Google Scholar
Bokhorst, S., Kardol, P., Bellingham, P. J., et al. (2017). Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biology and Biochemistry, 106, 6979.Google Scholar
Bolling, J. D. & Walker, L. R. (2000). Plant and soil recovery along a series of abandoned desert roads. Journal of Arid Environments, 46, 124.Google Scholar
Bonanomi, G., Rietkerk, M., Dekker, S. C., & Mazzoleni, S. (2008). Islands of fertility induce co-occurring negative and positive plant-soil feedbacks promoting coexistence. Plant Ecology, 197, 207218.CrossRefGoogle Scholar
Bonet, A. & Pausas, J. G. (2004). Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology, 174, 257270.Google Scholar
Boone, M., ed. (2017). Deglaciation: Processes, Causes and Consequences. Happauge, NY: Nova Science Publishers.Google Scholar
Boonyanuphap, J. (2013). Cost-benefit analysis of vetiver system-based rehabilitation measures for landslide-damaged mountainous agricultural lands in the lower Northern Thailand. Natural Hazards, 69, 599629.Google Scholar
Bormann, F. H. & Likens, G. E. (1979). Patterns and Process in a Forested Ecosystem: Disturbance, Development, and the Steady State Based on the Hubbard Brook Ecosystem Study. New York: Springer.Google Scholar
Bornkamm, R. (1981). Rates of change in vegetation during secondary succession. Vegetatio, 47, 213220.Google Scholar
Bossuyt, B., Honnay, O., & Hermy, M. (2005). Evidence for community assembly constraints during succession in dune slack plant communities. Plant Ecology, 178, 201209.Google Scholar
Boucher, D. H. (1990). Growing back after hurricanes. BioScience, 40, 163166.Google Scholar
Boucher, D. H., Vandermeer, J. H., Yih, K., & Zamora, N. (1990). Contrasting hurricane damage in tropical rain forest and pine forest. Ecology, 71, 20222024.Google Scholar
Bouchon, E. & Arseneault, D. (2004). Fire disturbance during climate change: Failure of postfire forest recovery on a boreal floodplain. Canadian Journal of Forest Research, 34, 22942305.Google Scholar
Bourgeois, B., Boutin, C., Vannase, A., & Poulin, M. (2017). Divergence between riparian seed banks and standing vegetation increases along successional trajectories. Journal of Vegetation Science, 28, 787797.Google Scholar
Bowers, J. E., Webb, R. H., & Pierson, E. A. (1997). Succession of desert plants on debris flow terraces, Grand Canyon, Arizona, U.S.A. Journal of Arid Environments, 36, 6786.Google Scholar
Boyer, S., Wratten, S., Pizey, M., & Weber, P. (2011). Impact of soil stockpiling and mining rehabilitation on earthworm communities. Pedobiologia, 54, S99S102.Google Scholar
Boyes, L. J., Gunton, R. M., Griffiths, M. E., & Lawes, M. J. (2011). Causes of arrested succession in coastal dune forest. Plant Ecology, 212, 2132.Google Scholar
Bradshaw, A. D. (1987). Restoration: An acid test for ecology. In Jordan, W. R., Gilpin, M. E., & Aber, J. D., eds., Restoration Ecology: A Synthetic Approach to Ecological Research, pp. 2329. Cambridge: Cambridge University Press.Google Scholar
Bradshaw, A. D. (2000). The use of natural processes in reclamation ‒ Advantages and difficulties. Landscape and Urban Planning, 51, 89100.Google Scholar
Bradshaw, R. H. W., Wolf, A., & Moller, P. F. (2005). Long-term succession in a Danish temperate deciduous forest. Ecography, 28, 157164.Google Scholar
Bråkenhielm, S. & Liu, Q. (1998). Long-term effects of clear-felling on vegetation dynamics and species diversity in a boreal pine forest. Biodiversity and Conservation, 7, 207220.Google Scholar
Brändle, M., Durka, W., & Altmoos, M. (2000). Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodiversity and Conservation, 9, 12971311.Google Scholar
Breckle, S.-W. (2002). Walter’s Vegetation of the Earth. Berlin: Springer.Google Scholar
Brewer, S., Jackson, S. T., & Williams, J. W. (2012). Paleoecoinformatics: Applying geohistorical data to ecological questions. Trends in Ecology and Evolution, 27, 104112.Google Scholar
Brinkman, E. P., Duyts, H., Karssen, G., van der Stoel, C. D., & van der Putten, W. H. (2015). Plant-feeding nematodes in coastal sand dunes: Occurrence, host specificity and effects on plant growth. Plant and Soil, 397, 1730.Google Scholar
Brock, J. M. R., Perry, G. L. W., Lee, W. G., Schwendenmann, L., & Burns, B. R. (2018). Pioneer tree ferns influence community assembly in northern New Zealand forests. New Zealand Journal of Ecology, 42, 1830.Google Scholar
Brofas, G. & Varelides, C. (2000). Hydro-seeding and mulching for establishing vegetation on mining spoils in Greece. Land Degradation & Development, 11, 375382.Google Scholar
Brokaw, N. V. L. (1998). Cecropia schreberiana in the Luquillo Mountains of Puerto Rico. Botanical Review, 64, 91120.Google Scholar
Brokaw, N. V. L. & Walker, L. R. (1991). Summary of the effects of Caribbean hurricanes on vegetation. Biotropica, 23, 442447.Google Scholar
Brooks, M. L. (2002). Peak fire temperatures and effects on annual plants in the Mojave Desert. Ecological Applications, 12, 10881102.Google Scholar
Brown, W. H., Merrill, E. D., & Yates, H. S. (1917). The revegetation of Volcano Island, Luzon, Philippine Islands, since the eruption of Taal Volcano in 1911. The Philippine Journal of Science, 12, 177243.Google Scholar
Brulisauer, A. R., Bradfield, G. E., & Maze, J. (1996). Quantifying organisational change after fire in lodgepole pine forest understorey. Canadian Journal of Botany, 74, 17731782.Google Scholar
Brummer, T. J., Byrom, A. E., Sullivan, J. J., & Hulme, P. E. (2016). Alien and native plant richness and abundance respond to different environmental drivers across multiple gravel floodplain ecosystems. Diversity and Distributions, 22, 823835.Google Scholar
Bryant, J. P. & Chapin, F. S. III (1986). Browsing-woody plant interactions during local forest plant succession. In Van Cleve, K., Chapin, F. S. III, Flanagan, P. W., Viereck, L. A., & Dyrness, C. T., eds., Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function, pp. 213225. New York: Springer.Google Scholar
Bugmann, H. (2001). A review of forest gap models. Climatic Change, 51, 259305.Google Scholar
Bugman, H. & Bigler, C. (2011). Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Global Change Ecology, 165, 533544.Google Scholar
Buhk, C., Götzenberger, L., Wesche, K., Gomez, P. S., & Hensen, I. (2006). Post-fire regeneration in a Mediterranean pine forest with historically low fire frequency. Acta Oecologica, 30, 288298.Google Scholar
Bullock, J. M. & Webb, N. R. (1995). Responses to severe fires in heathland mosaics in southern England. Biological Conservation, 73, 207214.Google Scholar
Buma, B. (2015). Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere, 6, 115.Google Scholar
Burga, C. A., Krusi, B., Egli, M., et al. (2010). Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straightforward or chaotic? Flora, 205, 561576.Google Scholar
Burke, A. (2014). Natural recovery of dwarf shrubs following topsoil and vegetation clearing on gravel, and sand plains in the southern Namib Desert. Journal of Arid Environments, 100, 1822.Google Scholar
Burley, S., Robinson, S. L., & Lundholm, J. T. (2008). Post-hurricane vegetation recovery in an urban forest. Landscape and Urban Planning, 85, 111122.Google Scholar
Burn, C. R. & Friele, P. A. (1989). Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic, 42, 3140.Google Scholar
Burrows, C. J. (1990). Processes of Vegetation Change. London: Unwin Hyman.Google Scholar
Burton, P. J. (2010). Striving for sustainability and resilience in the face of unprecedented change: The case of the mountain pine beetle outbreak in British Columbia. Sustainability, 2, 24032423.Google Scholar
Burton, P. J. & Bazzaz, F. A. (1995). Ecophysiological responses to tree seedlings invading different patches of old-field vegetation. Journal of Ecology, 83, 99112.Google Scholar
Burton, P. J., Parisien, M. A., Hicke, J. A., Hall, R. J., & Freeburn, J. T. (2009). Large fires as agents of ecological diversity in the North American boreal forest. International Journal of Wildland Fire, 17, 754767.Google Scholar
Busch, D. E. (1995). Effects of fire on southwestern riparian plant community structure. The Southwestern Naturalist, 40, 259267.Google Scholar
Bush, J. K., Richter, F. A., & Van Auken, O. W. (2006). Two decades of vegetation change on terraces of a south Texas river. The Journal of the Torrey Botanical Society, 133, 280288.Google Scholar
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 10791087.Google Scholar
Cain, S. A. (1959). Henry Allan Gleason – Eminent ecologist. Bulletin of the Ecological Society of America, 40, 105110.Google Scholar
Çakan, H., Yilmaz, K. T., Alphan, H., & Ünlükaplan, Y. (2011). The classification and assessment of vegetation monitoring coastal sand dune succession: The case of Tuzla in Adana, Turkey. Turkish Journal of Botany, 35, 697711.Google Scholar
Calder, J. A., Wilson, J. B., Mark, A. F., & Ward, G. (1992). Fire, succession and reserve management in a New Zealand snow tussock grassland. Biological Conservation, 62, 3545.Google Scholar
Callaway, R. M. (1995). Positive interactions among plants. Botanical Review, 61, 306349.Google Scholar
Callaway, R. M. (2007). Positive Interactions and Interdependence in Plant Communities. New York: Springer.Google Scholar
Callaway, R. M. & Walker, L. R. (1997). Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology, 78, 19581965.Google Scholar
Calvo, L., Tárrega, R., Luis, E., Valbuena, L., & Marcos, E. (2005). Recovery after experimental cutting and burning in three shrub communities with different dominant species. Plant Ecology, 180, 175185.Google Scholar
Campbell, E. M. & Antos, J. A. (2003). Postfire succession in Pinus albicaulis ‒ Abies lasiocarpa forests of southern British Columbia. Canadian Journal of Botany, 81, 383397.Google Scholar
Cannone, N., Lewkowicz, A. G., & Guglielmin, M. (2010). Vegetation colonization of permafrost-related landslides, Ellesmere Island, Canadian High Arctic. Journal of Geophysical Research – Biogeosciences, 115, article number G04020. doi: 10.1029/2010JG001384.Google Scholar
Capitanio, R. & Carcaillet, C. (2008). Post-fire Mediterranean vegetation dynamics and diversity: A discussion of succession models. Forest Ecology and Management, 255, 431439.Google Scholar
Caplat, P. & Anand, M. (2009). Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics. Journal of Ecology, 97, 10281036.Google Scholar
Capon, S. J. (2005). Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. Journal of Arid Environments, 60, 283302.Google Scholar
Carleton, T. J. & Maclellan, P. (1994). Woody vegetation responses to fire versus clear-cutting logging: A comparative survey in the central Canadian boreal forest. Ecoscience, 1, 141152.Google Scholar
Carlo, T. A. & Morales, J. M. (2016). Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology, 97, 18191831.Google Scholar
Carlquist, S. (1974). Island Biology. New York: Columbia University Press.Google Scholar
Carpenter, S. E., Trappe, J. M., & Ammirati, J. Jr. (1987). Observations of fungal succession in the Mount St. Helens devastation zone, 1980–1983. Canadian Journal of Botany, 65, 716728.CrossRefGoogle Scholar
Carriere, S. M., Letourmy, P., & McKey, D. B. (2002). Effects of remnant trees in fallows on diversity and structure of forest regrowth in a slash-and-burn agricultural system in southern Cameroon. Journal of Tropical Ecology, 18, 375396.Google Scholar
Carson, W. P. & Schnitzer, S. A., eds. (2008). Tropical Forest Community Ecology. Chichester, UK: Wiley-Blackwell.Google Scholar
Castanho, C. de T. & Prado, P. I. (2014). Benefit of shading by nurse plant does not change along a stress gradient in a coastal dune. PLoS ONE, 9, e105082.Google Scholar
Castellanos, A. E., Martinez, M. J., Llano, J. M., Halvorson, W. L., Espiricueta, M., & Espejel, I. (2005). Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico. Journal of Arid Environments, 60, 437455.Google Scholar
Castle, S. C., Lekberg, Y., Affleck, D., & Cleveland, C. C. (2016). Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. Journal of Ecology, 104, 15551565.Google Scholar
Castro, J., Puerta-Piñero, C., Leverkus, A. B., Moreno-Rueda, G., & Sánchez-Miranda, A. (2012). Post-fire salvage logging alters a key plant-animal interaction for forest regeneration. Ecosphere, 3, 90.Google Scholar
Castro, J. W. A. (2005). Burying processes carried out by a mobile transversal dunefield, Paracuru County, State of Ceará, Brazil. Environmental Geology, 49, 214.Google Scholar
Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J., & Downes, B. J. (2014). Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Diversity and Distributions, 20, 10841096.Google Scholar
Catford, J. A., Daehler, C. C., Helen, T., Murphy, H. T., et al. (2012). The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics, 14, 231241.Google Scholar
Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693715.Google Scholar
Cazzolla Gatti, R., Castaldi, S., Lindsell, J. A., et al. (2015). The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecological Research, 30, 119132.Google Scholar
Celi, L., Cerli, C., Turner, B. L., Santoni, S., & Bonifacio, E. (2013). Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in northwestern Russia. Plant and Soil, 367, 121134.Google Scholar
Chadwick, H. W. & Dalke, P. D. (1965). Plant succession on dune sands in Fremont County, Idaho. Ecology, 46, 765780.Google Scholar
Chadwick, J., Dorsch, S., Glenn, N., Thackray, G., & Shilling, K. (2005). Application of multi-temporal high-resolution imagery and GPS in a study of the motion of a canyon rim landslide. Journal of Photogrammetry & Remote Sensing, 59, 212221.Google Scholar
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., & Hedin, L. O. (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491497.Google Scholar
Chang, C. C. & Turner, B. L. (2019). Ecological succession in a changing world. Journal of Ecology, 107, 503509.Google Scholar
Chang, C. C., Halpern, C. B., Antos, J. A., et al. (2019). Testing conceptual models of early plant succession across a disturbance gradient. Journal of Ecology, 107, 517530.Google Scholar
Chapin, F. S. III & Walker, L. R. (1993). Direct and indirect effects of calcium sulfate and nitrogen on growth and succession of trees on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research, 23, 9951000.Google Scholar
Chapin, F. S. III, Walker, L. R., Fastie, C. L., & Sharman, L. C. (1994). Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs, 64, 149175.Google Scholar
Chapin, F. S. III, Conway, A. J., Johnstone, J. F., Hollingsworth, T. N., & Hollingsworth, J. (2016). Absence of long-term successional facilitation by alder in a boreal Alaska floodplain. Ecology, 97, 29862997.Google Scholar
Chapin, F. S. III & Körner, Ch., eds. (1995). Arctic and Alpine Biodiversity. New York: Springer.Google Scholar
Chapin, F. S. III, Sale, O. E., & Huber-Sannwald, E., eds. (2013). Global Biodiversity in a Changing Environment. 2nd ed. New York: Springer.Google Scholar
Chapin, F. S. III, Jeffries, R. L., Reynolds, J. F., Shaver, G. R., & Svoboda, J., eds. (1992). Arctic Ecosystems in a Changing Climate. San Diego: Academic Press.Google Scholar
Charbonneau, B. R., Wnek, J. P., Langley, J. A., Lee, G., & Balsamo, R. A. (2016). Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization. Journal of Environmental Management, 182, 126133.Google Scholar
Charron, I., Johnson, E. A., & Martin, Y. E. (2011). Tree establishment on bars in low-order gravel-bed mountain streams. Earth Surface Processes and Landforms, 36, 15221533.Google Scholar
Chaudhry, S., Singh, S. P., & Singh, J. S. (1996). Performance of seedlings of various life forms on landslide-damaged forest sites in Central Himalaya. Journal of Applied Ecology, 33, 109117.Google Scholar
Chazdon, R. L. (2003). Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6, 5171.Google Scholar
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. Chicago: University of Chicago Press.Google Scholar
Chiba, N. & Hirose, T. (1993). Nitrogen acquisition and use in three perennials in the early stage of primary succession. Functional Ecology, 7, 287292.Google Scholar
Chou, W.-C., Lin, W.-T., & Lin, C.-Y. (2009). Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: A case study in central Taiwan. Environmental Monitoring and Assessment, 152, 245257.Google Scholar
Chytrý, M., Maskell, L. C., Pino, J., et al. (2008). Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 45, 448458.Google Scholar
Ciccarelli, D. (2015). Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession? Estuarine, Coastal and Shelf Science, 165, 247253.Google Scholar
Cielo-Filho, R. & de Souza, J. A. D. (2016). Assessing passive restoration of an Atlantic forest site following a Cupressus lusitanica Mill. Plantation clearcutting. Ciencia Florestal, 26, 475488.Google Scholar
Claessens, L., Verburg, P. H., Schoorl, J. M., & Veldkamp, A. (2006). Contribution of topographically based landslide hazard modeling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology, 21, 6376.Google Scholar
Clark, A. T., Knops, J. M. H., & Tilman, D. (2019). Contingent factors explain average divergence in functional composition over 88 years of old field succession. Journal of Ecology, 107, 545558.Google Scholar
Clark, D. F., Antos, J. A., & Bradfield, G. E. (2003). Succession in sub-boreal forests of west-central British Columbia. Journal of Vegetation Science, 14, 721732.Google Scholar
Clarke, P. J., Knox, K. J. E., Bradstock, R. A., Munoz-Robles, C., & Kumar, L. (2014). Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. Journal of Vegetation Science, 25, 10331044.Google Scholar
Clarkson, B. D. (1990). A review of vegetation development following recent (<450 years) volcanic disturbance in North Island, New Zealand. New Zealand Journal of Ecology, 14, 5971.Google Scholar
Clarkson, B. D. (1997). Vegetation succession (1967–89) on five recent montane lava flows, Mauna Loa, Hawaii. New Zealand Journal of Ecology, 22, 19.Google Scholar
Clarkson, B. R. & Clarkson, B. D. (1983). Mt. Tarawera 2. Rates of change in the vegetation and flora of high domes. New Zealand Journal of Ecology, 2, 107119.Google Scholar
Clarkson, B. D. & Clarkson, B. R. (1994). Vegetation decline following recent eruptions on White Island (Whakaari), Bay of Plenty, New Zealand. New Zealand Journal of Botany, 32, 2126.Google Scholar
Clarkson, B. R. & Clarkson, B. D. (1995). Recent vegetation changes on Mount Tarawera, Rotorua, New Zealand. New Zealand Journal of Botany, 33, 339354.Google Scholar
Clement, C. J. E. (1985). Floodplain succession on the West Coast of Vancouver Island. Canadian Field-Naturalist, 99, 3439.Google Scholar
Clements, F. E. (1916). Plant Succession: An Analysis of the Development of Vegetation. Washington, DC: Carnegie Institution of Washington Publication, p. 242.Google Scholar
Clements, F. E. (1928). Plant Succession and Indicators. New York: H. W. Wilson.Google Scholar
Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology, 24, 252284.Google Scholar
Cleverly, J. R., Smith, S. D., Sala, A., & Devitt, D. A. (1997). Invasive capacity of Tamarix ramosissima in the Mojave Desert floodplain: The role of drought. Oecologia, 111, 1218.Google Scholar
Clewell, A. (2011). Forest succession after 43 years without disturbance on ex-arable land, northern Florida. Castanea, 76, 386394.Google Scholar
Cline, S. P. & McAllister, L. S. (2012). Plant succession after hydrologic disturbance: Inferences from contemporary vegetation on a chronosequence of bars, Willamette River, Oregon, USA. River Research and Applications, 28, 15191539.Google Scholar
Clinton, B. D. & Baker, C. R. (2000). Catastrophic windthrow in the southern Appalachians: Characteristics of pits and mounds and initial vegetation responses. Forest Ecology and Management, 126, 5160.Google Scholar
Coates, D. R. (1977). Landslide perspectives. In Coates, D. R., ed., Landslides, pp. 328. Washington, DC: Geological Society of America.Google Scholar
Coates, K. D. & Burton, P. J. (1997). A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management, 99, 339356.Google Scholar
Collins, B., Wein, G., & Philippi, T. (2001). Effects of disturbance intensity and frequency on early old-field succession. Journal of Vegetation Science, 12, 721728.Google Scholar
Collins, S. L. & Wallace, L. L., eds. (1990). Fire in North American Tallgrass Prairies. Norman: University of Oklahoma Press.Google Scholar
Conn, J. S., Werdin-Pfisterer, N. R., Beattie, K. L., & Densmore, R. V. (2011). Ecology of invasive Melilotus albus on Alaskan glacial river floodplains. Arctic, Antarctic, and Alpine Research, 43, 343354.Google Scholar
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 13021310.Google Scholar
Connell, J. H. & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist, 111, 11191144.Google Scholar
Connell, J. H., Noble, I. R., & Slatyer, R. O. (1987). On the mechanisms producing successional change. Oikos, 50, 136137.Google Scholar
Connor, E. F. & Simberloff, D. (1976). The assembly of plant communities: Chance or competition? Ecology, 60, 11321140.Google Scholar
Cook, W. M., Yao, J., Foster, B. L., Holt, R. D., & Patrick, L. B. (2005). Secondary succession in an experimentally fragmented landscape: Community patterns across space and time. Ecology, 86, 12671279.Google Scholar
Coomes, D. A., Bentley, W. A., Tanentzap, A. J., & Burrows, L. E. (2013). Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence. Plant and Soil, 367, 7791.Google Scholar
Coop, J. D., Massatti, R. T., & Schoettle, A. W. (2010). Subalpine vegetation pattern three decades after stand-replacing fire: Effects of landscape context and topography on plant community composition, tree regeneration, and diversity. Journal of Vegetation Science, 21, 472487.Google Scholar
Cooper, W. S. (1939). A fourth expedition to Glacier Bay, Alaska. Ecology, 20, 130155.Google Scholar
Copenheaver, C. A. (2008). Old-field succession in western New York: The progression of forbs and woody species from abandonment to mature forest. Rhodora, 110, 157170.Google Scholar
Copenheaver, C. A., Matthews, J. M., Showalter, J. M., & Auch, W. E. (2006). Forest stand development patterns in the southern Appalachians. Northeastern Naturalist, 13, 477494.Google Scholar
Coppoletta, M., Merriam, K. E., & Collins, B. M. (2016). Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecological Applications, 26, 686699.Google Scholar
Cordes, L. D., Hughes, F. M. R., & Getty, M. (1997). Factors affecting the regeneration and distribution of riparian woodlands along a northern prairie river: The Red Deer River, Alberta, Canada. Journal of Biogeography, 24, 675695.Google Scholar
Corenblit, D., Steiger, J., González, E., et al. (2014). The biogeomorphological life cycle of poplars during the fluvial bioogeomorphological succession: A special focus on Populus nigra L. Earth Surface Processes and Landforms, 39, 546563.Google Scholar
Correa, R. S., de Mello Filho, B., & de Mello Baptista, G. M. (2007). Phytosociological evaluation of the autogenic succession in mined areas in the Brazilian Federal District. Cerne, 13, 406415.Google Scholar
Cowles, H. C. (1901). The physiographic ecology of Chicago and vicinity: A study of the origin, development, and classification of plant societies. Botanical Gazette, 31, 73108, 145–82.Google Scholar
Cramer, V. A., Standish, R. J., & Hobbs, R. J. (2007). Prospects for the recovery of native vegetation in Western Australian old fields. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 286306. Washington, DC: Island Press.Google Scholar
Cramer, V. A. & Hobbs, R. J., eds. (2007). Old Field Dynamics and Restoration of Abandoned Farmland. Washington, DC: Island Press.Google Scholar
Crampton, C. B. (1987). Soils, vegetation and permafrost across an active meander of Indian River, Central Yukon, Canada. Catena, 14, 157163.Google Scholar
Craw, D., Rufaut, C. G., Hammit, S., Clearwater, S. G., & Smith, C. M. (2007). Geological controls on natural ecosystem recovery on mine waste in southern New Zealand. Environmental Geology, 51, 13891400.Google Scholar
Crews, T., Kitayama, K., Fownes, J., et al. (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequences in Hawaii. Ecology, 76, 14071424.Google Scholar
Cross, A. T., Young, R., Nevill, P., et al. (2018). Appropriate aspirations for effective post‑mining restoration and rehabilitation: A response to Kaźmierczak et al. Environmental Earth Sciences, 77, 256. doi: 10.1007/s12665-018-7437-z.Google Scholar
Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V., & Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications, 7, 11666.Google Scholar
Crow, T. R. (1980). A rainforest chronicle: A 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica, 12, 4255.Google Scholar
Crowell, M. & Freedman, B. (1994). Vegetation development in a hardwood-forest chronosequence in Nova-Scotia. Canadian Journal of Forest Research, 24, 260271.Google Scholar
Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43, 2729.Google Scholar
Cruden, D. M., Keegan, T. R., & Thomson, S. (1993). The landslide dam on the Saddle River near Rycroft, Alberta. Canadian Geotechnical Journal, 30, 10031015.Google Scholar
Csecserits, A., Czucz, B., Halassy, M., et al. (2011). Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosystems, 145, 715729.Google Scholar
Curran, T. J., Gersbach, L. N., Edwards, W., & Krockenberger, A. K. (2008). Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of north Queensland, Australia. Austral Ecology, 33, 442450.Google Scholar
Curtin, C. G. (1994). The gothic earthflow revisited: A chronosequence examination of colonization on a subalpine earthflow. Vegetatio, 111, 137147.Google Scholar
Cushman, J. H., Waller, J. C., & Hoak, D. R. (2010). Shrubs as ecosystem engineers in a coastal dune: Influences on plant populations, communities and ecosystems. Journal of Vegetation Science, 21, 821831.Google Scholar
Cussedu, V., Ceccherelli, G., & Bertness, M. (2016). Hierarchical organization of a Sardinian sand dune plant community. PeerJ, 4, e2199.Google Scholar
Cutler, N. A., Belyea, L. R., & Dugmore, A. J. (2008). The spatiotemporal dynamics of a primary succession. Journal of Ecology, 96, 231246.Google Scholar
Dahlskog, S. (1982). Successions in a Lapland mountain delta. Meddelanden fran Växtbiologiska Institutionen, 3, 5462.Google Scholar
Dale, V. H. (1989). Wind dispersed seeds and plant recovery on the Mount St. Helens debris avalanche. Canadian Journal of Botany, 67, 14341441.Google Scholar
Dale, V. H. & Adams, W. M. (2003). Plant reestablishment 15 years after the debris avalanche at Mount St. Helens, Washington. Science of the Total Environment, 313, 101113.Google Scholar
Dale, V. H., Crisafulli, C. M., & Swanson, F. J. (2005). 25 years of ecological change at Mount St. Helens. Science, 308, 961962.Google Scholar
Dalling, J. W. (1994). Vegetation colonization of landslides in the Blue Mountains, Jamaica. Biotropica, 26, 392399.Google Scholar
Dalling, J. W. & Tanner, E. V. J. (1995). An experimental study of regeneration on landslides in montane rain forests in Jamaica. Journal of Ecology, 83, 5564.Google Scholar
Dalotto, C. E. S., Sühs, R. B., Dechoum, M. S., Pugnaire, F. I., Peroni, N., & Castellani, T. (2018). Facilitation influences patterns of perennial species abundance and richness in a subtropical dune system. AOB Plants, 10, ply017.Google Scholar
D’Amico, M. E., Freppaz, M., Filippa, G., & Zanini, E. (2014). Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena, 113, 122137.Google Scholar
D’Antonio, C. M., Hughes, R. F., & Tunison, J. T. (2011). Long-term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands. Ecological Applications, 21, 16171628.Google Scholar
Danin, A. (1991). Plant adaptations in desert dunes. Journal of Arid Environments, 21, 193212.Google Scholar
Darcy, J. L. & Schmidt, S. K. (2016). Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biology and Biochemistry, 95, 156163.Google Scholar
Datri, L., Faggi, A., & Gallo, L. (2017). Crack willow changing riverine landscapes in Patagonia. Ecohydrology, 10, e1837.Google Scholar
David, A. S., May, G., Schmidt, D., & Seabloom, E. W. (2016). Beachgrass invasion in coastal dunes is mediated by soil microbes and lack of disturbance dependence. Ecosphere, 7, e01527.Google Scholar
Davis, M. A. & Pelsor, M. (2001). Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4, 421428.Google Scholar
Davis, M. A., Bier, L., Bushelle, E., Diegel, C., Johnson, A., & Kujala, B. (2005). Non-indigenous grasses impede woody succession. Plant Ecology, 178, 249264.Google Scholar
Davis, M. B. 1996. Eastern Old‐growth Forests: Prospects for Rediscovery and Recovery. Washington, DC: Island Press.Google Scholar
Dean, W. R. J. & Milton, S. J. (1995). Plant and invertebrate assemblages on old fields in the arid southern Karoo, South-Africa. African Journal of Ecology, 33, 113.Google Scholar
DeBano, L. F., Neary, D. G., & Folliot, P. F. (1998). Fire´s Effects on Ecosystems. New York: Wiley.Google Scholar
Debussche, M. & Isenmann, P. (1994). Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos, 69, 414426.Google Scholar
Debussche, M., Escarré, J., Lepart, J., Houssard, C., & Lavorel, S. (1996). Changes in Mediterranean plant succession: Old-fields revisited. Journal of Vegetation Science, 7, 519526.Google Scholar
Dech, J. P. & Maun, M. A. (2006). Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes. Annals of Botany, 98, 10951105.Google Scholar
de Deus, F. F. & Oliveira, P. E. (2016). Changes in floristic composition and pollination systems in a “Cerrado” community after 20 years of fire suppression. Brazilian Journal of Botany, 39, 10511063.Google Scholar
De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516531.Google Scholar
De Frenne, P., Baeten, L., Braae, B. J., et al. (2011). Interregional variation in the floristic recovery of post-agricultural forests. Journal of Ecology, 99, 600609.Google Scholar
de la Peña, E., Baeten, L., Steel, H., et al. (2016). Beyond plant-soil feedbacks: Mechanisms driving plant community shifts due to land-use legacies in post-agricultural forests. Functional Ecology, 30, 10731085.CrossRefGoogle Scholar
Delarze, R., Caldelari, D., & Hainard, P. (1992). Effects of fire on forest dynamics in southern Switzerland. Journal of Vegetation Science, 3, 5560.Google Scholar
Delgadillo, C. M. & Cárdenas, A. S. (1995). Observations on moss succession on Paricutín Volcano, Mexico. The Bryologist, 98, 606608.Google Scholar
DellaSala, D. A., Martin, A., Spivak, R., et al. (2003). A citizens’ call for ecological forest restoration: Forest restoration principles and criteria. Ecological Restoration, 21, 1423.Google Scholar
del Moral, R. (1999). Predictability of primary successional wetlands on pumice, Mount St. Helens. Madroño, 46, 177186.Google Scholar
del Moral, R. (2009). Increasing deterministic control of primary succession on Mount St. Helens, Washington. Journal of Vegetation Science, 20, 11451154.Google Scholar
del Moral, R. & Chang, C. C. (2015). Multiple assessments of succession rates on Mount St. Helens. Plant Ecology, 216, 165176.Google Scholar
del Moral, R. & Grishin, S. Y. (1999). Volcanic disturbances and ecosystem recovery. In Walker, L. R., ed., Ecosystems of Disturbed Ground: Ecosystems of the World 16, pp. 137160. Amsterdam: Elsevier.Google Scholar
del Moral, R. & Lacher, I. L. (2005). Vegetation patterns 25 years after the eruption of Mount St. Helens, Washington. American Journal of Botany, 92, 19481956.Google Scholar
del Moral, R. & Walker, L. R. (2007). Environmental Disasters, Natural Recovery and Human Responses. Cambridge: Cambridge University Press.Google Scholar
del Moral, R. & Wood, D. M. (1986). Subalpine vegetation recovery five years after the Mount St. Helens eruptions. In Keller, S. A. C., ed., Mount St. Helens: Five Years Later, pp. 215221. Cheney: Eastern Washington University Press.Google Scholar
del Moral, R. & Wood, D. M. (1988). Dynamics of herbaceous vegetation recovery on Mount St. Helens, Washington, USA, after a volcanic eruption. Vegetatio, 74, 1127.Google Scholar
del Moral, R., Walker, L. R., & Bakker, J. P. (2007). Insights gained from succession for the restoration of landscape structure and function. In Walker, L. R., Walker, J., & Hobbs, R. J., eds., Linking Restoration and Succession in Theory and Practice, pp. 1944. New York: Springer.Google Scholar
del Moral, R., Thomason, L. A., Wenke, A. C., Lozanoff, N., & Abata, M. D. (2012). Primary succession trajectories on pumice at Mount St. Helens, Washington. Journal of Vegetation Science, 23, 7385.Google Scholar
Del Tredici, P. (2001). Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67, 121140.Google Scholar
Dengler, J., Janisová, M., Török, P., & Wellstein, C. (2014). Biodiversity of Palaearctic grasslands: A synthesis. Agriculture, Ecosystems and Environment, 182, 114.Google Scholar
Densmore, R. V. (1994). Succession on regraded placer mine spoil in Alaska, USA, in relation to initial site characteristics. Arctic and Alpine Research, 26, 354363.Google Scholar
De Villiers, A. D. & O’Connor, T. G. (2011). Effect of a single fire on woody vegetation in catchment IX, Cathedral Peak, KwaZulu-Natal Drakensberg, following extended partial exclusion of fire. African Journal of Range and Forage Science, 28, 111120.Google Scholar
De Wilde, M., Buisson, E., Ratovoson, F., Randrianaivo, R., Carriere, S. M., & Ii, P. P. L. (2012). Vegetation dynamics in a corridor between protected areas after slash-and-burn cultivation in south-eastern Madagascar. Agriculture Ecosystems & Environment, 159, 18.Google Scholar
Dewine, J. M. & Cooper, D. J. (2008). Canopy shade and the successional replacement of tamarisk by native box elder. Journal of Applied Ecology, 45, 505514.Google Scholar
Diamond, J. (2005). Collapse: How Societies Choose to Fail or Succeed. New York: Penguin Books.Google Scholar
Diamond, J. M. (1975). The assembly of species communities. In Cody, M. L. & Diamond, J. M., eds., Ecology and Evolution of Communities, pp. 342344. Cambridge, MA: Harvard University Press.Google Scholar
Díaz, S., Hodgson, J. G., Thompson, K., et al. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295304.Google Scholar
Di Castri, F., Goodall, D. W., & Specht, R. L., eds. (1981). Mediterranean-Type Shrublands: Ecosystems of the World 2. Amsterdam: Elsevier.Google Scholar
Dickson, B. A. & Crocker, R. L. (1953). A chronosequence of soils and vegetation near Mt. Shasta, California. 1. Definition of the ecosystem investigated and features of the plant succession. Journal of Soil Science, 4, 123141.Google Scholar
Dickson, L. G. (2000). Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arctic, Antarctic, and Alpine Research, 32, 4045.Google Scholar
Dierschke, H. (2014). Secondary succession in clear-cut areas of a beech forest: Permanent plot research 1971–2013. Tuexenia, 34, 107130.Google Scholar
Dietze, M. C. & Clark, J. S. (2008). Changing the gap dynamics paradigm: Vegetative regeneration control on forest response to disturbance. Ecological Monographs, 78, 331347.Google Scholar
Di Giuseppe, F., Pappenberger, F., Wetterhall, F., et al. (2016). The potential predictability of fire danger provided by numerical weather prediction. Journal of Applied Meteorology and Climatology, 55, 24692491.Google Scholar
Dilustro, J. J. & Day, F. P. (1997). Aboveground biomass and net primary production along a Virginia barrier island dune chronosequence. The American Midland Naturalist, 137, 2738.Google Scholar
Dimopoulos, P., Raus, T., Mucina, L., & Tsiripidis, I. (2010). Vegetation patterns and primary succession on sea-born volcanic islands (Santorini archipelago, Aegean Sea, Greece). Phytocoenologia, 40, 114.Google Scholar
Di Palo, F. & Fornara, D. A. (2017). Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link? PLoS ONE, 12, e0182569.Google Scholar
Dirzo, R., Young, H. S., Mooney, H. A., & Ceballos, G. (2011). Seasonally Dry Tropical Forests: Ecology and Conservation. Washington, DC: Island Press.Google Scholar
Dislich, C. & Huth, A. (2012). Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecological Modelling, 239, 4053.Google Scholar
Dittus, W. P. J. (1985). The influence of cyclones on the dry evergreen forest of Sri Lanka. Biotropica, 17, 114.Google Scholar
Dixon, M. & Turner, M. (2006). Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research Applications, 22, 10571083.Google Scholar
Dixon, M. D., Turner, M. G., & Jin, C. F. (2002). Riparian tree seedling distribution on Wisconsin River sandbars: Controls at different spatial scales. Ecological Monographs, 72, 465485.Google Scholar
Doelle, M. & Schmidt, W. (2009). The relationship between soil seed bank, above-ground vegetation and disturbance intensity on old-field successional permanent plots. Applied Vegetation Science, 12, 415428.Google Scholar
Doing, H. (1985). Coastal fore-dune zonation and succession in various parts of the world. Vegetatio, 61, 6575.Google Scholar
Doležal, J., Yakubov, V., & Hara, T. (2013). Plant diversity changes and succession along resource availability and disturbance gradients in Kamchatka. Plant Ecology, 214, 477488.Google Scholar
Doležal, J., Song, J. S., Altman, J., Janeček, S., Černý, T., Šrůtek, M., & Kolbek, J. (2009). Tree growth and competition in a post-logging Quercus mongolica forest on Mt. Sobaek, South Korea. Ecological Research, 24, 281290.Google Scholar
Doležal, J., Homma, K., Takahashi, K., et al. (2008). Primary succession following deglaciation at Koryto Glacier Valley, Kamchatka. Arctic, Antarctic, and Alpine Research, 40, 309322.Google Scholar
d’Oliveira, M. V. N., Alvarado, E. C., Santos, J. C., & Carvalho, J. A. Jr (2011). Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management, 261, 14901498.Google Scholar
Dommanget, F., Spiegelberger, T., Cavaille, P., & Evette, A. (2013). Light availability prevails over soil fertility and structure in the performance of Asian knotweeds on riverbanks: New management perspectives. Environmental Management, 52, 11453–1462.Google Scholar
Donato, D. C., Fontaine, J. B., Robinson, W. D., Kauffman, J. B., & Law, B. E. (2009). Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. Journal of Ecology, 97, 142154.Google Scholar
Donfack, P., Floret, C., & Pontanier, R. (1995). Secondary succession in abandoned fields of dry tropical northern Cameroon. Journal of Vegetation Science, 6, 499508.Google Scholar
dos Santos, R., Citadini-Zanette, V., Leal-Filho, L. S., & Hennies, W. T. (2008). Spontaneous vegetation on overburden piles in the Coal Basin of Santa Catarina, Brazil. Restoration Ecology, 16, 444452.Google Scholar
Dostál, P., Dawson, W., van Kleunen, M., Keser, L. H., & Fischer, M. (2013). Central European plant species from more productive habitats are more invasive at a global scale. Global Ecology and Biogeography, 22, 6472.Google Scholar
Dovciak, M., Frelich, L. E., & Reich, P. B. (2005). Pathways in old-field succession to white pine: Seed rain, shade, and climate effects. Ecological Monographs, 75, 363378.Google Scholar
Doyle, K. M., Knight, D. H., Taylor, D. L., Barmore, W. J., & Benedict, J. M. (1998). Seventeen years of forest succession following the Waterfalls Canyon Fire in Grand Teton National Park, Wyoming. International Journal of Wildland Fire, 8, 4555.Google Scholar
Drake, D. (1990). Communities as assembled structures: Do rules govern pattern? Trends in Ecology and Evolution, 5, 159164.Google Scholar
Drake, D. R. & Mueller-Dombois, D. (1993). Population development of rain forest trees on a chronosequence of Hawaiian lava flows. Ecology, 74, 10121019.Google Scholar
Driscoll, K. G., Arocena, J. M., & Massicotte, H. B. (1999). Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forests of British Columbia’s central interior, Canada. Forest Ecology and Management, 121, 227237.Google Scholar
Duan, W. J., Ren, H., Fu, S. L., Wang, J., Yang, L., & Zhang, J. P. (2008). Natural recovery of different areas of a deserted quarry in South China. Journal of Environmental Sciences, 20, 476481.Google Scholar
Duffin, K. I., Li, S., & Meiners, S. J. (2019). Species pools and differential performance generate variation in leaf nutrients between native and exotic species in succession. Journal of Ecology, 107, 595605.Google Scholar
Dümig, A., Veste, M., Hagedorn, F., et al. (2014). Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. Catena, 122, 196208.Google Scholar
Dupuch, A. & Fortin, D. (2013). The extent of edge effects increases during post-harvesting forest succession. Biological Conservation, 162, 916.Google Scholar
Dyurgerov, E. (2002). Glacier Mass Balance and Regime: Data of Measurements and Analysis. Occasional Paper Number 55, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO.Google Scholar
Dzwonko, Z., Loster, S., & Gawronski, S. (2015). Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. Forest Ecology and Management, 342, 5663.Google Scholar
Edwards, P. J., Kollmann, J., Gurnell, A. M., Petts, G. E., Tockner, K., & Ward, J. V. (1999). A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecology and Management, 7, 141153.Google Scholar
Eger, A., Almond, P. C., Wells, A., & Condron, L. M. (2013). Quantifying ecosystem rejuvenation: Foliar nutrient concentrations and vegetation communities across a dust gradient and a chronosequences. Plant and Soil, 367, 93109.Google Scholar
Egger, G., Politti, E., Lautsch, E., Benjankar, R., Gill, K. M., & Rood, S. B. (2015). Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands. Journal of Environmental Management, 161, 7282.Google Scholar
Egler, F. E. (1954). Vegetation science concepts 1. Initial floristic composition, a factor in old-field vegetation development. Vegetatio, 4, 412417.Google Scholar
Ehrenfeld, J. G. (2000). Defining the limits of restoration: The need for realistic goals. Restoration Ecology, 8, 29.Google Scholar
Ehrensperger, T., Urech, Z. L., Rehnus, M., & Sorg, J. P. (2013). Fire impact on the woody plant components of dry deciduous forest in Central Menabe, Madagascar. Applied Vegetation Science, 16, 619628.Google Scholar
Eisenhauer, N., Barnes, A. D., Cesarz, S., et al. (2016). Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. Journal of Vegetation Science, 27, 10611070.Google Scholar
Ejrnaes, R., Hansen, D. N., & Aude, E. (2003). Changing course of secondary succession in abandoned sandy fields. Biological Conservation, 109, 343350.Google Scholar
Ekka, N. J. & Behera, N. (2011). Species composition and diversity of vegetation developing on an age series of coal mine spoil in an open cast coal field in Orissa, India. Tropical Ecology, 52, 337343.Google Scholar
Elias, R. B. & Dias, E. (2004). Primary succession on lava domes on Terceira (Azores). Journal of Vegetation Science, 15, 331338.Google Scholar
Elias, R. B. & Dias, E. (2009). Effects of landslides on the mountain vegetation of Flores Island, Azores. Journal of Vegetation Science, 20, 706717.Google Scholar
Elliott, K. J., Boring, L. R., Swank, W. T., & Haines, B. R. (1997). Successional changes in plant species diversity and composition after clearcutting a Southern Appalachian watershed. Forest Ecology and Management, 92, 6785.Google Scholar
Elmqvist, T., Wall, M., Berggren, A.-L., Blix, L., Fritioff, Å., & Rinman, U. (2002). Tropical forest reorganization after cyclone and fire disturbance in Samoa: Remnant trees as biological legacies. Conservation Ecology, 5, article no. 10.Google Scholar
Elson, L. T., Simon, N. P. P., & Kneeshaw, D. (2007). Regeneration differences between fire and clearcut logging in southeastern Labrador: A multiple spatial scale analysis. Canadian Journal of Forest Research, 37, 473480.Google Scholar
Emery, S. M., Master, J. A., Benanti, S., & Gottshall, C. B. (2015). Patterns of trophic-level diversity associated with herbaceous dune vegetation across a primary successional gradient. The American Midland Naturalist, 173, 177190.Google Scholar
Engel, E. C. & Abella, S. R. (2011). Vegetation recovery in a desert landscape after wildfires: Influences of community type, time since fire and contingency effects. Journal of Applied Ecology, 48, 14011410.Google Scholar
Erktan, A., Roumet, C., Bouchet, D., et al. (2018). Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. Journal of Ecology, 106, 20312042.Google Scholar
Erskine, P. D., Catterall, C. P., Lamb, D., & Kanowski, J. (2007). Patterns and processes of old fields reforestation in Australian rain forest landscapes. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 119144. Washington, DC: Island Press.Google Scholar
Erskine, W., Chalmers, A., Keene, A., Cheetham, M., & Bush, R. (2009). Role of a rheophyte in bench development on a sand-bed river in southeast Australia. Earth Surface Processes and Landforms, 34, 941953.Google Scholar
Escarré, J., Lefèbvre, C., Raboyeau, S., et al. (2011). Heavy metal concentration survey in soils and plants of the Les Malines mining district (Southern France): Implications for soil restoration. Water Air and Soil Pollution, 216, 485504.Google Scholar
Esler, K. J., Jacobsen, A. L., & Pratt, R. B. (2018). The Biology of Mediterranean-Type Ecosystems. Oxford: Oxford University Press.Google Scholar
Esper-Reyes, K. A., Mariano, N. A., Alcalá, R. E., Bonilla-Barbosa, J. R., Flores-Franco, G., & Wehncke, E. V. (2018). Seed dispersal by rivers in tropical dry forests: An overlooked process in tropical central Mexico. Journal of Vegetation Science, 29, 6273.Google Scholar
Everham, E. M. & Brokaw, N. V. L. (1996). Forest damage and recovery from catastrophic wind. The Botanical Review, 62, 113185.Google Scholar
Ewel, J. (1980). Tropical succession: Manifold routs to maturity. Biotropica, 12 (Supplement), 27.Google Scholar
Ewel, J. J. & Putz, F. E. (2004). A place for alien species in ecosystem restoration. Frontiers in Ecology and the Environment, 2, 354360.Google Scholar
Fagan, W. F. & Bishop, J. G. (2000). Trophic interactions during primary succession: Herbivory slows a plant reinvasion at Mount St. Helens. The American Naturalist, 155, 238251.Google Scholar
Fagan, W. F., Lewis, M., Neubert, M. G., et al. (2005). When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens. American Naturalist, 166, 669685.Google Scholar
FAO (2019). Food and Agriculture Organization of the United Nations. www.fao.org.Google Scholar
Fastie, C. L. (1995). Causes and ecosystem consequences of multiple pathways on primary succession at Glacier Bay, Alaska. Ecology, 76, 18991916.Google Scholar
Faucon, M.-P., Houben, D., & Lambers, H. (2017). Plant functional traits: Soil and ecosystem services. Trends in Plant Science, 22, 385394.Google Scholar
Faver, S., Jain, T., Bradford, J. B., et al. (2011). The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA. Ecological Applications, 21, 18951901.Google Scholar
Favero-Longo, S. E., Worland, M. R., Convey, P., et al. (2012). Primary succession of lichen and bryophyte communities following glacial recession on Signy Island, South Orkney Islands, Maritime Antarctic. Antarctic Science, 24, 323336.Google Scholar
Feagin, R. A., Figlus, J., Zinner, J. C., et al. (2015). Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Frontiers in Ecology and the Environment, 13, 203210.Google Scholar
Fenesi, A., Vagasi, C. I., Beldean, M., et al. (2015). Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic and Applied Ecology, 16, 335346.Google Scholar
Feng, Z., Alfaro-Murillo, J. A., DeAngelis, D. L., et al. (2012). Plant toxins and trophic cascades alter fire regime and succession on a boreal forest landscape. Ecological Modelling, 244, 7992.Google Scholar
Fenner, M. (1985). Seed Ecology. London: Chapman & Hall.Google Scholar
Fenner, M. & Thompson, K. (2005). The Ecology of Seeds. Cambridge: Cambridge University Press.Google Scholar
Fensham, R. J., Fairfax, R. J., Quintin, A. R., & Dwyer, J. M. (2016). Passive restoration of subtropical grassland after abandonment of cultivation. Journal of Applied Ecology, 53, 274283.Google Scholar
Fernández, D. S. & Fetcher, N. (1991). Changes in light availability following Hurricane Hugo in a subtropical montane forest in Puerto Rico. Biotropica, 23, 393399.Google Scholar
Ferracin, T. P., Medri, P. S., Batista, A. C. R., Mota, M. C., Bianchini, E., & Torezan, J. M. D. (2013). Passive restoration of Atlantic forest following Pinus taeda harvesting in southern Brazil. Restoration Ecology, 21, 770776.Google Scholar
Fetcher, N., Haines, B. L., Cordero, R. A., et al. (1996). Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. Journal of Ecology, 84, 331341.Google Scholar
Fike, J. & Niering, W. A. (1999). Four decades of old field vegetation development and the role of Celastrus orbiculatus in the northeastern United States. Journal of Vegetation Science, 10, 483492.Google Scholar
Fine, P. V. A. (2002). The invasibility of tropical forests by exotic plants. Journal of Tropical Ecology, 18, 687705.Google Scholar
Finkl, C. W. & Pilkey, O. H., eds. (1991). Impact of Hurricane Hugo: September 10–22, 1989. Journal of Coastal Research, special issue 8, 1356.Google Scholar
Fischer, F. M., Oliveira, J. M., Dresseno, A. L. P., & Pillar, V. D. (2014). The role of invasive pine on changes of plant composition and functional traits in a coastal dune ecosystem. Natureza and Conservação, 12, 1923.Google Scholar
Flaccus, E. (1959). Revegetation of landslides in the White Mountains of New Hampshire. Ecology, 40, 692703.Google Scholar
Flores, B. M., Piedade, M.-T. F., & Nelson, B. W. (2014). Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology and Diversity, 7, special issue S1, 319327.Google Scholar
Floret, C., Galan, M. J., Floch, E., & Romane, F. (1992). Dynamics of holm oak (Quercus ilex L.) coppices after clearcutting in southern France. Plant Ecology, 99–100, 97105.Google Scholar
Fonda, R. W. (1974). Forest succession in relation to river terrace development in Olympic National Park, Washington. Ecology, 55, 927942.Google Scholar
Formann, R. T. T., Sperling, D., Bissonette, J. A., et al. (2003). Road Ecology: Science and Solutions. Washington, DC: Island Press.Google Scholar
Foster, C. N., Sato, C. F., Lindenmayer, D. B., & Barton, P. S. (2016). Integrating theory into disturbance interaction experiments to better inform ecosystem management. Global Change Biology, 22, 13251335.Google Scholar
Foster, D. R. (1988a). Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah Forest, south-western New Hampshire, U.S.A. Journal of Ecology, 76, 105134.Google Scholar
Foster, D. R. (1988b). Species and stand response to catastrophic wind in central New England, U.S.A. Journal of Ecology, 76, 135151.Google Scholar
Foster, D. R., Fluet, M., & Boose, E. R. (1999). Human or natural disturbance: Landscape-scale dynamics of the tropical forests of Puerto Rico. Ecological Applications, 9, 555572.Google Scholar
Fox, B. J., Fox, M. D., Taylor, J. E., et al. (1996). Comparison of regeneration following burning, clearing or mineral sand mining at Tomago, NSW. 1. Structure and growth of the vegetation. Australian Journal of Ecology, 21, 184199.Google Scholar
Francescato, V., Scotton, M., Zarin, D. J., Innes, J. C., & Bryant, D. M. (2001). Fifty years of natural revegetation on a landslide in Franconia Notch, New Hampshire, U.S.A. Canadian Journal of Botany, 79, 14771485.Google Scholar
Frangi, J. L. & Lugo, A. E. (1998). A flood plain palm forest in the Luquillo Mountains of Puerto Rico five years after Hurricane Hugo. Biotropica, 30, 339348.Google Scholar
Franklin, J. (2007). Recovery from clearing, cyclone and fire in rain forests of Tonga, South Pacific: Vegetation dynamics 1995–2005. Austral Ecology, 32, 789797.Google Scholar
Franklin, J., Coulter, C. L., & Rey, S. J. (2004). Change over 70 years in a southern California chaparral community related to fire history. Journal of Vegetation Science, 15, 701710.Google Scholar
Franks, S., Masek, J. G., & Turner, M. G. (2013). Monitoring forest regrowth following large scale fire using satellite data: A case study of Yellowstone National Park, USA. European Journal of Remote Sensing, 46, 551569.Google Scholar
Fraser, A. I. (1962). The soil and roots as factors in tree stability. Forestry, 35, 117127.Google Scholar
Freestone, M., Wills, T. J., & Read, J. (2015). Post-fire succession during the long-term absence of fire in coastal heathland and a test of the chronosequence survey method. Australian Journal of Botany, 63, 572580.Google Scholar
Frelich, L. E. (2002). Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. Cambridge: Cambridge University Press.Google Scholar
Frelich, L. E. & Reich, P. B. (1995). Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs, 65, 325346.Google Scholar
Frenzen, P. M., Krasny, M. E., & Rigney, L. P. (1988). Thirty-three years of plant succession on the Kautz Creek mudflow, Mount Rainier National Park, Washington. Canadian Journal of Botany, 66, 130137.Google Scholar
Fridley, J. D. & Wright, J. P. (2012). Drivers of secondary succession rates across temperate latitudes of the Eastern USA: Climate, soils, and species pools. Oecologia, 168, 10691077.Google Scholar
Fridriksson, S. (1987). Plant colonization of a volcanic island, Surtsey, Iceland. Arctic and Alpine Research, 19, 425431.Google Scholar
Fridriksson, S. (1992). Vascular plants on Surtsey (1981–1990). Reykiavik, Surtsey Research Progress Report, 10, 1730.Google Scholar
Friedman, J. M., Osterkamp, W. R., & Lewis, W. M. Jr. (1996). Channel narrowing and vegetation development following a Great Plains flood. Ecology, 77, 21672181.Google Scholar
Frouz, J., Kalčík, J., & Velichová, V. (2011). Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecological Engineering, 37, 19101913.Google Scholar
Frouz, J., Mudrák, O., Reitschmiedová, E., et al. (2018). Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted. Journal of Environmental Management, 205, 5058.Google Scholar
Frouz, J., Prach, K., Pizl, V., et al. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44, 109121.Google Scholar
Frye, R. J. II & Quinn, J. A. (1979). Forest development in relation to topography and soils on a floodplain of the Raritan River, New Jersey. Bulletin of the Torrey Botanical Club, 106, 334345.Google Scholar
Fu, S., Rodríguez Pedraza, C., & Lugo, A. E. (1996). A twelve-year comparison of stand changes in a mahogany plantation and a paired natural forest of similar age. Biotropica, 28, 515524.Google Scholar
Fujii, S., Kubota, Y., & Enoki, T. (2010). Long-term ecological impacts of clear-fell logging on tree species diversity in a subtropical forest, southern Japan. Journal of Forest Research, 15, 289298.Google Scholar
Fukami, T., Bezemer, T. M., Mortimer, S. R., & van der Putten, W. H. (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 12831290.Google Scholar
Fullen, M. A. & Mitchell, D. J. (1994). Desertification and reclamation in North-Central China. Ambio, 23, 131135.Google Scholar
Fuller, R. N. & del Moral, R. (2003). The role of refugia and dispersal in primary succession on Mount St. Helens, Washington. Journal of Vegetation Science, 14, 637644.Google Scholar
Funk, J. & Vitousek, P. (2007). Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 10791081.Google Scholar
Funk, J. L., Larson, J. E., Ames, G. M., et al. (2016). Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biological Reviews, 92, 11561173.Google Scholar
Fyles, J. W. & Bell, M. A. M. (1986). Vegetation colonizing river gravel bars in the Rocky Mountains of southeastern British Columbia. Northwest Science, 60, 814.Google Scholar
Gagne, J.-M. & Houle, G. (2001). Facilitation of Leymus mollis by Honckenya peploides on coastal dunes in subarctic Quebec, Canada. Canadian Journal of Botany, 79, 13271331.Google Scholar
Galatowitsch, S. & Richardson, D. M. (2005). Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biological Conservation, 122, 509521.Google Scholar
Galindo, V., Calle, Z., Chará, J., & Armbrecht, I. (2017). Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restoration Ecology, 25, 731737.Google Scholar
Gallardo, M.-B., Pérez, C., Núñez-Ávila, M., & Armesto, J. J. (2012). Decoupling of soil development and plant succession over a 60,000 year chronosequence in the Llaima Volcano, Chile. Chilean Journal of Natural History, 85, 291306.Google Scholar
Gallego-Fernández, J. B., Muñoz-Valles, S., & Dellafiore, C. M. (2015). Spatio-temporal patterns of colonization and expansion of Retama monosperma on developing coastal dunes. Journal of Coastal Conservation, 19, 577587.Google Scholar
Game, M., Carrel, J. E., & Hotrabhavandra, T. (1982). Patch dynamics of plant succession on abandoned surface coal-mines: A case-history Approach. Journal of Ecology, 70, 707720.Google Scholar
Ganade, G. (2007). Processes affecting succession in old fields of Brazilian Amazonia. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 7592. Washington, DC: Island Press.Google Scholar
García-Aria, A. & Francés, F. (2016). The RVDM: Modelling impacts, evolution and competition processes to determine riparian vegetation dynamics. Ecohydrology, 3, 438459.Google Scholar
Garcia-Florez, L., Vanclay, J. K., Glencross, K., & Nichols, J. D. (2017). Understanding 48 years of changes in tree diversity, dynamics and species responses since logging disturbance in a subtropical rainforest. Forest Ecology and Management, 393, 2939.Google Scholar
García-Romero, A., Alanís-Anaya, R. M., & Muñoz-Jiménez, J. (2015). Environmental factors that affect primary plant succession trajectories on lahars (Popocatépetl Volcano, Mexico). Journal of Mountain Science, 12, 12541266.Google Scholar
Gardescu, S. & Marks, P. L. (2004). Colonization of old fields by trees vs. shrubs: Seed dispersal and seedling establishment. Journal of the Torrey Botanical Society, 131, 5368.Google Scholar
Gardner, L. R., Michener, W. K., Blood, E. R., Williams, T. M., Lipscomb, D. J., & Jefferson, W. H. (1991). Ecological impact of Hurricane Hugo – Salinization of a coastal forest. Journal of Coastal Research, special issue 8, 301318.Google Scholar
Garibotti, I. A., Pissolito, C. I., & Villalba, R. (2011a). Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes. Arctic, Antarctic, and Alpine Research, 43, 555567.Google Scholar
Garibotti, I. A., Pissolito, C. I., & Villalba, R. (2011b). Vegetation development on deglaciated rock outcrops from Glaciar Frias, Argentina. Arctic, Antarctic, and Alpine Research, 43, 3545.Google Scholar
Garnier, E., Cortez, J., Billès, G., et al. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 26302637.Google Scholar
Garwood, N. C., Janos, D. J., & Brokaw, N. (1979). Earthquake-caused landslides: A major disturbance to tropical forests. Science, 205, 997999.Google Scholar
Gates, F. C. (1914). The pioneer vegetation of Taal Volcano. Philippine Journal of Science Section C, 9, 391431.Google Scholar
Geertsema, M. & Pojar, J. J. (2007). Influence of landslides on biophysical diversity – A perspective from British Columbia. Geomorphology, 89, 5569.Google Scholar
Gemma, J. N. & Koske, R. E. (1990). Mycorrhizae in recent volcanic substrates in Hawaii. American Journal of Botany, 77, 11931200.Google Scholar
Ghermandi, L., Guthmann, N., & Bran, D. (2004). Early post-fire succession in northwestern Patagonia grasslands. Journal of Vegetation Science, 15, 6776.Google Scholar
Gibb, J. A. (1994). Plant succession on the braided bed of the Orongorongo River, Wellington, New Zealand, 1973–1990. New Zealand Journal of Ecology, 18, 2940.Google Scholar
Gibson, C. M., Turetsky, M. R., Cottenie, K., Kane, E. S., Houle, G., & Kasischke, E. S. (2016). Variation in plant community composition and vegetation carbon pools a decade following a severe fire season in interior Alaska. Journal of Vegetation Science, 27, 11871197.Google Scholar
Gibson, D. J. (2009). Grasses and Grassland Ecology. Oxford: Oxford University Press.Google Scholar
Gibson, D. J., Middleton, B. A., Foster, K., Honu, Y. A. K., Hoyer, E. W., & Mathis, M. (2005). Species frequency dynamics in an old-field succession: Effects of disturbance, fertilization and scale. Journal of Vegetation Science, 16, 415422.Google Scholar
Gilardelli, F., Sgorbati, S., Armiraglio, S., Citterio, S., & Gentili, R. (2016). Assigning plant communities to a successional phase: Time trends in abandoned limestone quarries. Plant Biosystems, 150, 799808.Google Scholar
Gill, D. (1972). The point bar environment in the Mackenzie River Delta. Canadian Journal of Earth Sciences, 9, 13821393.Google Scholar
Gill, D. (1973). Floristics of a plant succession sequence in the Mackenzie Delta, Northwest Territories. Polarforschung, 43, 5565.Google Scholar
Gill, R. A., OʼConnor, R. C. Rhodes, A., Bishop, T. B. B., Laughlin, D. C., & St. Clair, S. B. (2018). Niche opportunities for invasive annual plants in dryland ecosystems are controlled by disturbance, trophic interactions, and rainfall. Oecologia, 187, 755765.Google Scholar
Gilliam, F. S., Turrell, N. L., & Adams, M. B. (1995). Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests. Ecological Applications, 5, 947955.Google Scholar
Gilman, L. N., Wright, S. D., Cusens, J., McBride, P. D., Malhi, Y., & Whittaker, R. J. (2015). Latitude, productivity and species richness. Global Ecology and Biogeography, 24, 107117.Google Scholar
Giupponi, L., Bischetti, G. B., & Giorgi, A. (2015). Ecological index of maturity to evaluate the vegetation disturbance of areas affected by restoration work: A practical example of its application in an area of the Southern Alps. Restoration Ecology, 23, 635644.Google Scholar
Glade, T. (2003). Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena, 51, 297314.Google Scholar
Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 726.Google Scholar
Glenn-Lewin, D. C. (1980). The individualistic nature of plant community development. Vegetatio, 43, 141146.Google Scholar
Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T., eds. (1992). Plant Succession: Theory and Prediction. London: Chapman & Hall.Google Scholar
Gloaguen, J. C. (1993). Spatiotemporal patterns in postburn succession on Brittany heathlands. Journal of Vegetation Science, 4, 561566.Google Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.Google Scholar
Goméz-Aparicio, L. (2009). The role of plant interactions in the restoration of degraded ecosystems: A meta-analysis across lifeforms and ecosystems. Journal of Ecology, 97, 12021214.Google Scholar
Gomez-Romero, M., Lindig-Cisneros, R., & Galindo-Vallejo, S. (2006). Effect of tephra depth on vegetation development in areas affected by volcanism. Plant Ecology, 183, 207213.Google Scholar
González, E., Rochefort, L., & Poulin, M. (2013). Trajectories of plant recovery in block-cut peatlands 35 years after peat extraction. Applied Ecology and Environmental Research, 11, 385406.Google Scholar
González, E., Masip, A., Tabacchi, E., & Poulin, M. (2017). Strategies to restore floodplain vegetation after abandonment of human activities. Restoration Ecology, 25, 8291.Google Scholar
González-De Vega, S., De las Heras, J., & Moya, D. (2016). Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term. Science of the Total Environment, 573, 11711177.Google Scholar
González-Mancebo, J. M., Beltrán Tejera, E., Losada-Lima, A., & Sánchez-Pinto, L. (1996). La Vida Vegetal en las Lavas Históricas de Canarias: Colonización y Recubrimiento Vegetal, con Especial Referencia al Parque Nacional de Timanfaya. Madrid: Organismo Autónomo Parques Nacionales.Google Scholar
González-Ollauri, A. & Mickovski, S. B. (2017). Shallow landslides as drivers for slope ecosystem evolution and biophysical diversity. Landslides, 14, 16991714.Google Scholar
González-Tagle, M. A., Schwendenmann, L., Pérez, J. J., & Schulz, R. (2008). Forest structure and woody plant species composition along a fire chronosequence in mixed pine-oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 256, 161167.Google Scholar
Goodall, D. W. (1986). Classification and ordination: Their nature and role in taxonomy and community studies. Coenoses, 1, 39.Google Scholar
Gornish, E. S. & Miller, T. E. (2010). Effects of storm frequency on dune vegetation. Global Change Biology, 16, 26682675.Google Scholar
Gosper, C. R., Yates, C. J., & Prober, S. M. (2013). Floristic diversity in fire-sensitive eucalypt woodlands shows a “U”-shaped relationship with time since fire. Journal of Applied Ecology, 50, 11871196.Google Scholar
Gosper, C. R., Yates, C. J., Prober, S. M., & Parsons, B. C. (2012). Contrasting changes in vegetation structure and diversity with time since fire in two Australian Mediterranean-climate plant communities. Austral Ecology, 37, 164174.Google Scholar
Götzenberger, L., de Bello, F., Brathen, K. A., et al. (2012). Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 87, 111127.Google Scholar
Gourlet-Fleury, S., Beina, D., Fayolleet, A., et al. (2013). Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. Forest Ecology and Management, 304, 322332.Google Scholar
Graf, M. D., Rochefort, L., & Poulin, M. (2008). Spontaneous revegetation of cutaway peatlands of North America. Wetlands, 28, 2839.Google Scholar
Gran, K. B., Tal, M., & Wartman, E. D. (2015). Co-evolution of riparian vegetation and channel dynamics in an aggrading braded river system, Mount Pinatubo, Philippines. Earth Surface Processes and Landforms, 40, 11011115.Google Scholar
Grau, H. R., Arturi, M. F., Brown, A. D., & Aceñolaza, P. G. (1997). Floristic and structural patterns along a chronosequence of secondary forest succession in Argentinean subtropical montane forests. Forest Ecology and Management, 95, 161171.Google Scholar
Grau, O., Rautio, P., Heikkinen, J., Saravesi, K., Kozlov, M. V., & Markkola, A. (2010). An ericoid shrub plays a dual role in recruiting both pines and their fungal symbionts along primary succession gradients. Oikos, 119, 17271734.Google Scholar
Gray, N. F. (2015). Facing Up to Global Warming: What Is Going on and How You Can Make a Difference? New York: Springer.Google Scholar
Greet, J., Webb, J., & Downes, B. (2011). Flow variability maintains the structure and composition of in-channel riparian vegetation. Freshwater Biology, 56, 25142528.Google Scholar
Gregory, S., Li, H., & Li, J. (2002). The conceptual basis for ecological responses to dam removal. BioScience, 52, 713723.Google Scholar
Griggs, R. F. (1933). The colonization of the Katmai ash, a new and inorganic “soil.” American Journal of Botany, 20, 92113.Google Scholar
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 11691194.Google Scholar
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. Chichester, UK: Wiley.Google Scholar
Grime, J. P. (2002). Plant Strategies and Vegetation Processes. 2nd ed. Chichester, UK: Wiley.Google Scholar
Grime, J. P., Hodgson, J. G., & Hunt, R. (1988). Comparative Plant Ecology: A Functional Approach to Common British Species. London: Unwin Hyman.Google Scholar
Grishin, S. Yu. (2010). Vegetation changes under the impact of volcanic ashfall (Tolbachinsky Dol, Kamchatka). Russian Journal of Ecology, 41, 436439.Google Scholar
Grishin, S. Yu., del Moral, R., Krestov, P. V., & Verkholat, V. P. (1996). Succession following the catastrophic eruption of Ksudach volcano (Kamchatka, 1907). Vegetatio, 127, 129153.Google Scholar
Groffman, P. M., Bain, D. J., Band, L. E., et al. (2003). Down by the riverside: Urban riparian ecology. Frontiers in Ecology and the Environment, 1, 315321.Google Scholar
Grootjans, A. P. & Verbeek, S. K. (2002). A conceptual model of European wet meadow restoration. Ecological Restoration, 20, 69.Google Scholar
Grootjans, A. P., Ernst, W. H. O., & Stuyfzand, P. J. (1998). European dune slacks: Strong interactions of biology, pedogenesis and hydrology. Trends in Ecology and Evolution, 13, 96100.Google Scholar
Grootjans, A. P., Dullo, B. S., Kooijman, A. M., Bekker, R. M., & Aggenbach, C. (2013). Restoration of dune vegetation in The Netherlands. In Martínez, M. L., Gallego-Fernández, J. B., & Hesp, P. A., eds., Restoration of Coastal Dunes, pp. 235254. New York: Springer.Google Scholar
Grootjans, A. P., Shahrudin, R., van de Craats, A., et al. (2017). Window of opportunity of Liparis loeselii populations during vegetation succession on the Waddern Sea islands. Journal of Coastal Conservation, 21, 631641.Google Scholar
Gross, K. I. & Emery, S. M. (2007). Succession and restoration in Michigan old field communities. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 162179. Washington, DC: Island Press.Google Scholar
Grove, S., Parker, I. M., & Haubensak, K. A. (2017). Do impacts of an invasive nitrogen-fixing shrub on Douglas-fir and its ectomycorrhizal mutualism change over time following invasion? Journal of Ecology, 105, 16871697.Google Scholar
Groves, R. H. & DiCastri, F., eds. (1991). Biogeography of Mediterranean Invasions. Cambridge: Cambridge University Press.Google Scholar
Grubb, P. J. (1987). Some generalizing ideas about colonization and succession in green plants and fungi. In Gray, A. J., Crawley, M. J., & Edwards, P. J., eds., Colonization, Succession and Stability, pp. 81102. Oxford: Blackwell.Google Scholar
Guariguata, M. R. (1990). Landslide disturbance and forest regeneration in the Upper Luquillo Mountains of Puerto Rico. Journal of Ecology, 78, 814832.Google Scholar
Guariguata, M. R. & Dupuy, J. M. (1997). Forest regeneration in abandoned logging roads in lowland Costa Rica. Biotropica, 29, 1528.Google Scholar
Guedo, D. D. & Lamb, E. G. (2013). Temporal changes in abundance-occupancy relationships within and between communities after disturbance. Journal of Vegetation Science, 24, 607615.Google Scholar
Guzmán-Grajales, S. M. & Walker, L. R. (1991). Differential seedling responses to litter after Hurricane Hugo in the Luquillo Experimental Forest, Puerto Rico. Biotropica, 23, 407413.Google Scholar
Haeussler, S. & Bergeron, Y. (2004). Range of variability in boreal aspen plant communities after wildfire and clear-cutting. Canadian Journal of Forest Research, 34, 274288.Google Scholar
Haigh, M. J., Rawat, J. S., Rawat, M. S., Bartarya, S. K., & Rai, S. P. (1995). Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. Forest Ecology and Management, 78, 173189.Google Scholar
Haire, S. L. & McGarigal, K. (2008). Inhabitants of landscape scars: Succession of woody plants after large, severe forest fires in Arizona and New Mexico. Southwestern Naturalist, 53, 146161.Google Scholar
Halofsky, J. E. & Hibbs, D. E. (2009). Controls on early post-fire plant colonization in riparian areas. Forest Ecology and Management, 258, 13501358.Google Scholar
Halpern, C. B. & Lutz, J. A. (2013). Canopy closure exerts weak controls on understory dynamics: A 30-year study of overstory-understory interactions. Ecological Monographs, 83, 221237.Google Scholar
Halvorson, J. J., Smith, J. L., & Franz, E. H. (1991). Lupine influence on soil carbon, nitrogen and microbial activity in developing ecosystems at Mount St. Helens. Oecologia, 87, 162170.Google Scholar
Halvorson, J. J., Smith, J. L., & Kennedy, A. C. (2005). Lupine effects on soil development and function during early primary succession at Mount St. Helens. In Dale, V. H., Swanson, F. J., & Crisafulli, C. M., eds., Ecological Responses to the 1980 Eruption of Mount St. Helens, pp. 243254. New York: Rotterdam.Google Scholar
Halwagy, R. (1961). Studies on the succession of vegetation on some islands and sand banks in the Nile near Khartoum, Sudan. Vegetatio, 11, 217234.Google Scholar
Hanley, T. A. & Barnard, J. C. (1998). Red Alder, Alnus rubra, as a potential mitigating factor for wildlife habitat following clearcut logging in southeastern Alaska. Canadian Field-Naturalist, 112, 647652.Google Scholar
Hanna, S. K. & Fulgham, K. O. (2015). Post-fire vegetation dynamics of a sagebrush steppe community change significantly over time. California Agriculture, 69, 3642.Google Scholar
Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Harantová, L., Mudrák, O., Kohout, P., Elhottová, D., Frouz, J., & Baldrián, P. (2017). Development of microbial community during primary succession in areas degraded by mining activities. Land Degradation and Development, 28, 25742584.Google Scholar
Harcombe, P. A., Bill, C. J., Fulton, M., Glitzenstein, J. S., Marks, P. L., & Elsik, I. S. (2002). Stand dynamics over 18 years in a southern mixed hardwood forest, Texas, USA. Journal of Ecology, 90, 947957.Google Scholar
Harmer, R., Peterken, G., Kerr, G., & Poulton, P. (2001). Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biological Conservation, 101, 291304.Google Scholar
Harner, M. J., Mummey, D. L., Stanford, J. A., & Rillig, M. C. (2010). Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequences. Biological Invasions, 12, 14811490.Google Scholar
Harper, J. L. (1977). Population Biology of Plants. New York: Academic Press.Google Scholar
Harper, K. A., Macdonald, S. E., Burton, P. J., et al. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768782.Google Scholar
Harrod, J. C., Harmon, M. E., & White, P. S. (2000). Post-fire succession and 20th century reduction in fire frequency on xeric southern Appalachian sites. Journal of Vegetation Science, 11, 465472.Google Scholar
Harvey, B. J. & Holzman, B. A. (2014). Divergent successional pathways of stand development following fire in a California closed-cone pine forest. Journal of Vegetation Science, 25, 8899.Google Scholar
Hasselquist, E. M., Nilsson, C., Hjältén, J., Jørgensen, D., Lind, L., & Polvi, L. E. (2015). Time for recovery of riparian plants in restored northern Swedish streams: A chronosequences study. Ecological Applications, 25, 13731389.Google Scholar
Hasselquist, N. J., Santiago, L. S., & Allen, M. F. (2010). Belowground nutrient dynamics in relation to hurricane damage along a tropical dry chronosequence. Biogeochemistry, 98, 89100.Google Scholar
Hastings, A., Byers, J. E., Crooks, J. A., et al. (2007). Ecosystem engineering in space and time. Ecology Letters, 10, 153164.Google Scholar
Haussler, S. & Kneeshaw, D. (2003). Comparing forest management to natural processes. In Burton, P. J., Messier, C., Smith, D. W., & Adamowicz, W. L., eds., Towards Sustainable Management of the Boreal Forest, pp. 307368. Ottawa, ON: NRC Research Press.Google Scholar
Hawkins, C. D., Dhar, A., & Bittencourt, E. (2013). Improving site index estimates for pine and spruce plantations: A case study in the sub-boreal spruce zone in British Columbia. Forest Science and Technology, 9, 5158.Google Scholar
Hayasaka, D., Goka, K., Thawatchai, W., & Fujiwara, K. (2012). Ecological impacts of the 2004 Indian Ocean tsunami on coastal sand-dune species on Phuket Island, Thailand. Biodiversity Conservation, 21, 1971.Google Scholar
Heartsill Scalley, T. (2017). Insights on forest structure and composition from long-term research in the Luquillo Mountains. Forests, 8, 204.Google Scholar
Heath, J. P. (1967). Primary conifer succession, Lassen Volcanic National Park. Ecology, 48, 270275.Google Scholar
Heinl, M., Sliva, J., Murray-Hudson, M., & Tacheba, B. (2007). Post-fire succession on savanna habitats in the Okavango Delta wetland, Botswana. Journal of Tropical Ecology, 23, 705713.Google Scholar
Heinrichs, S. & Schmidt, W. (2009). Short-term effects of selection and clear cutting on the shrub and herb layer vegetation during the conversion of even-aged Norway spruce stands into mixed stands. Forest Ecology and Management, 258, 667678.Google Scholar
Helm, D. J. & Allen, E. B. (1995). Vegetation chronosequence near Exit Glacier, Kenai Fjords National Park, Alaska, USA. Arctic and Alpine Research, 27, 246257.Google Scholar
Helm, D. J. & Collins, W. B. (1997). Vegetation succession and disturbance on a boreal forest floodplain, Susitna River, Alaska. Canadian Field-Naturalist, 111, 553566.Google Scholar
Hendrix, L. B. (1981). Post-eruption succession on Isla Fernandina, Galápagos. Madroño, 28, 242254.Google Scholar
Heneberg, P., Hesoun, P., & Skuhrovec, J. (2016). Succession of arthropods on xerothermophilous habitats formed by sand quarrying: Epigeic beetles (Coleoptera) and orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecological Engineering, 95, 340356.Google Scholar
Henkel, T. K., Chambers, J. Q., & Baker, D. A. (2016). Delayed tree mortality and Chinese tallow (Triadica sebifera) population explosion in a Louisiana bottomland hardwood forest following Hurricane Katrina. Forest Ecology and Management, 378, 222232.Google Scholar
Henriksson, E., Henriksson, L. E., Norrman, J. O., & Nyman, P. O. (1987). Biological dinitrogen fixation (acetylene reduction) exhibited by blue-green algae (cyanobacteria) in association with mosses gathered on Surtsey, Iceland. Arctic and Alpine Research, 19, 432436.Google Scholar
Henriksson, L. E. & Rodgers, G. A. (1978). Further studies in the nitrogen cycle of Surtsey, 1974–1976. Surtsey Research Progress Report, 8, 3040.Google Scholar
Henriques, R. P. B. & Hay, J. D. (1992). Nutrient content and the structure of a plant community on a tropical beach-dune system in Brazil. Acta Ecologica, 13, 101117.Google Scholar
Henriques, R. P. B. & Hay, J. D. (1998). The plant communities of a foredune in southeastern Brazil. Canadian Journal of Botany, 76, 13231330.Google Scholar
Henry, F., Talon, B., & Dutoit, T. (2010). The age and history of the French mediterranean steppe revisited by soil wood charcoal analysis. Holocene, 20, 2534.Google Scholar
Hernández-Cordero, A. I., Hernández-Calvento, L., & Pérez-Chacon Espino, E. (2015). Relationship between vegetation dynamics and dune mobility in an arid transgressive coastal system, Maspalomas, Canary Islands. Geomorphology, 238, 160176.Google Scholar
Hesp, P. (2002). Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology, 48, 245268.Google Scholar
Hibbs, D. E. (1983). Forty years of forest succession in central New England. Ecology, 64, 13941401.Google Scholar
Hickin, E. J. (1974). The development of meanders in natural river-channels. American Journal of Science, 274, 414442.Google Scholar
Hilgartner, W. B., Nejako, M., & Casey, R. (2009). A 200-year paleoecological record of Pinus virginiana, trace metals, sedimentation, and mining disturbance in a Maryland serpentine barren. Journal of the Torrey Botanical Society, 136, 257271.Google Scholar
Hiroki, T. & Tateno, M. (1984). Soil nitrogen patterns induced by colonization of Polygonum cuspidatum on Mt. Fuji. Oecologia, 61, 218223.Google Scholar
Hirose, S. & Ichino, K. (1993). Difference of invasion behavior between two climax species, Castanopsis cuspidata var. sieboldii and Mechilus thunbergii, on lava flows on Miyakejima, Japan. Ecological Research, 8, 167172.Google Scholar
Hobbie, E. A., Macko, S. A., & Shugart, H. H. (1999). Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia, 118, 353360.Google Scholar
Hobbs, R. J. & Huenneke, L. F. (1992). Disturbance, diversity and invasion: Implications for conservation. Conservation Biology, 6, 324337.Google Scholar
Hobbs, R. J., Higgs, E., & Harris, J. A. (2009). Novel ecosystems: Implications for conservation and restoration. Trends in Ecology and Evolution, 24, 599605.Google Scholar
Hobbs, R. J. & Suding, K. N., eds. (2009). New Models for Ecosystem Dynamics and Restoration. Washington, DC: Island Press.Google Scholar
Hodačová, D. & Prach, K. (2003). Spoil heaps from brown coal mining: Technical reclamation versus spontaneous revegetation. Restoration Ecology, 11, 385391.Google Scholar
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 123.Google Scholar
Hollingsworth, T. N., Lloyd, A. H., Nossov, D. R., Ruess, R. W., Charlton, B. A., & Kielland, K. (2010). Twenty-five years of vegetation change along a putative successional chronosequence on the Tanana River, Alaska. Canadian Journal of Forest Research, 40, 12731287.Google Scholar
Holmes, R. T. & Likens, G. E. (2016). Hubbard Brook: The Story of a Forest Ecosystem. New Haven, CT: Yale University Press.Google Scholar
Hong, Y., Adler, R. F., & Huffman, G. J. (2007). Satellite remote sensing for global landslide monitoring. EOS, Transactions of the American Geophysical Union, 88, 357358.Google Scholar
Hook, D. D., Buford, M. A., & Williams, T. M. (1991). Impact of Hurricane Hugo on the South Carolina coastal plain forest. Journal of Coastal Research, 8, 291300.Google Scholar
Hooper, E., Legendre, P., & Condit, R. (2005). Barriers to forest regeneration of deforested and abandoned land in Panama. Journal of Applied Ecology, 42, 11651174.Google Scholar
Horrocks, M. & Ogden, J. (1998). The effects of the Taupo tephra eruption of c. 1718 BP on the vegetation of Mt. Hauhungatahi, central North Island, New Zealand. Journal of Biogeography, 25, 649660.Google Scholar
Hortobágyi, B., Corenblit, D., Steiger, J., & Peiry, J-L. (2018). Niche construction within riparian corridors. Part 1. Exploring biogeomorphic feedback windows of three pioneer riparian species (Allier River, France). Geomorphology, 305, special issue, 94111.Google Scholar
Houle, G. (1995). Environmental filters and seedling recruitment on a coastal dune in subarctic Quebec (Canada). Canadian Journal of Botany, 74, 15071513.Google Scholar
Houle, G. (1997). No evidence for interspecific interactions between plants in the first stage of succession on coastal dunes in subarctic Quebec, Canada. Canadian Journal of Botany, 75, 902915.Google Scholar
Howard, L. F. & Lee, T. D. (2002). Upland old-field succession in southeastern New Hampshire. Journal of the Torrey Botanical Society, 129, 6076.Google Scholar
Howard, R. A., Portecop, J., & de Montaignac, P. (1980). The post-eruptive vegetation of La Soufrière, Guadeloupe, 1977–1979. Journal of the Arnold Arboretum, 61, 749764.Google Scholar
Hršak, V. (2004). Vegetation succession and soil gradients on inland sand dunes. Ekológia (Bratislava), 23, 2439.Google Scholar
Huang, L., Zhang, P., Hu, Y. G., & Zhao, Y. (2016). Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecological Engineering, 94, 638646.Google Scholar
Huang, Y. T., Ai, X. R., Yao, L., et al. (2015). Changes in the diversity of evergreen and deciduous species during natural recovery following clear-cutting in a subtropical evergreen-deciduous broadleaved mixed forest of central China. Tropical Conservation Science, 8, 10331052.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Huebert, B., Vitousek, P., Sutton, J., et al. (1999). Volcano fixes nitrogen into plant-available forms. Biogeochemistry, 47, 111118.Google Scholar
Huff, M. H. (1995). Forest age structure and development following wildfires in the western Olympic Mountains, Washington. Ecological Applications, 5, 471483.Google Scholar
Huffman, D. W., Crouse, J. E., Chancellor, W. W., & Fule, P. Z. (2012). Influence of time since fire on pinyon-juniper woodland structure. Forest Ecology and Management, 274, 2937.Google Scholar
Hughes, F. M. R. (1997). Floodplain biogeomorphology. Progress in Physical Geography, 21, 501529.Google Scholar
Hughes, R. & Denslow, J. (2005). Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecological Applications, 15, 16151628.Google Scholar
Hull, J. C. & Scott, R. C. (1982). Plant succession on debris avalanches of Nelson County, Virginia. Castanea, 47, 158176.Google Scholar
Humboldt, A. de & Bonpland, A. (1807). Essai Súr la Geographie des Plantes. Lyon, France: Fr. Schoell.Google Scholar
Humphrey, L. D. (1984). Patterns and mechanisms of plant succession after fire on Artemisia-grass sites in southeastern Idaho. Vegetatio, 57, 91101.Google Scholar
Hunter, M. D. & Forkner, R. E. (1999). Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees. Ecology, 80, 26762682.Google Scholar
Huntly, B. J. & Walker, B. H., eds. (1982). Ecology of Tropical Savannas. New York: Springer.Google Scholar
Huss-Danell, K., Uliassi, D., & Renberg, I. (1997). River and lake sediments as sources of infective Frankia (Alnus). Plant and Soil, 197, 3539.Google Scholar
Huston, M. (2018). Individual-based forest succession models and the theory of plant competition. In DeAngelis, D. L., ed., Individual-Based Models and Approaches in Ecology, pp. 408420. London: Chapman & Hall/CRC.Google Scholar
Huston, M. A. (2004). Management strategies for plant invasions: Manipulating productivity, disturbance, and competition. Diversity & Distribution, 10, 167178.Google Scholar
Ignjatović, M., Kaligarič, M., Škornik, S., & Ivajnšič, D. (2013). Spatio-temporal patterns along a primary succession on alluvial sediments. Central European Journal of Biology, 8, 888897.Google Scholar
Imbert, D. & Portecop, J. (2008). Hurricane disturbance and forest resilience: Assessing structural vs. functional changes in a Caribbean dry forest. Forest Ecology & Management, 255, 34943501.Google Scholar
Imbert, É. & Houle, G. (2000). Persistence of colonizing plant species along an inferred successional sequence on a subarctic coastal dune (Québec, Canada). Écoscience, 7, 370378.Google Scholar
Inouye, R. S., Allison, T. D., & Johnson, N. C. (1994). Old field succession on a Minnesota Sand Plain – Effects of deer and other factors on invasion by trees. Bulletin of the Torrey Botanical Club, 121, 266276.Google Scholar
Isermann, M. (2011). Patterns in species diversity during succession of coastal dunes. Journal of Coastal Research, 27, 661671.Google Scholar
Ishida, H., Hattori, T., & Takeda, Y. (2005). Comparison of species composition and richness between primary and secondary lucidophyllous forests in two altitudinal zones of Tsushima Island, Japan. Forest Ecology and Management, 213, 273287.Google Scholar
Ishizuka, M., Toyooka, H., Osawa, A., Kushima, H., Kanazawa, Y., & Sato, A. (1997). Secondary succession following catastrophic windthrow in a boreal forest in Hokkaido, Japan. Journal of Sustainable Forestry, 6, 367388.Google Scholar
Ivakina, E. V., Jakubov, V. V., & Osipov, S. V. (2013). Vascular plants of the Luzanovskii open-pit coal-mining station (Russian Far East). Contemporary Problems of Ecology, 6, 187198.Google Scholar
Ivanova, G. A., Ivanov, V. A., Kovaleva, N. M., Conard, S. G., Zhila, S. V., & Tarasov, P. A. (2017). Succession of vegetation after a high-intensity fire in a pine forest with lichens. Contemporary Problems of Ecology, 10, 5261.Google Scholar
Jackson, S. T. (2013). Natural, potential and actual vegetation in North America. Journal of Vegetation Science, 24, 772776.Google Scholar
Jacquet, K. & Prodon, R. (2009). Measuring the postfire resilience of a bird-vegetation system: A 28-year study in a Mediterranean oak woodland. Oecologia, 161, 801811.Google Scholar
Jenkins, M. A. & Parker, G. R. (1998). Composition and diversity of woody vegetation in silvicultural openings of southern Indiana forests. Forest Ecology and Management, 109, 5774.Google Scholar
Jentsch, A. & White, P. S. (2019). A theory of pulse dynamics and disturbance in ecology. Ecology, 100, e02734.Google Scholar
Jha, A. K. & Singh, J. S. (1991). Spoil characteristics and vegetation development of an age series of mine spoils in a dry tropical environment. Vegetatio, 97, 6376.Google Scholar
Jiao, J. Y., Tzanopoulos, J., Xofis, P., Bai, W. J., Ma, X. H., & Mitchley, J. (2007). Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? Restoration Ecology, 15, 391399.Google Scholar
Jimenéz, H. E. & Armesto, J. J. (1992). Importance of the soil seed bank of disturbed sites in Chilean mattoral in early secondary succession. Journal of Vegetation Science, 3, 579586.Google Scholar
Jiménez-Orocio, O., Espejel, I., & Martínez, M. L. (2015). La investigación científica sobre dunas costeras de México: Origin, evolucion y retos. Revista Mexicana de Biodiversidad, 86, 486507.Google Scholar
Jimenez-Rodríguez, D. L., Alvarez-Añorve, M. Y., Pineda-Cortes, M., et al. (2018). Structural and functional traits predict short term response of tropical dry forests to a high intensity hurricane. Forest Ecology and Management, 426, 101114.Google Scholar
Jírová, A., Klaudisová, A., & Prach, K. (2012). Spontaneous restoration of target vegetation in old-fields in a central European landscape: A repeated analysis after three decades. Applied Vegetation Science, 15, 245252.Google Scholar
Johnson, A. F. (1997). Rates of vegetation succession on a coastal dune system in northwest Florida. Journal of Coastal Research, 13, 373384.Google Scholar
Johnson, E. A. (1995). Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. Cambridge: Cambridge University Press.Google Scholar
Johnson, E. A. & Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419431.Google Scholar
Johnson, E. A. & Miyanishi, K., eds. (2007). Plant Disturbance Ecology: The Process and the Response. Amsterdam: Elsevier.Google Scholar
Johnson, W. (2000). Tree recruitment and survival in rivers: Influence of hydrological processes. Hydrological Processes, 14, 30513074.Google Scholar
Johnson, W. C., Burgess, R. L., & Keammerer, W. R. (1976). Forest overstory vegetation and environment on the Missouri River floodplain in North Dakota. Ecological Monographs, 46, 5984.Google Scholar
Johnstone, I. M. (1986). Plant invasion windows: A time-based classification of invasion potential. Biological Reviews, 61, 369394.Google Scholar
Johnstone, J. F. & Chapin, F. S. (2006). Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems, 9, 268277.Google Scholar
Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., & Turetsky, M. (2010). Fire, climate change, and forest resilience in interior Alaska. Canadian Journal of Forest Research, 40, 13021312.Google Scholar
Johnstone, J. F., Allen, C. D., Franklin, J. F., et al. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14, 369378.Google Scholar
Jonášová, M. & Prach, K. (2004). Central-European mountain spruce (Picea abies (L.) Karst) forest: Regeneration of tree species after a bark beetle outbreak. Ecological Engineering, 23, 1527.Google Scholar
Jonášová, M., van Hees, A., & Prach, K. (2006). Rehabilitation of monotonous exotic coniferous plantations: A case study of spontaneous establishment of different tree species. Ecological Engineering, 28, 141148.Google Scholar
Jones, C. C. & del Moral, R. (2005a). Patterns of primary succession on the foreland of Coleman Glacier, Washington, USA. Plant Ecology, 180, 105116.Google Scholar
Jones, C. C. & del Moral, R. (2005b). Effects of microsite conditions on seedling establishment on the foreland of Coleman Glacier, Washington. Journal of Vegetation Science, 16, 293300.Google Scholar
Jones, C. C. & del Moral, R. (2009). Dispersal and establishment both limit colonization during primary succession on a glacier foreland. Plant Ecology, 204, 217230.Google Scholar
Jones, G. & Henry, G. H. R. (2003). Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. Journal of Biogeography, 30, 277296.Google Scholar
Jongepierová, I., Jongepier, J. W., & Klimeš, L. (2004). Restoring grassland on arable land: An example of a fast spontaneous succession without weed-dominated stages. Preslia, 76, 361369.Google Scholar
Joosten, H., Tanneberger, F., & Moen, A., eds. (2017). Mires and Peatlands of Europe: Status, Distribution and Conservation. Stuttgart: Schweizerbart Science Publishers.Google Scholar
Jorgenson, M. T. & Joyce, M. R. (1994). Six strategies for rehabiliting land disturbed by oil development in arctic Alaska. Arctic, 47, 374390.Google Scholar
Jørgenson, S. E. (1997). Integration of Ecosystem Theories: A Pattern. 2nd ed. Amsterdam: Kluwer.Google Scholar
Kabrna, M., Hendrychová, M., & Prach, K. (2014). Establishment of target and invasive plant species on a reclaimed coal mining dump in relation to their occurrence in the surroundings. International Journal of Mining Reclamation and Environment, 28, 242249.Google Scholar
Kain, C., Gomez, C., Wassmer, P., Levine, F., & Hart, D. (2014). Truncated dunes as evidence of the 2004 tsunami in North Sumatra and environmental recovery post-tsunami. New Zealand Geographer, 70, 165178.Google Scholar
Kalliola, R. & Puhakka, M. (1988). River dynamics and vegetation mosaicism: A case study of the River Kamajohka, northernmost Finland. Journal of Biogeography, 15, 703719.Google Scholar
Kalliola, R., Salo, J., Puhakka, M., & Rajasilta, M. (1991). New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. Journal of Ecology, 79, 877901.Google Scholar
Kamijo, T. & Okutomi, K. (1995). Seedling establishment of Castanopsis cuspidata var. sieboldii and Persea thunbergii on lava and scoria of the 1962 eruption on Miyake-jima Island, the Izu Islands. Ecological Research, 10, 235242.Google Scholar
Kamijo, T., Kitayama, K., Sugawara, A., Urushimichi, S., & Sasai, K. (2002). Primary succession of the warm-temperate broad-leaved forest on a volcanic island, Miyake-Jima, Japan. Folia Geobotanica, 37, 7191.Google Scholar
Kämpf, I., Mathar, W., Kuzmin, I., Holzel, N., & Kiehl, K. (2016). Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodiversity and Conservation, 25, 25632580.Google Scholar
Kaplan, B. A. & Moermond, T. C. (2000). Foraging ecology of the mountain monkey (Cercopithecus l’hoesti): Implications for its evolutionary history and use of disturbed forest. American Journal of Primatology, 50, 227246.Google Scholar
Kapusta, P., Szarek-Lukaszewska, G., Jedrzejczyk-Korycinska, M., & Zagorna, M. (2015). Do heavy-metal grassland species survive under a Scots pine canopy during early stages of secondary succession? Folia Geobotanica, 50, 317329.Google Scholar
Kardol, P., Souza, L., & Classen, A. T. (2012). Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. Oikos, 122, 8494.Google Scholar
Kardol, P., Cornips, N. J., van Kempen, M. M. L., Bakx-Schotman, J. M. T., & van der Putten, W. H. (2007). Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs, 77, 147162.Google Scholar
Kardol, P., De Deyn, G. B., Laliberté, E., Mariotte, P., & Hawkes, C. V. (2013). Biotic plant-soil feedbacks across temporal scales. Journal of Ecology, 101, 309315.Google Scholar
Kardol, P., Dickie, I. A., St. John, M. G., et al. (2014). Soil-mediated effects of invasive ungulates on native tree seedlings. Journal of Ecology, 102, 622631.Google Scholar
Karlowski, U. (2006). Afromontane old-field vegetation: Secondary succession and the return of indigenous species. African Journal of Ecology, 44, 264272.Google Scholar
Karrenberg, S., Kollman, J., Edwards, P. J., Gurnell, A. M., & Petts, G. E. (2003). Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic and Applied Ecology, 4, 157166.Google Scholar
Kasowska, D. & Koszelnik-Leszek, A. (2014). Ecological features of spontaneous vascular flora of serpentine post-mining sites in Lower Silesia. Archives of Environmental Protection, 40, 3352.Google Scholar
Kaufmann, R. & Raffl, C. (2002). Diversity in primary succession: The chronosequence of a glacier foreland. In Korner, C. & Spehn, E., eds., Global Mountain Biodiversity: A Global Assessment, pp. 177190. London: Parthenon Publishing.Google Scholar
Kavgaci, A., Carni, A., Basaran, S., et al. (2010). Long-term post-fire succession of Pinus brutia forest in the east Mediterranean. International Journal of Wildland Fire, 19, 599605.Google Scholar
Kazanis, D. & Arianoutsou, M. (1996). Vegetation composition in a post-fire successional gradient of Pinus halepensis forests in Attica, Greece. International Journal of Wildland Fire, 6, 8391.Google Scholar
Keane, R. E., Ryan, K. C., Veblen, T. T., et al. (2002). The cascading effects of fire exclusion in Rocky Mountain ecosystems. In Baron, J. S., ed., Rocky Mountain Futures: An Ecological Perspective, pp. 133152. Washington, DC: Island Press.Google Scholar
Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406421.Google Scholar
Keefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution – The 1989 Loma Prieta, California event. Engineering Geology, 58, 231249.Google Scholar
Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., & Rundel, P. W. (2012). Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge: Cambridge University Press.Google Scholar
Keever, C. (1950). Causes of succession on old fields of the Piedmont, North Carolina. Ecological Monographs, 20, 229250.Google Scholar
Keever, C. (1979). Mechanisms of plant succession on old fields of Lancaster County, Pennsylvania. Bulletin of the Torrey Botanical Club, 106, 299308.Google Scholar
Keller, E. A. (1996). Environmental Geology, 7th ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Kellison, R. C. & Young, M. J. (1997). The bottomland hardwood forest of the southern United States. Forest Ecology and Management, 90, 101115.Google Scholar
Kellman, M. & Kading, M. (1992). Facilitation of tree seedling establishment in a sand dune succession. Journal of Vegetation Science, 3, 679688.Google Scholar
Kellman, M. & Meave, J. (1997). Fire in the tropical gallery forests of Belize. Journal of Biogeography, 24, 2334.Google Scholar
Kelly, J. F. (2014). Effects of human activities (raking, scraping, off-road vehicles) and natural resource protections on the spatial distribution of beach vegetation and related shoreline features in New Jersey. Journal of Coastal Conservation, 18, 383398.Google Scholar
Kepfer-Rojas, S., Schmidt, I. K., Ransijn, J., Riis-Nielsen, T., & Verheyen, K. (2014). Distance to seed sources and land-use history affect forest development over a long-term heathland to forest succession. Journal of Vegetation Science, 25, 14931503.Google Scholar
Kessler, M. (1999). Plant species richness and endemism during natural landslide succession in a perhumid montane forest in the Bolivian Andes. Ecotropica, 4, 123136.Google Scholar
Khazai, B. & Sitar, N. (2003). Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Engineering Geology, 71, 7995.Google Scholar
Khitun, O., Ermokhina, K., Czernyadjeva, I., Leibman, M., & Khomutov, A. (2015). Floristic complexes on landslides of different age in Central Yamal, West Siberian Low Arctic, Russia. Fennia International Journal of Geography, 193, 3152.Google Scholar
Kiilsgaard, C. W., Greene, S. E., Stafford, S. G., & McKee, W. A. (1986). Recovery of riparian vegetation in the northeastern region of Mount St. Helens. In Keller, S. A. C., ed., Mount St. Helens Five Years Later, pp. 222230. Cheney: Eastern Washington University Press.Google Scholar
Kim, S., Lee, S., McCormick, M., Kim, J. G., & Kang, H. (2016). Microbial community and greenhouse gas fluxes from abandoned rice paddies with different vegetation. Microbial Ecology, 72, 692703.Google Scholar
King, E. G. & Hobbs, R. J. (2006). Identifying linkages among conceptual models of ecosystem degradation and restoration: Towards an integrative framework. Restoration Ecology, 14, 369378.Google Scholar
Kirmer, A., Tischew, S., Ozinga, W. A., von Lampe, M., Baasch, A., & van Groenendael, J. M. (2008). Importance of regional species pools and functional traits in colonization processes: Predicting re-colonization after large-scale destruction of ecosystems. Journal of Applied Ecology, 45, 15231530.Google Scholar
Kirwan, M. L. & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 5360.Google Scholar
Kitayama, K., Pattison, R., Cordell, S., Webb, D., & Mueller-Dombois, D. (1997). Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud. (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Annals of Botany, 80, 491497.Google Scholar
Kleyer, M., Bekker, R. M., Knevel, I. C., et al. (2008). The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology, 96, 12661274.Google Scholar
Klimešová, J. & Klimeš, L. (2013). CLO-PLA3 – Database of Clonal Growth of Plants from Central Europe, 3rd ed. Třeboň, Czech Republic: Institute of Botany CAS (available at http:clopla.butbn.cas.cz).Google Scholar
Knapp, A. K., Briggs, J. M., Hartnett, D. C., & Collins, S. L. (1998). Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie. Oxford: Oxford University Press.Google Scholar
Knelman, J. E., Graham, E. B., Prevey, J. S., et al. (2018). Interspecific plant interactions reflected in soil bacterial community structure and nitrogen cycling in primary succession. Frontiers in Microbiology, 9, article 128.Google Scholar
Knops, J. M. H. (2006). Fire does not alter vegetation in infertile prairie. Oecologia, 150, 477483.Google Scholar
Knuckey, C. G., Van Etten, E. J. B., & Doherty, T. S. (2016). Effects of long-term fire exclusion and frequent fire on plant community composition: A case study from semi-arid shrublands. Austral Ecology, 41, 964975.Google Scholar
Koch, J. M. (2007). Restoring a jarrah forest understorey vegetation after bauxite mining in Western Australia. Restoration Ecology, 15, S26S39.Google Scholar
Kollmann, J. & Rasmussen, K. K. (2012). Succession of a degraded bog in NE Denmark over 164 years ‒ Monitoring one of the earliest restoration experiments. Tuexenia, 32, 6785.Google Scholar
Kompala-Baba, A. & Baba, W. (2013). The spontaneous succession in a sand-pit: The role of life history traits and species habitat preferences. Polish Journal of Ecology, 61, 1322.Google Scholar
Konvalinková, P. & Prach, K. (2010). Spontaneous succession of vegetation in mined peatlands: A multi-site study. Preslia, 82, 423435.Google Scholar
Konvalinková, P. & Prach, K. (2014). Environmental factors determining spontaneous recovery of industrially mined peat bogs: A multi-site analysis. Ecological Engineering, 69, 3845.Google Scholar
Korablev, A. P. & Neshataeva, V. Yu. (2016). Primary plant successions of forest belt vegetation on the Tolbachinskii Dol Volcanic Plateau, (Kamchatka). Biology Bulletin, 43, 307317.Google Scholar
Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., Holdgate, G. R., Tosolini, A. M. P., & Jansen, B. (2016). Cyclic floral succession and fire in a Cenozoic wetland/peatland system. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 237252.Google Scholar
Korkmaz, H., Yildirim, C., & Yalçin, E. (2017). Relationships between soil and plant communities distribution throughout primary succession in deltaic plains of Gölyazi Natural Reserved Area (Terme/Samsun, Turkey). Rendiconti Lincei-Scienze Fisiche e Naturali, 28, 503517.Google Scholar
Körner, Ch. (2003). Alpine Plant Life: A Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.Google Scholar
Koronatova, N. G. & Milyaeva, E. V. (2011). Plant community succession in post-mined quarries in the northern-taiga zone of West Siberia. Contemporary Problems of Ecology, 4, 513518.Google Scholar
Kosmas, C., Gerontidis, S., & Marathianou, M. (2000). The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena, 40, 5168.Google Scholar
Kou, M., Jiao, J. Y., Yin, Q. L., et al. (2016). Successional trajectory over 10 years of vegetation restoration of abandoned slope croplands in the Hill-Gully Region of the Loess Plateau. Land Degradation & Development, 27, 919932.Google Scholar
Koyama, A. & Tsuyuzaki, S. (2010). Effects of sedge and cottongrass tussocks on plant establishment patterns in a post-mined peatland, northern Japan. Wetlands Ecology and Management, 18, 135148.Google Scholar
Koziol, L. & Bever, J. D. (2019). Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 107, 622632.Google Scholar
Kraft, N. J. B., Godoy, O., & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797802.Google Scholar
Krahulec, F. & Lepš, J. (1994). Establishment success of plant immigrants in a new water reservoir. Folia Geobotanica & Phytotaxonomica, 29, 314.Google Scholar
Kramer, K., Brang, P., Bachofenet, H., Bugmann, H., & Wohlgemuth, T. (2014). Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests. Forest Ecology and Management, 331, 116128.Google Scholar
Krasny, M. E., Vogt, K. A., & Zasada, J. C. (1984). Root and shoot biomass and mycorrhizal development of white spruce seedlings naturally regenerating in interior Alaskan floodplain communities. Canadian Journal of Forest Research, 14, 554558.Google Scholar
Krasny, M. E., Vogt, K. A., & Zasada, J. C. (1988). Establishment of four Salicaceae species on river bars in interior Alaska. Holarctic Ecology, 11, 210219.Google Scholar
Kreft, H. & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Science, 104, 59255930.Google Scholar
Kroh, G. C., McNew, K., & Pinder, J. E. III (2008). Conifer colonization of a 350-year old rock fall at Lassen Volcanic National Park in northern California. Plant Ecology, 199, 281294.Google Scholar
Krug, C. B. & Krug, R. M. (2007). Restoration of olf fields in Renosterveld: A case study in a Mediterranean-type shrubland of South Africa. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 265285. Washington, DC: Island Press.Google Scholar
Kubota, Y., Katsuda, K., & Kikuzawa, K. (2005). Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan. Biodiversity and Conservation, 14, 879901.Google Scholar
Kučerová, A., Rektoris, L., Štechová, T., & Bastl, M. (2008). Disturbances on a wooded raised bog: How windthrow, bark beetle and fire affect vegetation and soil water quality? Folia Geobotanica, 43, 4967.Google Scholar
Kuiters, A. T., Kramer, K., Van der Hagen, H. G. J. M., & Schaminée, J. H. J. (2009). Plant diversity, species turnover and shifts in functional traits in coastal dune vegetation: Results from permanent plots over a 52-year period. Journal of Vegetation Science, 20, 10531063.Google Scholar
Kulmatiski, A., Beard, K. H., & Stark, J. M. (2006). Soil history as a primary control on plant invasion in abandoned agricultural fields. Journal of Applied Ecology, 43, 868876.Google Scholar
Kumler, M. L. (1962). Plant succession on the sand dunes of the Oregon coast. Ecology, 50, 695704.Google Scholar
Kunstler, G., Falster, D., Coomes, D. A., et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204207.Google Scholar
Kupfer, J. A., Webbeking, A. L., & Franklin, S. B. (2004). Forest fragmentation affects early successional patterns on shifting cultivation fields near Indian Church, Belize. Agriculture Ecosystems & Environment, 103, 509518.Google Scholar
Kurulok, S. E. & Macdonald, S. E. (2007). Impacts of postfire salvage logging on understory plant communities of the boreal mixedwood forest 2 and 34 years after disturbance. Canadian Journal of Forest Research, 37, 26372651.Google Scholar
Kusumoto, B., Shiono, T., Miyoshi, M., et al. (2015). Functional response of plant communities to clearcutting: Management impacts differ between forest vegetation zones. Journal of Applied Ecology, 52, 171180.Google Scholar
Laćan, I., McBride, J. R., & De Witt, D. (2015). Urban forest condition and succession in the abandoned city of Pripyat, near Chernobyl, Ukraine. Urban Forestry and Urban Greening, 14, 10681078.Google Scholar
Laine, A. M., Selänpää, T., Oksanen, J., Sevakivi, M., & Tuittila, E.-S. (2018). Plant diversity and functional trait composition during mire development. Mires and Peat, 21, Article 02, 119.Google Scholar
Laliberté, E., Turner, B., Costes, T., et al. (2012). Experimental assessment of nutrient limitation along a 2-million-year dune chronosequences in the south-western Australia biodiversity hotspot. Journal of Ecology, 100, 631642.Google Scholar
La Mantia, T., Ruhl, J., Pasta, S., Campisi, D. G., & Terrazzino, G. (2008). Structural analysis of woody species in Mediterranean old fields. Plant Biosystems, 142, 462471.Google Scholar
Lamb, D., Eskrine, P. D., & Parrotta, J. A. (2005). Restoration of degraded tropical forest landscape. Science, 310, 16281632.Google Scholar
Lambert, J. D. H. (1972). Plant succession on tundra mudflows: Preliminary observations. Arctic, 25, 99106.Google Scholar
Landman, G. B., Kolka, R. K., & Sharitz, R. R. (2007). Soil seed bank analysis of planted and naturally revegetating thermally-disturbed riparian wetland forests. Wetlands, 27, 211223.Google Scholar
Lantz, T. C., Gergel, S. E., & Henry, G. H. R. (2010). Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada. Journal of Biogeography, 37, 15971610.Google Scholar
LaPage, P. & Banner, A. (2014). Long-term recovery of forest structure and composition after harvesting in the coastal temperate rainforests of northern British Columbia. Forest Ecology and Management, 318, 250260.Google Scholar
Larsen, M. C. (2008). Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Advances in Geoscience, 14, 147153.Google Scholar
Larsen, M. C. & Simon, A. (1993). A rainfall intensity-duration threshold for landsides in a humid-tropical environment, Puerto Rico. Geografiska Annaler, 75A, 1323.Google Scholar
Larsen, M. C. & Torres-Sánchez, A. J. (1992). Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989. Caribbean Journal of Science, 28, 113125.Google Scholar
Latzel, V., Klimešová, J., Doležal, J., Pyšek, P., Tackenberg, O., & Prach, K. (2011). The association of dispersal and persistence traits of plants with different stages of succession in Central European man-made habitats. Folia Geobotanica, 46, 289302.Google Scholar
Lauenroth, W. K. & Burke, I. C. (2008). Ecology of the Shortgrass Steppe: A Long-Term Perspective. Oxford: Oxford University Press.Google Scholar
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classification: From general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution, 12, 474478.Google Scholar
Lavorel, S., Díaz, S., Cornelissen, H. C., et al. (2007). Plant functional types: Are we getting any closer to the Holy Grail? In Canadell, J. G., Pataki, D. E., & Pitelka, L. F., eds., Terrestrial Ecosystems in a Changing World, pp. 149164. New York: Springer.Google Scholar
Lawson, D., Inouye, R. S., Huntly, N., & Carson, W. P. (1999). Patterns of woody plant abundance, recruitment, mortality, and growth in a 65 year chronosequence of old-fields. Plant Ecology, 145, 267279.Google Scholar
Lebrija-Trejos, E., Bongers, F., Pérez-García, E. A., & Meave, J. A. (2008). Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica, 40, 422431.Google Scholar
Leck, M. A., Parker, V. T., & Simpson, R. L., eds. (1989). Ecology of Soil Seed Banks. San Diego: Academic Press.Google Scholar
Lee, C. S., You, Y. H., & Robinson, G. R. (2002). Secondary succession and natural habitat restoration in abandoned rice fields of central Korea. Restoration Ecology, 10, 306314.Google Scholar
Leibold, M. A. & Chase, J. M. (2018). Metacommunity Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Lepš, J. (1987). Vegetation dynamics in early old field succession: A quantitative approach. Vegetatio, 72, 95102.Google Scholar
Lepš, J. (1988). Mathematical modelling of ecological succession: A review. Folia Geobotanica et Phytotaxonomica, 23, 7994.Google Scholar
Lepš, J. & Prach, K. (1981). A simple mathematical model of the secondary succession of shrubs. Folia Geobotanica et Phytotaxonomica, 16, 6172.Google Scholar
Lepš, J. & Rejmánek, M. (1991). Convergence or divergence: What should we expect from vegetation succession? Oikos, 62, 261264.Google Scholar
Lepš, J., Osbornová-Kosinová, J., & Rejmánek, M. (1982). Community stability, complexity and species life history strategies. Vegetatio, 50, 5363.Google Scholar
Lepš, J., Novotný, V., Čížek, L., et al. (2002). Successful invasion of a neotropical species Piper aduncum in rain forests in Papua New Guinea. Applied Vegetation Science, 5, 255262.Google Scholar
Lesica, P. & Miles, S. (2001). Natural history and invasion of Russian olive along eastern Montana rivers. Western North American Naturalist, 61, 110.Google Scholar
Lesieur, D., Gauthier, S., & Bergeron, Y. (2002). Fire frequency and vegetation dynamics for the south-central boreal forest of Quebec, Canada. Canadian Journal of Forest Research, 32, 19962009.Google Scholar
Lesschen, J. P., Cammeraat, L. H., Kooijman, A. M., & van Wesemael, B. (2008). Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem. Journal of Arid Environments, 72, 20822092.Google Scholar
Le Stradic, S., Buisson, E., & Fernandes, G. W. (2014). Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Applied Vegetation Science, 17, 482492.Google Scholar
Lévesque, M., McLaren, K. P., & McDonald, M. A. (2011). Recovery and dynamics of a primary tropical dry forest in Jamaica, 10 years after human disturbance. Forest Ecology and Management, 262, 817826.Google Scholar
Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237240.Google Scholar
Lewis, N. K. (1998). Landslide-driven distribution of aspen and steppe on Kathal Mountain, Alaska. Journal of Arid Environments, 38, 421435.Google Scholar
Li, B., Zeng, T., Ran, J., et al. (2017). Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains. Forest Ecology and Management, 405, 238245.Google Scholar
Li, J. H., Fang, X. W., Jia, J. J., & Wang, G. (2007). Effect of legume species introduction to early abandoned field on vegetation development. Plant Ecology, 191, 19.Google Scholar
Li, M., Liu, A., Zou, C., Xu, W., Shimizu, H., & Wang, K. (2012). An overview of the “Three-North” shelterbelt project in China. Forestry Studies in China, 14, 7079.Google Scholar
Li, S. P., Cadotte, M. W., Meiners, S. J., Pu, Z. C., Fukami, T., & Jiang, L. (2016). Convergence and divergence in a long-term old-field succession: The importance of spatial scale and species abundance. Ecology Letters, 19, 11011109.Google Scholar
Li, S. Q., Yang, B. S., & Wu, D. M. (2008). Community succession analysis of naturally colonized plants on coal gob piles in Shanxi mining areas, China. Water Air and Soil Pollution, 193, 211228.Google Scholar
Li, W. J., Zuo, X. A., & Knops, J. M. H. (2013). Different fire frequency impacts over 27 years on vegetation succession in an infertile old-field grassland. Rangeland Ecology & Management, 66, 267273.Google Scholar
Li, X., Zhang, Z., Tan, H., Gao, Y., Liu, L., & Wang, X. (2014). Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert. Science China – Life Sciences, 57, 539548.Google Scholar
Lichter, J. (1998). Primary succession and forest development on coastal Lake Michigan sand dunes. Ecological Monographs, 68, 487510.Google Scholar
Lichter, J. (2000). Colonization constraints during primary succession on coastal Lake Michigan sand dunes. Journal of Ecology, 88, 825839.Google Scholar
Lienard, J., Florescu, I., & Strigul, N. (2015). An appraisal of the classic forest succession paradigm with the shade tolerance index. PLoS ONE, 10, e0117138.Google Scholar
Likens, G. E. (2013). The Hubbard Brook Ecosystem Study: Celebrating 50 years. Bulletin of the Ecological Society of America, 94, 336337.Google Scholar
Lin, W.-T., Chou, W.-C., & Lin, C.-Y. (2008). Earthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: A case study in central Taiwan. Natural Hazards, 47, 331347.Google Scholar
Lin, W.-T., Lin, C.-Y., & Chou, W.-C. (2006). Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: A case study in central Taiwan. Ecological Engineering, 28, 7989.Google Scholar
Lindenmayer, D. B., Burton, P. J., & Franklin, J. F. (2008). Salvage Logging and Its Ecological Consequences. Washington, DC: Island Press.Google Scholar
Lindenmayer, D. B., Likens, G. E., Krebs, C. J., & Hobbs, R. J. (2010). Improved probability of detection of ecological “surprises.” Proceedings of the National Academy of Sciences of the United States of America, 107, 2195721962.Google Scholar
Lindig-Cisneros, R., Galindo-Vallejo, S., & Lara-Cabrera, S. (2006). Vegetation of tephra deposits 50 years after the end of the eruption of the Parícutin Volcano, Mexico. Southwestern Naturalist, 51, 455461.Google Scholar
Lindsey, A. A., Petty, R. O., Sterling, D. K., & Van Asdall, W. (1961). Vegetation and environment along the Wabash and Tippecanoe Rivers. Ecological Monographs, 31, 105156.Google Scholar
Lithgow, D., Martínez, M. L., Gallego-Fernández, J. B., et al. (2013). Linking restoration ecology with coastal dune restoration. Geomorphology, 199, 214224.Google Scholar
Little, P. J., Richardson, J. S., & Younes, A. (2013). Channel and landscape dynamics in the alluvial forest mosaic of the Carmanah River valley, British Columbia, Canada. Geomorphology, 202, 86100.Google Scholar
Liu, B., Zhao, W., Liu, Z., et al. (2015). Changes in species diversity, aboveground biomass, and vegetation cover along an afforestation successional gradient in a semiarid desert steppe of China. Ecological Engineering, 81, 301311.Google Scholar
Lloret, F. & Vila, M. (2003). Diversity patterns of plant functional types in relation to fire regime and previous land use in Mediterranean woodlands. Journal of Vegetation Science, 14, 387398.Google Scholar
Lodge, D. J. & Cantrell, S. (1995). Fungal communities in wet tropical forests: Variation in time and space. Canadian Journal of Botany, 73, 13911398.Google Scholar
Lodge, D. J., Scatena, F. N., Asbury, C. E., & Sánchez, M. J. (1991). Fine litterfall and related nutrient inputs resulting from Hurricane Hugo in subtropical wet and lower montane rainforests in Puerto Rico. Biotropica, 23, 336342.Google Scholar
Lohier, T., Jabot, F., Wiegelt, A., Schmid, B., & Deffuant, G. (2016). Predicting stochastic community dynamics in grasslands under the assumption of competitive symmetry. Journal of Theoretical Biology, 399, 5361.Google Scholar
Loidi, J. & Fernández-Gonzáles, F. (2012). Potential natural vegetation: Reburying or reboring? Journal of Vegetation Science, 23, 596604.Google Scholar
Lomolino, M. V., Riddle, B. R., & Brown, J. H. (2006). Biogeography. Sunderland, MA: Sinauer.Google Scholar
Londo, G. (1974). Successive mapping of dune slack vegetation. Vegetatio, 29, 5161.Google Scholar
Lorimer, C. G. (1980). Age structure and disturbance history of a southern Appalachian virgin forest. Ecology, 61, 11691184.Google Scholar
Lucas, K. L. & Carter, G. A. (2013). Change in distribution and composition of vegetated habitats on Horn Island, Mississippi, northern Gulf of Mexico, in the initial five years following Hurricane Katrina. Geomorphology, 199, 129137.Google Scholar
Lucas, R. M., Honzák, M., Do Amaral, I., Curran, P. J., & Foody, G. M. (2002). Forest regeneration on abandoned clearances in central Amazonia. International Journal of Remote Sensing, 23, 965988.Google Scholar
Lugo, A. E. (2008). Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecology, 33, 368398.Google Scholar
Lugo, A. E. & Heartsill Scalley, T. (2014). Research in the Luquillo Experimental Forest has advanced understanding of tropical forests and resolved management issues. In Hayes, D. C., Stout, S., Crawford, R., & Hoover, A., eds., USDA Forest Service Experimental Forests and Ranges, pp. 435461. New York: Springer.Google Scholar
Lugo, A. E. & Scatena, F. N. (1996). Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica, 28, 585599.Google Scholar
Lugo, A. E., Applefield, M., Pool, D. J., & McDonald, R. B. (1983). The impact of Hurricane David on the forests of Dominica. Canadian Journal of Forest Research, 13, 201211.Google Scholar
Luken, J. O. (1990). Directing Ecological Succession. London: Chapman & Hall.Google Scholar
Luken, J. O. & Fonda, R. W. (1983). Nitrogen accumulation in a chronosequences of red alder communities along the Hoh River, Olympic National Park, Washington. Canadian Journal of Forest Research, 13, 12281237.Google Scholar
Lundgren, L. (1978). Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Ulugura Mountains, Tanzania. Geografiska Annaler, 60A, 91127.Google Scholar
Luo, Y., Zhao, X., Li, Y., & Wang, T. (2017). Effects of foliage litter of a pioneer shrub (Artemisia halodendron) on germination from the soil seedbank in a semi-arid grassland in China. Journal of Plant Research, 130, 10131021.Google Scholar
Luviano, N., Villa-Galaviz, E., Boege, K., Zaldívar-Riverón, A., & del-Val, E. (2018). Hurricane impacts on plant-herbivore networks along a successional chronosequences in a tropical dry forest. Forest Ecology and Management, 426, 158163.Google Scholar
Lytle, D. A. & Merritt, D. M. (2004). Hydrologic regimes and riparian forests: A structured population model for cottonwood. Ecology, 85, 24932503.Google Scholar
Mabry, C. & Korsgren, T. (1998). A permanent plot study of vegetation and vegetation-site factors fifty-three years following disturbance in central New England, U.S.A. Écoscience, 5, 232240.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Maekawa, M. & Nakagoshi, N. (1997). Riparian landscape changes over a period of 46 years, on the Azusa River in central Japan. Landscape and Urban Planning, 37, 3743.Google Scholar
Magnússon, B. & Magnússon, S. H. (2000). Vegetation succession on Surtsey, Iceland, during 1990–1998 under the influence of breeding gulls. Surtsey Research, 11, 920.Google Scholar
Mahoney, J. & Rood, S. (1998). Streamflow requirements for cottonwood seedling recruitment: An integrative model. Wetlands, 18, 634645.Google Scholar
Major, K. C., Nosko, P., Kuehne, C., Campbell, D., & Bauhus, J. (2013). Regeneration dynamics of non-native northern red oak (Quercus rubra L.) populations as influenced by environmental factors: A case study in managed hardwood forests of southwestern Germany. Forest Ecology and Management, 291, 144153.Google Scholar
Makoto, K. & Wilson, S. D. (2019). When and where does dispersal limitation matter in primary succession? Journal of Ecology, 107, 559565.Google Scholar
Malanson, G. P. (1993). Riparian Landscapes. Cambridge: Cambridge University Press.Google Scholar
Mallik, A. U. (2003). Conifer regeneration problems in boreal and temperate forests with ericaceous understory: Role of disturbance, seedbed limitation, and keystone species change. Critical Reviews in Plant Sciences, 22, 341366.Google Scholar
Mallik, A. U., Bloom, R. G., & Whisenant, S. G. (2010). Seedbed filter controls post-fire succession. Basic and Applied Ecology, 11, 170181.Google Scholar
Mann, D. H., Fastier, C. L., Rowland, E. L., & Bigelow, N. H. (1995). Spruce succession, disturbance, and geomorphology on the Tanana River floodplain, Alaska. Écoscience, 2, 184199.Google Scholar
Mantilla-Contreras, J., Schirmel, J., & Zerbe, S. (2012). Influence of soil and microclimate on species composition and grass encroachment in heath succession. Journal of Plant Ecology, 5, 249259.Google Scholar
Marcante, S., Winkler, E., & Erschbamer, B. (2009). Population dynamics along a primary succession gradient: Do alpine species fit into demographic succession theory? Annals of Botany, 103, 11291143.Google Scholar
Maren, I. E., Janovský, Z., Spindelbock, J. P., Daws, M. I., Kaland, P. E., & Vandvik, V. (2010). Prescribed burning of northern heathlands: Calluna vulgaris germination cues and seed-bank dynamics. Plant Ecology, 207, 245256.Google Scholar
Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In Buzzati-Traverso, A. A., ed., Perspectives in Marine Biology, pp. 323349. Berkeley: University of California Press.Google Scholar
Margalef, R. (1968). Perspectives in Ecological Theory. Chicago: University of Chicago Press.Google Scholar
Mark, A. F., Dickinson, K. J. M., & Fife, A. J. (1989). Forest succession on landslides in the Fiord Ecological Region, southwestern New Zealand. New Zealand Journal of Botany, 27, 369390.Google Scholar
Mark, A. F., Scott, G. A. M., Sanderson, F. R., & James, P. W. (1964). Forest succession on landslides above Lake Thomson, Fiordland. New Zealand Journal of Botany, 2, 6089.Google Scholar
Markowicz, A., Wozniak, G., Borymski, S., Piotrowska-Seget, Z., & Chmura, D. (2015). Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecological Research, 30, 10051014.Google Scholar
Marler, T. E. & del Moral, R. (2011). Primary succession along an elevation gradient 15 years after the eruption of Mount Pinatubo, Luzon, Philippines. Pacific Science, 65, 157173.Google Scholar
Marler, T. E. & del Moral, R. (2013). Primary succession in Mount Pinatubo: Habitat availability and ordination analysis. Communicative and Integrative Biology, 6, e25924.Google Scholar
Marozas, V., Grigaitis, V., & Brazaitis, G. (2005). Edge effect on ground vegetation in clear-cut edges of pine-dominated forests. Scandinavian Journal of Forest Research, 20, 4348.Google Scholar
Marrs, R. H. (2002). Manipulating the chemical environment of the soil. In Perrow, M. R. & Davy, A. J., eds., Handbook of Ecological Restoration, Vol. 1, pp. 155183. Cambridge: Cambridge University Press.Google Scholar
Marrs, R. H. & Bradshaw, A. D. (1993). Primary succession on man-made wastes: The importance of resource acquisition. In Miles, J. & Walton, D. H., eds., Primary Succession on Land, pp. 221248. Oxford: Blackwell.Google Scholar
Martínez, M. L. (2003). Facilitation of seedling establishment by an endemic shrub in tropical coastal sand dunes. Plant Ecology, 168, 333345.Google Scholar
Martínez-Duro, E., Ferrandis, P., Escudero, A., Luzuriaga, A. L., & Herranz, J. M. (2010). Secondary old-field succession in an ecosystem with restrictive soils: Does time from abandonment matter? Applied Vegetation Science, 13, 234248.Google Scholar
Martínez-Ramos, M. & Soto-Castro, A. (1993). Seed rain and advanced regeneration in a tropical rain forest. Vegetatio, 107/108, 299318.Google Scholar
Martínez-Ruiz, C. & Marrs, R. (2007). Some factors affecting successional change on uranium mine wastes: Insights for ecological restoration. Applied Vegetation Science, 10, 333325.Google Scholar
Martín-Sanz, R. C., Fernández-Santos, B., & Martínez-Ruiz, C. (2015). Early dynamics of natural revegetation on roadcuts of the Salamanca province (CW Spain). Ecological Engineering, 75, 223231.Google Scholar
Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the eastern United States. Bilogical Conservation, 66, 185194.Google Scholar
Matsamura, T. & Takeda, Y. (2010). Relationship between species richness and spatial and temporal distance from seed source in semi‐natural grassland. Applied Vegetation Science, 13, 336345.Google Scholar
Matt, F., Almeida, K., Arguero, A., & Reudenbach, C. (2008). Seed dispersal by birds, bats, and wind. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., & Monsandl, R., eds., Gradients in a Tropical Mountain Ecosystem of Ecuador: Ecological Studies, Ecological Studies Volume 198, pp. 157165. Berlin: Springer Press.Google Scholar
Matthews, J. A. (1992 ). The Ecology of Recently Deglaciated Terrain: A Geographical Approach to Glacier Forelands and Primary Succession. Cambridge: Cambridge University Press.Google Scholar
Matthews, J. A. (1999). Disturbance regimes and ecosystem recovery on recently-deglaciated surfaces. In Walker, L. R., ed., Ecosystems of Disturbed Ground, Ecosystems of the World 16, pp. 1737. Amsterdam: Elsevier.Google Scholar
Matthews, J. A. & Whittaker, R. J. (1987). Vegetation succession on the Storbreen Glacier Foreland, Jotunheimen, Norway: A review. Arctic and Alpine Research, 19, 385395.Google Scholar
Maza-Villalobos, S., Poorter, L., & Martínez-Ramos, M. (2013). Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. PLoS ONE, 8, e82040.Google Scholar
McCoy, S., Jaffre, T., Rigault, F., & Ash, J. E. (1999). Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography, 26, 579594.Google Scholar
McDonald, M. A. & Healey, J.R. (2000). Nutrient cycling in secondary forests in the Blue Mountains of Jamaica. Forest Ecology and Management, 139, 257278.Google Scholar
McDonald, P. M. & Reynolds, P. E. (1999). Plant community development after 28 years in small group-selection openings. Usda Forest Service Pacific Southwest Research Station Research Paper, 241, 117.Google Scholar
McDowell, W. M., Sánchez, C. G., Asbury, C. E., & Ramos Pérez, C. R. (1990). Influence of sea salt aerosols and long range transport on precipitation chemistry at El Verde, Puerto Rico. Atmospheric Environment, 24A, 28132821.Google Scholar
McIntosh, R. P. (1985). The Background of Ecology. Cambridge: Cambridge University Press.Google Scholar
McIntosh, R. P. (1999). The succession of succession: A lexical chronology. Bulletin of the Ecological Society of America, 80, 256265.Google Scholar
McKee, S. E., Aust, W. M., Seiler, J. R., Strahm, B. D., & Schilling, E. B. (2012). Long-term site productivity of a tupelo-cypress swamp 24 years after harvesting disturbances. Forest Ecology and Management, 265, 172180.Google Scholar
McKenzie, D., Miller, C., & Falk, D. A., eds. (2011). The Landscape Ecology of Fire. New York: Springer.Google Scholar
McKernan, C., Cooper, D. J., & Schweiger, E. W. (2018). Glacial loss and its effect on riparian vegetation of alpine streams. Freshwater Biology, 63, 518529.Google Scholar
McLauchlan, K. K., Higuera, P. E., Gavin, D. G., et al. (2014). Reconstructing disturbance and their biogeochemical consequences over multiple timescales. BioScience, 64, 105116.Google Scholar
McLendon, T., Naumburg, E., & Martin, D. W. (2012). Secondary succession following cultivation in an arid ecosystem: The Owens Valley, California. Journal of Arid Environments, 82, 136146.Google Scholar
Mei, W. & Xie, S.-P. (2016). Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9, 753‒757.Google Scholar
Meiners, S. J., Cadenasso, M. L., & Pickett, S. T. A. (2007). Succession on the Piedmont of New Jersey and its implications for ecological restoration. In Cramer, V. A. & Hobbs, R. J., eds., Old Fields: Dynamics and Restoration of Abandoned Farmlands, pp. 145161. Washington, DC: Island Press.Google Scholar
Meiners, S. J., Pickett, S. T. A., & Cadenasso, M. L. (2002). Exotic plant invasions over 40 years of old field successions: Community patterns and associations. Ecography, 25, 215223.Google Scholar
Meiners, S. J., Pickett, S. T. A., & Cadenasso, M. L. (2015b). An Integrative Approach to Successional Dynamics: Tempo and Mode of Vegetation Change. New York: Springer.Google Scholar
Meiners, S. J., Cadotte, M. W., Fridley, J. D., Pickett, S. T. A., & Walker, L. R. (2015a). Is successional research nearing its climax? New approaches for understanding dynamic communities. Functional Ecology, 29, 154164.Google Scholar
Meira-Neto, J. A. A., Clemente, A., Oliveira, G., Nunes, A., & Correia, O. (2011). Post-fire and post-quarry rehabilitation successions in Mediterranean-like ecosystems: Implications for ecological restoration. Ecological Engineering, 37, 11321139.Google Scholar
Meitzen, K., Phillips, J. N., Perkins, T., Manning, A., & Julian, J. P. (2018). Catastrophic flood disturbance and a community’s response to plant resilience in the heart of the Texas Hill Country. Geomorphology, 305, special issue SI, 2032.Google Scholar
Meli, P., Holl, K. D., Rey Benayas, J. M., et al. (2017). A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS ONE, 12, e0171368.Google Scholar
Menges, E. S. & Waller, D. M. (1983). Plant strategies in relation to elevation and light in floodplain herbs. The American Naturalist, 122, 454473.Google Scholar
Mentis, M. T. (2006). Restoring native grassland on land disturbed by coal mining on the Eastern Highveld of South Africa. South African Journal of Science, 102, 193197.Google Scholar
Mentis, M. T. & Ellery, W. N. (1998). Environmental effects of mining coastal dunes: Conjectures and refutations. South African Journal of Science, 94, 215222.Google Scholar
Merrens, E. J. & Peart, D. R. (1992). Effects of hurricane damage on individual growth and stand structure in a hardwood forest in New Hampshire, USA. Journal of Ecology, 80, 787795.Google Scholar
Messer, A. C. (1988). Regional variation in rates of pedogenesis and the influence of climatic factors on moraine chronosequences, southern Norway. Arctic and Alpine Research, 20, 3139.Google Scholar
Michalová, Z., Morrissey, R. C., Wohlgemuth, T., Bače, R., Fleischer, P., & Svoboda, M. (2017). Salvage-logging after windstorm leads to structural and functional homogenization of understory layer and delayed spruce tree recovery in Tatra Mts., Slovakia. Forests, 8, 88. doi: 10.3390/f8030088.Google Scholar
Miles, D. W. R. & Swanson, F. J. (1986). Vegetation composition on recent landslides in the Cascade Mountains of western Oregon. Canadian Journal of Forest Research, 16, 739744.Google Scholar
Miles, D. W. R., Swanson, F. J., & Youngberg, C. T. (1984). Effect of landslide erosion on subsequent Douglas-fir growth and stocking levels in the Western Cascades, Oregon. Soil Science Society of American Journal, 48, 667671.Google Scholar
Miles, J. (1979). Vegetation Dynamics. London: Chapman & Hall.Google Scholar
Miles, J. & Walton, D. W. H. (1993). Primary Succession on Land. Oxford: Blackwell.Google Scholar
Miller, T. E., Gornish, E. S., & Buckley, H. L. (2010). Climate and coastal dune vegetation: Disturbance, recovery, and succession. Plant Ecology, 206, 97104.Google Scholar
Millett, J. & Edmondson, S. (2013). The impact of 36 years of grazing management on vegetation dynamics in dune slacks. Journal of Applied Ecology, 50, 13671376.Google Scholar
Milner, A. M., Fastie, C. L., Chapin, F. S. III, et al. (2007). Interactions and linkages among ecosystems during landscape evolution. BioScience, 57, 237247.Google Scholar
Mistry, J. (2000). World Savannas: Ecology and Human Use. New York: Routledge.Google Scholar
Mittelbach, G. G. & Schemske, D. W. (2015). Ecological and evolutionary perspectives on community assembly. Trends in Ecology and Evolution, 30, 241247.Google Scholar
Miyanishi, K. & Johnson, E. A. (2007). Coastal dune succession and the reality of dune processes. In Johnson, E. A. & Miyanishi, K., eds., Plant Disturbance Ecology: The Process and the Response, pp. 249282. Amsterdam: Academic Press.Google Scholar
Mizuno, K. & Fujita, T. (2014). Vegetation succession on Mt. Kenya in relation to glacial fluctuation and global warming. Journal of Vegetation Science, 25, 559570.Google Scholar
Moktan, M. R., Gratzer, G., Richards, W. H., Tek Bahadur, R., Dukpa, D., & Tenzin, K. (2009). Regeneration of mixed conifer forests under group tree selection harvest management in western Bhutan Himalayas. Forest Ecology and Management, 257, 21212132.Google Scholar
Møller, A. P., Barnier, F., & Mousseau, T. A. (2012). Ecosystem effects 25 years after Chernobyl: Pollinators, fruit set and recruitment. Oecologia, 170, 11551165.Google Scholar
Molnár, Z. & Botta-Dukát, Z. (1998). Improved space-for-time substitution for hypothesis generation: Secondary grasslands with documented site history in SE-Hungary. Phytocoenologia, 28, 129.Google Scholar
Monokrousos, N., Boutsis, G., & Diamantopoulos, J. D. (2014). Development of soil chemical and biological properties in the initial stages of post-mining deposition sites. Environmental Monitoring and Assessment, 186, 90659074.Google Scholar
Montoni, M. V. F., Honaine, M. F., & del Rio, J. L. (2014). An assessment of spontaneous vegetation recovery in aggregate quarries in coastal sand dunes in Buenos Aires Province, Argentina. Environmental Management, 54, 180193.Google Scholar
Moola, F. M. & Vasseur, L. (2004). Recovery of late-seral vascular plants in a chronosequence of post-clearcut forest stands in coastal Nova Scotia, Canada. Plant Ecology, 172, 183197.Google Scholar
Mooney, H. A., Mack, R., McNeely, J. A., Neville, L. E., Schei, P. J., & Waage, K. (2005). Invasive Alien Species: A New Synthesis. Washington, DC: Island Press.Google Scholar
Mora, J. L., Armas-Herrera, C. M., Guerra, J. A., Rodríguez-Rodríguez, A., & Arbelo, C. D. (2012). Factors affecting vegetation and soil recovery in the Mediterranean woodland of the Canary Islands (Spain). Journal of Arid Environments, 87, 5866.Google Scholar
Moravec, J. (1969). Succession of plant communities and soil development. Folia Geobtanica et Phytotaxonomica, 4, 133164.Google Scholar
Moreau, M., Mercier, D., Laffly, D., & Roussel, E. (2008). Impacts of recent paraglacial dynamics on plant colonization: A case study on Midtre Lovenbreen foreland, Spitsbergen (79 degrees N). Geomorphology, 95, 4860.Google Scholar
Moreno-Casasola, P. (1986). Sand movement as a factor in the distribution of plant communities in a coastal dune system. Vegetatio, 65, 6776.Google Scholar
Moreno-de las Heras, M., Nicolau, J. M., & Espigares, T. (2008). Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecological Engineering, 34, 168178.Google Scholar
Mori, A. S., Osono, T., Uchida, M., & Kanda, H. (2008). Changes in the structure and heterogeneity of vegetation and microsite environments with the chronosequence of primary succession on a glacier foreland in Ellesmere Island, High Arctic, Canada. Ecological Research, 23, 363370.Google Scholar
Mori, A. S., Uchida, M., & Kanda, H. (2013). Non-stochastic colonization by pioneer plants after deglaciation in a polar oasis of the Canadian High Arctic. Polar Science, 7, 278287.Google Scholar
Morris, L. R. & Leger, E. A. (2016). Secondary succession in the sagebrush semidesert 66 years after fire in the Great Basin, USA. Natural Areas Journal, 36, 187193.Google Scholar
Morris, L. R., Monaco, T. A., & Sheley, R. L. (2011). Land-use legacies and vegetation recovery 90 years after cultivation in Great Basin sagebrush ecosystems. Rangeland Ecology & Management, 64, 488497.Google Scholar
Morris, M. R. & Stanford, J. A. (2011). Floodplain succession and soil nitrogen accumulation on a salmon river in southwestern Kamchatka. Ecological Monographs, 81, 4361.Google Scholar
Morrison, D. A., Cary, G. J., Pengelly, S. M., et al. (1995). Effects of fire frequency on plant-species composition of sandstone communities in the Sydney Region: Inter-fire interval and time-since fire. Australian Journal of Ecology, 20, 239247.Google Scholar
Mota, J. F., Sola, A. J., Jiménez-Sánchez, M. L., Pérez-Garcia, F. J., & Merlo, M. E. (2004). Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodiversity and Conservation, 13, 17971808.Google Scholar
Mote, P. W. & Kaser, G. (2007). The shrinking glaciers of Kilimanjaro: Can global warming be blamed? American Scientist, 95, 318325.Google Scholar
Motzkin, G., Wilson, P., Foster, D. R., & Allen, A. (1999). Vegetation patterns in heterogeneous landscapes: The importance of history and environment. Journal of Vegetation Science, 10, 903920.Google Scholar
Mouw, J. E. B., Chaffin, J. L., Whited, D. C., Hauer, F. R., Matson, P. L., & Stanford, J. A. (2013). Recruitment and successional dynamics diversify the shifting habitat mosaic of an Alaskan floodplain. River Research and Applications, 29, 671685.Google Scholar
Mudrák, O., Doležal, J., & Frouz, J. (2016). Initial species composition predicts the progress in the spontaneous succession on mine sites. Ecological Engineering, 95, 665670.Google Scholar
Muñoz Vallés, S., Gallego-Fernández, J. B., & Cambrollé, J. (2013). The biological flora of coastal dunes and wetlands: Retama monosperma (L.) Boiss. Journal of Coastal Research, 29, 11011110.Google Scholar
Muñoz-Mas, R., Garófano-Gómez, V., Andrés-Doménech, I., et al. (2017). Exploring the key drivers of riparian woodland successional pathways across three European river reaches. Ecohydrology, 10, e1888.Google Scholar
Muñoz-Reinoso, J. C. (2018). Doñana mobile dunes: What is the vegetation pattern telling us? Journal of Coastal Conservation, 22, 605614.Google Scholar
Murphy, H. T. & Metcalfe, D. J. (2016). The perfect storm: Weed invasion and intense storms in tropical forests. Austral Ecology, 41, 864874.Google Scholar
Murphy, H. T., Metcalfe, D. J., Bradford, M. G., et al. (2008). Recruitment dynamics of invasive species in rainforest habitats following Cyclone Larry. Austral Ecology, 33, 495502.Google Scholar
Mylliemngap, W., Nath, D., & Barik, S. (2016). Changes in vegetation and nitrogen mineralization during recovery of a montane subtropical broadleaved forest in North-eastern India following anthropogenic disturbance. Ecological Research, 31, 2138.Google Scholar
Myster, R. W. (1994). Landslide insects show small differences between an island (Puerto Rico) and the mainland (Costa Rica). Acta Científica, 8, 105113.Google Scholar
Myster, R. W. (1997). Seed predation, disease and germination on landslides in Neotropical lower montane wet forest. Journal of Vegetation Science, 8, 5564.Google Scholar
Myster, R. W. (2002). Foliar pathogen and insect herbivore effects on two landslide tree species in Puerto Rico. Forest Ecology and Management, 169, 231242.Google Scholar
Myster, R. W. & Fernández, D. S. (1995). Spatial gradients and patch structure on two Puerto Rican landslides. Biotropica, 27, 149159.Google Scholar
Myster, R. W. & Sarmiento, F. O. (1998). Seed inputs to microsite patch recovery on two tropandean landslides in Ecuador. Restoration Ecology, 6, 3543.Google Scholar
Myster, R. W. & Walker, L. R. (1997). Plant successional pathways on Puerto Rican landslides. Journal of Tropical Ecology, 13, 165173.Google Scholar
Myster, R. W., Thomlinson, J. R., & Larsen, M. C. (1997). Predicting landslide vegetation in patches on landscape gradients in Puerto Rico. Landscape Ecology, 12, 299307.Google Scholar
Nadeau, L. B. & Corns, I. G. W. (2002). Post-fire vegetation of the Montane natural subregion of Jasper National Park. Forest Ecology and Management, 163, 165183.Google Scholar
Nagashima, K., Yoshida, S., & Hosaka, T. (2009). Patterns and factors in early-stage vegetation recovery at abandoned plantation clearcut sites in Oita, Japan: Possible indicators for evaluating vegetation status. Journal of Forest Research, 14, 135146.Google Scholar
Nagy, L. & Grabherr, G. (2009). The Biology of Alpine Habitats. Oxford: Oxford University Press.Google Scholar
Naiman, R. J. & Rogers, K. H. (1997). Large animals and system-level characteristics in river corridors. BioScience, 47, 521529.Google Scholar
Nakamura, F., Shin, N., & Inahara, S. (2007). Shifting mosaic in maintaining diversity of floodplain tree species in the northern temperate zone of Japan. Forest Ecology and Management, 241, 2838.Google Scholar
Nakamura, F., Yajima, T., & Kikuchi, S. (1997). Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan. Plant Ecology, 133, 209219.Google Scholar
Nakamura, T. (1984). Vegetational recovery of landslide scars in the upper reaches of the Oi River, Central Japan. Journal of the Japanese Forestry Society, 66, 328332.Google Scholar
Nakamura, T. (1985). Forest succession in the subalpine region of Mt. Fuji, Japan. Vegetatio, 64, 1527.Google Scholar
Nakashizuka, T., Iida, S., Suzuki, W., & Tanimoto, T. (1993). Seed dispersal and vegetation development on a debris avalanche on the Ontake volcano, Central Japan. Journal of Vegetation Science, 4, 537542.Google Scholar
Nanson, G. C. & Beach, H. F. (1977). Forest succession and sedimentation on a meandering-river floodplain, northeast British Columbia, Canada. Journal of Biogeography, 4, 229251.Google Scholar
Nara, K. & Hogetsu, T. (2004). Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology, 85, 17001707.Google Scholar
Naveh, Z. & Lieberman, A. S. (1984). Landscape Ecology: Theory and Application. New York: Springer.Google Scholar
Nechaev, A. P. (1967). Seed regeneration of willows on the pebble-bed shoals of the Bureya River. Lesovedenie, 1, 5464. (Original title: Semennoe vozobnovlenie ivovych na galechnikach reki Bohrei.)Google Scholar
Neeman, G. & Izhaki, I. (1996). Colonization in an abandoned East-Mediterranean vineyard. Journal of Vegetation Science, 7, 465472.Google Scholar
Nelson, Z. J., Weisberg, P. J., & Kitchen, S. G. (2014). Influence of climate and environment on post-fire recovery of mountain big sagebrush. International Journal of Wildland Fire, 23, 131142.Google Scholar
Nemet, E., Ruprecht, E., Galle, R., & Marko, B. (2016). Abandonment of crop lands leads to different recovery patterns for ant and plant communities in Eastern Europe. Community Ecology, 17, 7987.Google Scholar
Neto, C., Cardigos, P., Oliveira, S. C., & Zêzere, J. L. (2017). Floristic and vegetation successional processes within landslides in a Mediterranean environment. Science of the Total Environment, 574, 969981.Google Scholar
Newbold, T., Hudson, L. N., Hill, S. L. L., et al. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 4550.Google Scholar
Nguyen-Xuan, T., Bergeron, Y., Simard, D., Fyles, J. W., & Pare, D. (2000). The importance of forest floor disturbance in the early regeneration patterns of the boreal forest of western and central Quebec: A wildfire versus logging comparison. Canadian Journal of Forest Research, 30, 13531364.Google Scholar
Nikolic, N., Bocker, R., & Nikolic, M. (2016). Long-term passive restoration following fluvial deposition of sulphidic copper tailings: Nature filters out the solutions. Environmental Science and Pollution Research, 23, 1367213680.Google Scholar
Nikolic, N., Kostic, L., & Nikolic, M. (2018). To dam or not to dam? Abolishment of further flooding impedes the natural revegetation processes after long-term fluvial deposition of copper tailings. Land Degradation and Development, 29, 19151924.Google Scholar
Nilsson, C., Ekblad, A., Dynesius, M., et al. (1994). A comparison of species richness and traits of riparian plants between a main river channel and its tributaries. Journal of Ecology, 82, 281295.Google Scholar
Ninot, J. M., Herrero, P., Ferré, A., & Guardia, R. (2001). Effects of reclamation measures on plant colonization on lignite waste in the eastern Pyrenees, Spain. Applied Vegetation Science, 4, 2934.Google Scholar
Nishi, H. & Tsuyuzaki, S. (2004). Seed dispersal and seedling establishment of Rhus trichocarpa promoted by a crow (Corvus macrorhynchos) on a volcano in Japan. Ecography, 27, 311322.Google Scholar
Nishimura, A., Tsuyuzaki, S., & Haraguchi, A. (2009). A chronosequence approach for detecting revegetation patterns after sphagnum-peat mining, northern Japan. Ecological Research, 24, 237246.Google Scholar
Noble, I. R. & Slatyer, R. O. (1980). The use of vital attributes to predict successional changes in plant-communities subject to recurrent disturbances. Vegetatio, 43, 521.Google Scholar
Norby, R. J. & Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology and Systematics, 42, 181203.Google Scholar
Norden, N., Angarita, H. A., Bongers, F., et al. (2015). Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Science of the United States of America, 112, 80138018.Google Scholar
Nossov, D. R., Hollingsworth, T. N., Ruess, R. W., & Kielland, K. (2011). Development of Alnus tenuifolia stands on an Alaskan floodplain: Patterns of recruitment, disease and succession. Journal of Ecology, 99, 621633.Google Scholar
Novák, J. & Prach, K. (2003). Vegetation succession in basalt quarries: Pattern over a landscape scale. Applied Vegetation Science, 6, 111116.Google Scholar
Novák, J. & Prach, K. (2010). Artificial sowing of endangered dry grassland species into disused basalt quarries. Flora, 205, 179183.Google Scholar
Nurtjahya, E., Setiadi, D., Guhardja, E., Muhadiono, , & Setiadi, Y. (2009). Succession on tin-mined land in Bangka Island. Blumea, 54, 131138.Google Scholar
Nyland, R. D. (2016). Silviculture: Concepts and Applications, 3rd ed. Long Grove, IL: Waveland Press.Google Scholar
Nylén, T. & Luoto, M. (2015). Primary succession, disturbance and productivity drive complex species richness patterns on land uplift beaches. Journal of Vegetation Science, 26, 267277.Google Scholar
Nylén, T., Le Roux, P. C., & Luoto, M. (2013). Biotic interactions drive species occurrences and richness in dynamic beach environments. Plant Ecology, 214, 14551466.Google Scholar
Obase, K., Tamai, Y., Yajima, T., & Miyamoto, T. (2008). Mycorrhizal colonization status of plant species established in an exposed area following the 2000 eruption of Mt. Usu, Hokkaido, Japan. Landscape and Ecological Engineering, 4, 5761.Google Scholar
Oberbauer, S. F., Whelan, K. R. T., & Koptur, S. (1996). Effects of Hurricane Andrew on epiphyte communities within cypress domes of Everglades National Park. Ecology, 77, 964‒967.Google Scholar
O’Donnell, J., Fryirs, K. A., & Leishman, M. R. (2016). Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition. Science of the Total Environment, 542, 591602.Google Scholar
Odum, E. P. (1953). Fundamentals of Ecology. Philadelphia: Saunders.Google Scholar
Odum, E. P. (1969). The strategy of ecosystem development. Science, 164, 262270.Google Scholar
Odum, H. T. & Pinkerton, R. C. (1955). Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems. American Scientist, 43, 331343.Google Scholar
Ohl, C. & Bussman, R. (2004). Recolonisation of natural landslides in tropical mountain forests of Southern Ecuador. Feddes Repertorium, 115, 248264.Google Scholar
Ohsawa, M. (1984). Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Vegetatio, 57, 1552.Google Scholar
Olff, H., Huisman, J., & Van Tooren, B. F. (1993). Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. Journal of Ecology, 81, 693706.Google Scholar
Oliveira-Filho, A. T., Vilela, E. A., Gavilanes, M. L., & Carvalho, D. A. (1994). Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in southeastern Brazil. Vegetatio, 113, 99124.Google Scholar
Olson, J. S. (1958). Rates of succession and soil changes on southern Lake Michigan sand dunes. Botanical Gazette, 119, 125170.Google Scholar
Olsson, B. A. & Staaf, H. (1995). Influence of harvesting intensity of logging residues on ground vegetation in coniferous forests. Journal of Applied Ecology, 32, 640654.Google Scholar
Oosting, H. J. (1948). The Study of Plant Communities. San Francisco: Freeman.Google Scholar
Orwig, D. A. & Abrams, M. D. (1994). Land-use history (1720–1992), composition, and dynamics of oak pine forests within the Piedmont and coastal-plain of northern Virginia. Canadian Journal of Forest Research, 24, 12161225.Google Scholar
Osbornová, J., Kovářová, M., Lepš, J., & Prach, K., eds. (1990). Succession in Abandoned Fields: Studies in Central Bohemia, Czechoslovakia. Dordrecht: Kluwer.Google Scholar
Osipov, S. V., Cherdantseva, V. Y., Galanina, I. A., & Yakubov, V. V. (2008). Species composition and ecologo-phytocenotic spectra of vascular plants, mosses, and lichens on gold-mining sites in the taiga zone of the lower Amur River basin, the Russian Far East. Contemporary Problems of Ecology, 1, 425439.Google Scholar
Osono, T., Mori, A. S., Uchida, M., & Kanda, H. (2016). Accumulation of carbon and nitrogen in vegetation and soils of deglaciated area in Ellesmere Island, high-Arctic Canada. Polar Science, 10, 288296.Google Scholar
Öster, M., Ask, K., Cousins, S. A. O., & Eriksson, O. (2009). Dispersal and establishment limitation reduced the potential for successful restoration of semi-natural grassland communities on former arable fields. Journal of Applied Ecology, 46, 12661274.Google Scholar
Otto, R., Krüsi, B. O., Burga, C. A., & Fernández-Palacios, J. M. (2006). Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife. Journal of Arid Environments, 65, 156178.Google Scholar
Overbeck, G. F., Miller, S. C., Pillar, V. D., & Pfadenhauer, J. (2005). Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science, 16, 655664.Google Scholar
Pabst, R. J. & Spies, T. A. (2001). Ten years of vegetation succession on a debris-flow deposit in Oregon. Journal of the American Water Association, 37, 16931708.Google Scholar
Paine, R. T. (1969). A note on trophic complexity and community stability. The American Naturalist, 103, 9193.Google Scholar
Paine, R. T., Tegner, M. J., & Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems, 1, 535545.Google Scholar
Pakeman, R. J., Alexander, J., Beaton, J., et al. (2015). Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Global Change Biology, 21, 37383747.Google Scholar
Palmer, M. W., McAlister, S. D., Arévalo, J. R., & DeCoster, J. K. (2000). Changes in the understory during 14 years following catastrophic windthrow in two Minnesota forests. Journal of Vegetation Science, 11, 841854.Google Scholar
Pandey, A. N. & Singh, J. S. (1985). Mechanisms of ecosystem recovery: A case study from Kumaun Himalaya. Recreation and Revegetation Research, 3, 271292.Google Scholar
Papanastisis, V. P. (2007). Land abandonment and old field dynamics in Greece. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 225246. Washington, DC: Island Press.Google Scholar
Parendes, L. A. & Jones, J. A. (2000). Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conservation Biology, 14, 6475.Google Scholar
Parker, D. E., Wilson, H., Jones, P. D., Christy, J. R., & Folland, C. K. (1996). The impacts of Mount Pinatubo on world-wide temperatures. International Journal of Climatology, 16, 487497.Google Scholar
Parker, V. T. (1997). The scale of successional models and restoration objectives. Restoration Ecology, 5, 301306.Google Scholar
Parker-Nance, T., Talbot, M. M. B., & Bate, G. C. (1991). Vegetation and geomorphic age in the Alexandria coastal dunefield, eastern Cape, South Africa. South African Journal of Science, 87, 252259.Google Scholar
Párraga-Aguado, I., Querejeta, J. I., González-Alcaraz, M. N., Jiménez-Cárceles, F. J., & Conesa, H. M. (2014). Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. Journal of Environmental Management, 133, 5158.Google Scholar
Pärtel, M., Szava-Kovats, R., & Zobel, M. (2011). Dark diversity: Shedding light on absent species. Trends in Ecology and Evolution, 26, 124128.Google Scholar
Partomihardjo, T., Mirmanto, E., & Whittaker, R. J. (1992). Anak Krakatau’s vegetation and flora circa 1991, with observations on a decade of development and change. GeoJournal, 28, 233248.Google Scholar
Paschke, M. W., McLendon, T., & Redente, E. F. (2000). Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems, 3, 144158.Google Scholar
Pätzold, S., Hejcman, M., Barej, J., & Schellberg, J. (2013). Soil phosphorus fractions after seven decades of fertilizer application in the Rengen Grassland Experiment. Journal of Plant Nutrition and Soil Science, 176, 910920.Google Scholar
Pausas, J. G. & Lavorel, S. (2003). A hierarchical deductive approach for functional types in disturbed ecosystems. Journal of Vegetation Science, 14, 409416.Google Scholar
Pearce, A. J. & O’Loughlin, C. L. (1985). Landsliding during a M 7.7 earthquake: Influence of geology and topography. Geology, 13, 855858.Google Scholar
Pegman, A. P. McK. & Rapson, G. L. (2005). Plant succession and dune dynamics on actively prograding dunes, Whatipu Beach, northern New Zealand. New Zealand Journal of Botany, 43, 223244.Google Scholar
Peh, K. S.-H., Corlett, R. T., & Bergeron, Y., eds. (2015). Routledge Handbook of Forest Ecology. Boca Raton, FL: Routledge/CRC Press.Google Scholar
Peloquin, R. L. & Hiebert, R. D. (1999). The effects of black locust (Robinia pseudoacacia L.) on species diversity and composition of black oak savanna/woodland communities. Natural Areas Journal, 19, 121131.Google Scholar
Peltzer, D. A., Bellingham, P. J, Kurokawa, H., Walker, L. R., Wardle, D. A., & Yeates, G. W. (2009). Punching above their weight: Low-biomass non-native plant species alter soil properties during primary succession. Oikos, 118, 10011014.Google Scholar
Peltzer, D. A., Wardle, D. A., Allison, V. J., et al. (2010). Understanding ecosystem retrogression. Ecological Monographs, 80, 509529.Google Scholar
Pennanen, T., Strömmer, R., Markkola, A., & Fritze, H. (2001). Microbial and plant community structure across a primary succession gradient. Scandinavian Journal of Forest Research, 16, 3743.Google Scholar
Pensa, M., Sellin, A., Luud, A., & Valgma, I. (2004). An analysis of vegetation restoration on opencast oil shale mines in Estonia. Restoration Ecology, 12, 200206.Google Scholar
Perera, A. H., Buse, L. J., & Weber, M. G., eds. (2007). Emulating Natural Forest Landscape Disturbances: Concepts and Applications. New York: Columbia University Press.Google Scholar
Perla, R. I. & Martinelli, M. Jr. (1976). Avalanche Handbook, and: Washington, DC: U.S. Department of Agriculture, Forest Service, Agriculture Handbook 489, Washington, DC.Google Scholar
Perren, B. B., Massa, C., Bichet, V., et al. (2012). A paleoecological perspective on 1450 years of human impacts from a lake in southern Greenland. Holocene, 22, 10251034.Google Scholar
Perrow, M. R. & Davy, A. J., eds. (2002). Handbook of Ecological Restoration. Vol. 2: Restoration in Practice. Cambridge: Cambridge University Press.Google Scholar
Perryman, S. A. M., Castells-Brooke, N. I. D., Glendining, M. J., et al. (2018). The electronic Rothamsted Archive (e-RA), an online resource for data from the Rothamsted long-term experiments. Scientific Data, 5, article number 180072.Google Scholar
Peterken, G. F. 1996. Natural Woodland: Ecology and Conservation in Northern Temperate Regions. Cambridge: Cambridge University Press.Google Scholar
Peterson, G. D. & Heemskerk, M. (2001). Deforestation and forest regeneration following small-scale gold mining in the Amazon: The case of Suriname. Environmental Conservation, 28, 117126.Google Scholar
Pettit, N. E. & Naiman, R. J. (2007). Fire in the riparian zone: Characteristics and ecological consequences. Ecosystems, 10, 673687.Google Scholar
Pickett, S. T. A. (1976). Succession: An evolutionary perspective. The American Naturalist, 110, 107119.Google Scholar
Pickett, S. T. A. (1989). Space for time substitutions as an alternative to long-term studies. In Likens, G. E., ed., Long Term Studies in Ecology, pp. 110135. New York: Springer.Google Scholar
Pickett, S. T. A., Collins, S. L., & Armesto, J. J. (1987a). Models, mechanisms and pathways of succession. The Botanical Review, 53, 335371.Google Scholar
Pickett, S. T. A., Collins, S. L., & Armesto, J. J. (1987b). A hierarchical consideration of causes and mechanisms of succession. Vegetatio, 69, 109114.Google Scholar
Pickett, S. T. A. & White, P. S., eds. (1985). The Ecology of Natural Disturbance and Patch Dynamics. New York: Academic Press.Google Scholar
Piekarska-Stachowiak, A., Szary, M., Ziemer, B., Besenyei, L., & Wozniak, G. (2014). An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecological Research, 29, 843853.Google Scholar
Pietsch, W. H. O. (1996). Recolonization and development of vegetation on mine spoils following brown coal mining in Lusatia. Water Air and Soil Pollution, 91, 115.Google Scholar
Piiroinen, T., Valtonen, A., & Roininen, H. (2017). Vertebrate herbivores are the main cause of seedling mortality in a logged African rainforest: Implications for forest restoration. Restoration Ecology, 25, 442452.Google Scholar
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321.Google Scholar
Platt, W. J. & Connell, J. H. (2003). Natural disturbances and directional replacement of species. Ecological Monographs, 73, 507522.Google Scholar
Plotkin, A. B., Schoonmaker, P., Leon, B., & Foster, D. (2017). Microtopography and ecology of pit-mound structures in second-growth versus old-growth forests. Forest Ecology and Management, 404, 1423.Google Scholar
Poschlod, P. (2017). Geschichte der Kulturlandschaft. Stuttgart: Ulmer.Google Scholar
Poschlod, P., Kleyer, M., Jackel, A.-K., Dannemann, A., & Tackenberg, O. (2003). BIOPOP – A database of plant traits and internet application for nature conservation. Folia Geobotanica, 38, 263271.Google Scholar
Poulson, T. L. (1999). Autogenic, allogenic, and individualistic mechanisms of dune succession at Miller, Indiana. Natural Areas Journal, 19, 172176.Google Scholar
Powers, J. S., Becknell, J. M., Irving, J., & Perez-Aviles, D. (2009). Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. Forest Ecology and Management, 258, 959970.Google Scholar
Prach, K. (1985). Succession of vegetation in abandoned fields in Finland. Annales Botanici Fennici, 22, 307314.Google Scholar
Prach, K. (1994). Vegetation succession on river gravel bars across the northwestern Himalayas, India. Arctic and Alpine Research, 26, 349353.Google Scholar
Prach, K. (2015). Mining site restoration by spontaneous processes in the Czech Republic. Cornerstone, 4, 4043.Google Scholar
Prach, K. & Hobbs, R. J. (2008). Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restoration Ecology, 16, 363366.Google Scholar
Prach, K. & Pyšek, P. (2001). Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 17, 5562.Google Scholar
Prach, K. & Rachlewicz, G. (2012). Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research, 33, 319328.Google Scholar
Prach, K. & Řehounková, K. (2006). Vegetation succession over broad geographical scales: Which factors determine the patterns? Preslia, 78, 469480.Google Scholar
Prach, K. & Tolvanen, A. (2016). How can we restore biodiversity and ecosystem services in mining and industrial sites? Environmental Science and Pollution Research, 23, 1358713590.Google Scholar
Prach, K. & Walker, L. R. (2011). Four opportunities for studies of ecological succession. Trends in Ecology and Evolution, 26, 119123.Google Scholar
Prach, K. & Walker, W. R. (2019). Differences between primary and secondary plant succession among biomes of the world. Journal Ecology, 107, 510516.Google Scholar
Prach, K., Chenoweth, J., & del Moral, R. (2019). Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restoration Ecology, 27, 592599.Google Scholar
Prach, K., Jírová, A., & Doležal, J. (2014a). Pattern of succession in old-field vegetation at a regional scale. Preslia, 86, 119130.Google Scholar
Prach, K., Pyšek, P., & Řehounková, K. (2014c). Role of substrate and landscape context in early succession: An experimental approach. Perspectives in Plant Evolution and Systematics, 16, 174179.Google Scholar
Prach, K., Pyšek, P., & Šmilauer, P. (1993). On the rate of succession. Oikos, 66, 343346.Google Scholar
Prach, K., Pyšek, P., & Šmilauer, P. (1997). Changes in species traits during succession: A search for pattern. Oikos, 79, 201205.Google Scholar
Prach, K., Pyšek, P., & Šmilauer, P. (1999). Prediction of vegetation succession in human-disturbed habitats using an expert system. Restoration Ecology, 7, 1523.Google Scholar
Prach, K., Marrs, R., Pyšek, P., & van Diggelen, R. (2007). Manipulation of succession. In Walker, L. R., Walker, J., & Hobbs, R. J., eds., Linking Restoration and Ecological Succession, pp. 121149. New York: Springer.Google Scholar
Prach, K., Petřík, P., Brož, Z., & Song, J.-S. (2014b). Vegetation succession on river sediments along the Nakdong River, South Korea. Folia Geobotanica, 49, 507519.Google Scholar
Prach, K., Šebelíková, L., Řehounková, K., & del Moral, R. (2019). Possibilities and limitations of passive restoration of heavily disturbed sites. Landscape Research, https://doi.org/10.1080 /01426397.2019.1593335.Google Scholar
Prach, K., Tichý, L., Vítovcová, K., & Řehounková, K. (2017). Participation of the Czech flora in succession at disturbed sites: Quantifying species’ colonization ability. Preslia, 89, 87100.Google Scholar
Prach, K., Bartha, S., Joyce, C. H. B., Pyšek, P., van Diggelen, R., & Wiegleb, G. (2001). The role of spontaneous vegetation succession in ecosystem restoration: A perspective. Applied Vegetation Science, 4, 111114.Google Scholar
Prach, K., Karešová, P., Jírová, A., Dvořáková, H., Konvalinková, P., & Řehounková, K. (2015). Do not neglect surroundings in restoration of disturbed sites. Restoration Ecology, 23, 310314.Google Scholar
Prach, K., Lencová, K., Řehounková, K., et al. (2013). Spontaneous vegetation succession at different central European mining sites: A comparison across seres. Environmental Science and Pollution Research, 20, 76807685.Google Scholar
Prach, K., Řehounková, K., Lencová, K., et al. (2014d). Vegetation succession in restoration of disturbed sites in Central Europe: The direction of succession and species richness across 19 seres. Applied Vegetation Science, 17, 193200.Google Scholar
Prach, K., Tichý, L., Lencová, K., et al. (2016). Does succession run towards potential natural vegetation? An analysis across seres. Journal of Vegetation Science, 27, 515523.Google Scholar
Prather, C. (2014). Divergent responses of leaf herbivory to simulated hurricane effects in a rainforest understory. Forest Ecology and Management, 332, 8792.Google Scholar
Privett, S. D. J., Cowling, R. M., & Taylor, H. C. (2001). Thirty years of change in the fynbos vegetation of the Cape of Good Hope Nature Reserve, South Africa. Bothalia, 31, 99115.Google Scholar
Prober, S. M., Thiele, K. R., Lunt, I. D., & Koen, T. B. (2005). Restoring ecological function in temperate grassy woodlands: Manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. Journal of Applied Ecology, 42, 10731085.Google Scholar
Provoost, S., Jones, M., Laurence, M., & Edmondson, S. E. (2011). Changes in landscape and vegetation of coastal dunes in northwest Europe: A review. Journal of Coastal Conservation, 15, 207226.Google Scholar
Pueyo, Y. & Alados, C. L. (2007). Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic and Applied Ecology, 8, 158170.Google Scholar
Purdie, R. W. & Slatyer, R. O. (1976). Vegetation succession after fire in sclerophyll woodland communities in southeastern Australia. Australian Journal of Ecology, 1, 223236.Google Scholar
Putz, F. E. & Brokaw, N. V. L. (1989). Sprouting of broken trees on Barro Colorado Island, Panama. Ecology, 70, 508512.Google Scholar
Putz, F. E. & Chan, H. T. (1986). Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management, 17, 211230.Google Scholar
Putz, F. E., Coley, P. D., Lu, K., Montalvo, A., & Aiello, A. (1983). Uprooting and snapping of trees: Structural determinants and ecological consequences. Canadian Journal of Forest Research, 13, 10111020.Google Scholar
Pyšek, P. & Richardson, D. M. (2006). Plant invasions: Merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography, 30, 409431.Google Scholar
Pyšek, P., Davis, M. A., Daehler, C. C., & Thompson, K. (2004). Plant invasions and vegetation succession: Closing the gap. Bulletin of the Ecological Society of America, 85, 105109.Google Scholar
Pyšek, P., Sádlo, J., Mandák, B., & Jarošík, V. (2003). Czech alien flora and the historical pattern of its formation: What came first to central Europe? Oecologia, 135, 122130.Google Scholar
Pyšek, P., Pergl, J., Ess, F., et al. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89, 203274.Google Scholar
R Development Core Team (2015). R: A language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing (www.R-project.org/).Google Scholar
Raevel, V., Violle, C., & Munoz, F. (2012). Mechanisms of ecological succession: Insights from plant functional strategies. Oikos, 121, 17611770.Google Scholar
Raharimalala, O., Buttler, A., Ramohavelo, C. D., Razanaka, S., Sorg, J. P., & Gobat, J. M. (2010). Soil-vegetation patterns in secondary slash and burn successions in Central Menabe, Madagascar. Agriculture Ecosystems & Environment, 139, 150158.Google Scholar
Raich, J. W., Russell, A. E., & Vitousek, P. M. (1997). Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology, 78, 707721.Google Scholar
Raich, J. W., Russell, A. E., Crews, T. E., Farrington, H., & Vitousek, P. M. (1996). Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. Biogeochemistry, 32, 114.Google Scholar
Ramankutty, N. & Foley, J. A. (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 9971027.Google Scholar
Randelovic, D., Cvetkovic, V., Mihailovic, N., & Jovanovic, S. (2014). Relation between edaphic factors and vegetation development on copper mine wastes: A case study from Bor (Serbia, SE Europe). Environmental Management, 53, 800812.Google Scholar
Raup, H. M. (1971). The vegetational relations of weathering, frost action and patterned ground processes. Meddelelser om Grønland, 194, 192.Google Scholar
Raus, Th. (1988). Vascular plant colonization and vegetation development on sea-born volcanic islands in the Aegean (Greece). Vegetatio, 77, 139147.Google Scholar
Rawat, G. S. (2005). Vegetation dynamics and management of Rhinoceros habitat in Duars of West Bengal: An ecological review. National Academy of Science Letters – India, 28, 177184.Google Scholar
Rebele, F. & Lehmann, C. (2002). Restoration of a landfill site in Berlin, Germany by spontaneous and directed succession. Restoration Ecology, 10, 340347.Google Scholar
Rebollo, S., Pérez-Camacho, L., Valencia, J., & Gómez-Sal, A. (2003). Vole mound effects and disturbance rate in a Mediterranean plant community under different grazing and irrigation regimes. Plant Ecology, 169, 227243.Google Scholar
Reddy, V. S. & Singh, J. S. (1993). Changes in vegetation and soil during succession following landslide disturbance in the central Himalaya. Journal of Environmental Management, 39, 235250.Google Scholar
Rees, D. C. & Juday, G. P. (2002). Plant species diversity on logged versus burned sites in central Alaska. Forest Ecology and Management, 155, 291302.Google Scholar
Řehounková, K. & Prach, K. (2006). Spontaneous vegetation succession in disused gravel-sand pits: Role of local site and landscape factors. Journal of Vegetation Science, 17, 583590.Google Scholar
Řehounková, K. & Prach, K. (2008). Spontaneous vegetation succession in gravel-sand pits: A potential for restoration. Restoration Ecology, 16, 305312.Google Scholar
Řehounková, K. & Prach, K. (2010). Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel-sand pits. Basic and Applied Ecology, 11, 4553.Google Scholar
Řehounková, K., Lencová, K., & Prach, K. (2018). Spontaneous establishment of woodland during succession in a variety of central European disturbed sites. Ecological Engineering, 111, 9499.Google Scholar
Řehounková, K., Lencová, K., & Prach, K. (in press). Threatened vascular plant species in spontaneously revegetated post-mining sites: Paradise lost or paradise regained? Restoration Ecology, 27, doi.org/10.1111/rec.13027.Google Scholar
Řehounková, K., Řehounek, J., & Prach, K., eds. (2012). Near-Natural Restoration vs. Technical Reclamation of Mining Sites in the Czech Republic. České Budějovice: USB (available at www.restoration-ecology.eu).Google Scholar
Řehounková, K., Čížek, L., Řehounek, J., et al. (2016). Additional disturbances as a beneficial tool for restoration of post-mining sites: A multi-taxa approach. Environmental Science and Pollution Research, 23, 1374513753.Google Scholar
Reice, S. R. (2003). The Silver Lining: The Benefits of Natural Disasters. Princeton, NJ: Princeton University Press.Google Scholar
Reich, P. B., Bakken, P., Carlson, D., Frelich, L. E., Friedman, S. K., & Grigal, D. F. (2001). Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests. Ecology, 82, 27312748.Google Scholar
Reid, W. V. & Miller, K. R. (1989). Keeping Options Alive: The Scientific Basis for Conserving Biodiversity. Washington, DC: World Resources Institute.Google Scholar
Reinecke, M. K., Pigot, A. L., & King, J. M. (2008). Spontaneous succession of riparian fynbos: Is unassisted recovery a viable restoration strategy? South African Journal of Botany, 73, 412420.Google Scholar
Reiners, W. A., Worley, I. A., & Lawrence, D. B. (1971). Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecology, 52, 5569.Google Scholar
Reinhart, K. O., Wilson, G. W. T., & Rinella, M. J. (2012). Predicting plant responses to mycorrhizae: Integrating evolutionary history and plant traits. Ecology Letters, 15, 689695.Google Scholar
Rejmánek, M. (1989). Invasibility of plant communities. In Drake, J. A., Mooney, H. A., di Castri, F., Groves, R. H., & Kruger, F. J., eds., Biological Invasions: A Global Perspective, pp. 369388. Chichester, UK: Wiley.Google Scholar
Rejmánek, M. (1999). Holocene invasions: Finally the resolution ecologists were waiting for! Trends in Ecology and Evolution, 14, 810.Google Scholar
Rejmánek, M. (2000). Invasive plants: Approaches and predictions. Austral Ecology, 25, 497506.Google Scholar
Rejmánek, M. & Rosén, E. (1992). Influence of colonizing shrubs on species-area relationships in alvar plant communities Journal of Vegetation Science, 3, 625630.Google Scholar
Rejmánek, M. & Van Katwyk, K. P. (2005). Old-field succession: A bibliographic review (1901–1991). www.botanika.prf.jcu.cz/suspa/pdf/BiblioOF.pdg.Google Scholar
Rejmánek, M., Haagerová, R., & Haager, J. (1982). Progress of plant succession on the Parícutin Volcano: 25 years after activity ceased. The American Midland Naturalist, 108, 194201.Google Scholar
Rejmánek, M., Sasser, C. E., & Gosselink, J. G. (1987). Modeling of vegetation dynamics in the Mississippi River deltaic plain. Vegetatio, 69, 133140.Google Scholar
Renard, S. M., Gauthier, S., Fenton, N. J., Lafleur, B., & Bergeron, Y. (2016). Prescribed burning after clearcut limits paludification in black spruce boreal forest. Forest Ecology and Management, 359, 147155.Google Scholar
Restrepo, C. & Alvarez, N. (2006). Landslides and their contribution to land-cover changes in the Mountains of Mexico and Central America. Biotropica, 38, 446457.Google Scholar
Restrepo, C. & Vitousek, P. M. (2001). Landslides, alien species, and the diversity of a Hawaiian montane mesic ecosystem. Biotropica, 33, 409420.Google Scholar
Restrepo, C., Vitousek, P., & Neville, P. (2003). Landslides significantly alter land cover and the distribution of biomass: An example from the Ninole ridges of Hawai’i. Plant Ecology, 166, 131143.Google Scholar
Rhind, P., Jones, R., & Jones, L. (2013). The impact of dune stabilization on the conservation status of sand dune systems in Wales. In Martínez, M. L., Gallego-Fernández, J. B., & Hesp, P. A., eds., Restoration of Coastal Dunes, pp. 125144. New York: Springer.Google Scholar
Ribeiro, M. B. N., Bruna, E. M., & Mantovani, W. (2010). Influence of post-clearing treatment on the recovery of herbaceous plant communities in Amazonian secondary forests. Restoration Ecology, 18, 5058.Google Scholar
Richardson, S. J., Holdaway, R. J., & Carswell, F. E. (2014). Evidence for arrested successional processes after fire in the Waikare River catchment, Te Urewera. New Zealand Journal of Ecology, 38, 221229.Google Scholar
Ricklefs, R. E. (2000). The Economy of Nature. New York: Freeman.Google Scholar
Riedel, S. M. & Epstein, H. E. (2005). Edge effects on vegetation and soils in a Virginia old-field. Plant and Soil, 270, 1322.Google Scholar
Riege, D. A. & del Moral, R. (2004). Differential tree colonization of old fields in a temperate rain forest. American Midland Naturalist, 151, 251264.Google Scholar
Rizzo, B. & Wiken, E. (1992). Assessing the sensitivity of Canada’s ecosystems to climate change. Climatic Change, 21, 3755.Google Scholar
Robert, E. C., Rochefort, L., & Garneau, M. (1999). Natural revegetation of two block-cut mined peatlands in eastern Canada. Canadian Journal of Botany, 77, 447459.Google Scholar
Roberts, M. R. (2004). Response of the herbaceous layer to natural disturbance in North American forests. Canadian Journal of Botany, 82, 12731283.Google Scholar
Robertson, K. M. (2006). Distributions of tree species along point bars of 10 rivers in the southeastern US Coastal Plain. Journal of Biogeography, 33, 121132.Google Scholar
Robledano-Aymerich, F., Romero-Díaz, A., Belmonte-Serrato, F., Zapata-Pérez, V. M., Martínez-Hernández, C., & Martínez-López, V. (2014). Ecogeomorphological consequences of land abandonment in semiarid Mediterranean areas: Integrated assessment of physical evolution and biodiversity. Agriculture Ecosystems & Environment, 197, 222242.Google Scholar
Rocha, M., Santos, C. C., Damasceno, G. A., Pott, V. J., & Pott, A. (2015). Effect of fire on a monodominant floating mat of Cyperus giganteus Vahl in a neotropical wetland. Brazilian Journal of Biology, 75, 114124.Google Scholar
Rogers, B. M., Soja, A. J., Goulden, M. L., & Randerson, J. T. (2015). Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8, 228234.Google Scholar
Rohani, S., Dullo, B., Woudwijk, W., de Hoop, P., Kooijman, A., & Grootjans, A. P. (2014). Accumulation rates of soil organic matter in wet dune slacks on the Dutch Wadden Sea islands. Plant and Soil, 380, 181191.Google Scholar
Rola, K., Osyczka, P., Nobis, M., & Drozd, P. (2015). How do soil factors determine vegetation structure and species richness in post-smelting dumps? Ecological Engineering, 75, 332342.Google Scholar
Rolim, S. G., Machado, R. E., & Pillar, V. D. (2017). Divergence in a Neotropical forest during 33 years of succession following clear-cutting. Journal of Vegetation Science, 28, 495503.Google Scholar
Romano, S. P. (2010). Our current understanding of the Upper Mississippi River System floodplain forest. Hydrobiologia, 640, 115124.Google Scholar
Romme, W. H., Whitby, T. G., Tinker, D. B., & Turner, M. G. (2016). Deterministic and stochastic processes lead to divergence in plant communities 25 years after the 1988 Yellowstone fires. Ecological Monographs, 86, 327351.Google Scholar
Rondina, L., Berbel, A., Cristye, T. B., et al. (2019). Plants of distinct successional stages have different strategies for nutrient acquisition in an Atlantic rain forest ecosystem. International Journal of Plant Science, 180, 186199.Google Scholar
Rood, S. B. (2006). Unusual disturbance: Forest change following a catastrophic debris flow in the Canadian Rocky Mountains. Canadian Journal of Forest Research, 36, 22042215.Google Scholar
Rood, S. B. & Mahoney, J. M. (2000). Revised instream flow regulation enables cottonwood recruitment along the St. Mary River, Alberta, Canada. Rivers, 7, 109125.Google Scholar
Rood, S. B., Samuelson, G. M., Braatne, J. H., Gourley, C. R., Hughes, F. M. R., & Mahoney, J. M. (2005). Managing river flows to restore floodplain forests. Frontiers in Ecology and the Environment, 3, 193201.Google Scholar
Rosenberg, D. K., Noon, B. R., & Meslow, E. C. (1997). Biological corridors: Form, function, and efficacy. BioScience, 47, 677687.Google Scholar
Rothstein, D. E., Vitousek, P. M., & Simmons, B. L. (2004). An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems, 7, 805814.Google Scholar
Roubíčková, A., Mudrák, O., & Frouz, J. (2012). The effect of belowground herbivory by wireworms (Coleoptera: Elateridae) on performance of Calamagrostis epigejos (L.) Roth in post-mining sites. European Journal of Soil Biology, 50, 5155.Google Scholar
Roux, E. R. & Warren, M. (1963). Plant succession on abandoned fields in central Oklahoma and in Transvaal Highveld. Ecology, 44, 576583.Google Scholar
Roy-Bolduc, A., Laliberté, E., Boudreau, S., & Hijri, M. (2016). Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiology Ecology, 92, fiw156.Google Scholar
Royo, A. A., Heartsill Scalley, T., Moya, S., & Scatena, F. N. (2011). Non-arborescent vegetation trajectories following repeated hurricane disturbance: Ephemeral versus enduring responses. Ecosphere, 2, article 77.Google Scholar
Royo, A. A., Peterson, C. J., Stanovick, J. S., & Carson, W. P. (2016). Evaluating the ecological impacts of salvage logging: Can natural and anthropogenic disturbances promote coexistence? Ecology, 97, 15661582.Google Scholar
Rudgers, J. A. & Maron, J. L. (2003). Facilitation between coastal dune shrubs: A non-nitrogen fixing shrub facilitates establishment of a nitrogen-fixer. Oikos, 102, 7584.Google Scholar
Rufaut, C. G. & Craw, D. (2010). Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand. Environmental Earth Sciences, 60, 14251437.Google Scholar
Ruocco, M., Bertoni, D., Sarti, G., & Ciccarelli, D. (2014). Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities? Estuarine Coastal and Shelf Science, 149, 213222.Google Scholar
Ruokolainen, L. & Salo, K. (2009). The effect of fire intensity on vegetation succession on a sub-xeric heath during ten years after wildfire. Annales Botanici Fennici, 46, 3042.Google Scholar
Ruprecht, E. (2005). Secondary succession in old-fields in the Transylvanian Lowland (Romania). Preslia, 77, 145157.Google Scholar
Ruprecht, E. (2006). Successfully recovered grassland: A promising example from Romanian old-fields. Restoration Ecology, 14, 473480.Google Scholar
Ruskule, A., Nikodemus, O., Kasparinskis, R., Prižavoite, D., Bojāre, D., & Brūmelis, G. (2016). Soil-vegetation interactions in abandoned farmland within the temperate region of Europe. New Forests, 47, 587605.Google Scholar
Russell, A. E. & Vitousek, P. M. (1997). Decomposition and potential nitrogen fixation in Dicranopteris linearis litter on Mauna Loa, Hawaii. Journal of Tropical Ecology, 13, 579594.Google Scholar
Russell, A. E., Raich, J. W., & Vitousek, P. M. (1998). The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. Journal of Ecology, 86, 765779.Google Scholar
Rydgren, K., Halvorsen, R., Odland, A., & Skjerdal, G. (2011). Restoration of alpine spoil heaps: Successional rates predict vegetation recovery in 50 years. Ecological Engineering, 37, 294301.Google Scholar
Rydgren, K., Halvorsen, R., Töpper, J. P., Auestad, I., Hamre, L. N., Jongejans, E., & Sulavik, J. (2018). Advancing restoration ecology: A new approach to predict time to recovery. Journal of Applied Ecology, 56, 225234.Google Scholar
Rydlová, J. & Vosátka, M. (2001). Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks. Folia Geobotanica, 36, 8597.Google Scholar
Saccone, P., Pagès, J.-P., Girel, J., Burn, J.-J., & Michalet, R. (2010). Acer negundo invasion along a successional gradient: Early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytologist, 187, 831842.Google Scholar
Safford, H. D., Rejmánek, M., & Hadač, E. (2001). Species pools and the “hump-back” model of plant species diversity: An empirical analysis at a relevant spatial scale. Oikos, 95, 282290.Google Scholar
Sakai, A., Sakai, T., Kuramoto, S., & Sato, S. (2010). Soil seed banks in a mature Hinoki (Chamaecyparis obtusa Endl.) plantation and initial process of secondary succession after clearcutting in southwestern Japan. Journal of Forest Research, 15, 316327.Google Scholar
Sakio, H. (1997). Effects of natural disturbance on the regeneration of riparian forests in Chibichu Mountains, central Japan. Plant Ecology, 132, 181185.Google Scholar
Sams, M. A., Lai, H. R., Bonser, S. P., et al. (2017). Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Global Ecology and Biogeography, 26, 11651176.Google Scholar
Samuels, C. L. & Drake, J. A. (1997). Divergent perspectives on community convergence. Trends in Ecology and Evolution, 12, 427432.Google Scholar
Santana, V. M., Baeza, M. J., Marrs, R. H., & Vallejo, V. R. (2010). Old-field secondary succession in SE Spain: Can fire divert it? Plant Ecology, 211, 337349.Google Scholar
Sarkar, A., Asaeda, T., Wang, Q., & Rashid, Md. H. (2016). Arbuscular mycorrhizal association for growth and nutrients assimilation of Phragmites japonica and Polygonum cuspidatum plants growth on river bank soil. Communications in Soil Science and Plant Analysis, 47, 87100.Google Scholar
Sarmiento, L., Llambi, L. D., Escalona, A., & Marquez, N. (2003). Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecology, 166, 6374.Google Scholar
Sarneel, J. M., Kardol, P., & Nilsson, C. (2016). The importance of priority effects for riparian plant community dynamics. Journal of Vegetation Science, 27, 658667.Google Scholar
Sax, D. F. (2001). Latitudinal gradients and geographic ranges of exotic species: Implications for biogeography. Journal of Biogeography, 28, 139150.Google Scholar
Scatena, F. N., Moya, S., Estrada, C., & Chinea, J. D. (1996). The first five years in the reorganization of aboveground biomass and nutrient use following Hurricane Hugo in the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico. Biotropica, 28, 424440.Google Scholar
Schaffhauser, A., Curt, T., Vela, E., & Tatoni, T. (2012). Recurrent fires and environment shape the vegetation in Quercus suber L. woodlands and maquis. Comptes Rendus Biologies, 335, 424434.Google Scholar
Schimel, D. (2013). Climate and Ecosystems. Princeton, NJ: Princeton University Press.Google Scholar
Schimel, J. P., Cates, R. G., & Ruess, R. (1998). The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry, 42, 221234.Google Scholar
Schipper, L. A., Degens, B. P., Sparlling, G. P., & Duncan, L. (2001). Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry, 33, 20932103.Google Scholar
Schmidt, W. & Brubach, M. (1993). Plant-distribution patterns during early succession on an artifical protosoil Journal of Vegetation Science, 4, 247254.Google Scholar
Schnitzler, A., Hale, B. W., & Alsum, E. (2005). Biodiversity of floodplain forests in Europe and eastern North America: A comparative study of the Rhine and the Mississippi Valleys. Biodiversity and Conservation, 14, 97117.Google Scholar
Schoenfelder, A. C., Bishop, J. G., Martinson, H. M., & Fagan, W. F. (2010). Resource use efficiency and community effects of invasive Hypochaeris radicata (Asteraceae) during primary succession. American Journal of Botany, 97, 17721792.Google Scholar
Schroeder, T. A., Cohen, W. B., & Yang, Z. Q. (2007). Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series. Forest Ecology and Management, 243, 259273.Google Scholar
Schuler, T. M. & Gillespie, A. R. (2000). Temporal patterns of woody species diversity in a central Appalachian forest from 1856 to 1997. Journal of the Torrey Botanical Society, 127, 149161.Google Scholar
Schulze, E. D., Wirth, C., Mollicone, D., & Ziegler, W. (2005). Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 7788.Google Scholar
Schulze, E. D., Bouriaud, L., Bussler, H., et al. (2014). Opinion Paper: Forest management and biodiversity. Web Ecology, 14, 310.Google Scholar
Schumacher, A. (1997). Die Vegetationsentwicklung auf dem Bergrutsch am Hirschkopf (Baden-Württemberg): Sukzession auf Kalkschutt und Mergelrohböden (Vegetation development on the Hirschkopf landslide: Succession on raw calcareous and marly soils). Forstwissenschaftliches Centralblatt, 116, 232242.Google Scholar
Schuster, R. L. & Highland, L. M. (2007). Overview of the effects of mass wasting on the natural environment. Environmental & Engineering Geoscience, 13, 2544.Google Scholar
Schwilk, D. W., Keeley, J. E., & Bond, W. J. (1997). The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos. Plant Ecology, 132, 7784.Google Scholar
Sciandrello, S., Tomaselli, G., & Minissale, P. (2015). The role of natural vegetation in the analysis of the spatio-temporal changes of coastal dune system: A case study in Sicily. Journal of Coastal Conservation, 19, 199212.Google Scholar
Scott, A. J. & Morgan, J. W. (2012). Early life-history stages drive community reassembly in Australian old-fields. Journal of Vegetation Science, 23, 721731.Google Scholar
Šebelíková, L., Řehounková, K., & Prach, K. (2016). Spontaneous revegetation vs. forestry reclamation in post-mining sand pits. Environmental Science and Pollution Research, 23, 1359813605.Google Scholar
Šebelíková, L., Csicsek, G., Kirmer, A., et al. (2019). Succession vs. reclamation – Vegetation development in coal mining spoil heaps across Central Europe. Land Degradation and Development, 10, 153164.Google Scholar
Sedláková, I. & Chytrý, M. (1999). Regeneration patterns in a Central European dry heathland: Effects of burning, sod-cutting and cutting. Plant Ecology, 143, 7787.Google Scholar
Seiwa, K., Miwa, Y., Akasaka, S., et al. (2013). Landslide-facilitated species diversity in a beech-dominant forest. Ecological Research, 28, 2941.Google Scholar
SER (2004). The SER International Primer on Ecological Restoration. Tuscon, AZ: Society for Ecological Restoration International.Google Scholar
Serong, M. & Lill, A. (2008). The timing and nature of floristic and structural changes during secondary succession in wet forests. Australian Journal of Botany, 56, 220231.Google Scholar
Settele, J., Margules, C., Poschlod, P., & Henle, R., eds. (1996). Species Survival in Fragmented Landscapes. Dordrecht: Kluwer.Google Scholar
Sewerniak, P. & Jankowski, M. (2017). Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland. Acta Oecologica-International Journal of Ecology, 82, 5260.Google Scholar
Shaffer, G. P., Sasser, C. E., Gosselink, J. G., & Rejmánek, M. (1992). Vegetation dynamics in the emerging Atchafalaya Delta, Louisiana, USA. Journal of Ecology, 80, 677687.Google Scholar
Shafroth, P. B., Friedman, J. M., Auble, G. T., Scott, M. L., & Braatne, J. H. (2002). Potential responses of riparian vegetation to dam removal: Dam removal generally causes changes to aspects of the physical environment that influence the establishment and growth of riparian vegetation. BioScience, 52, 703712.Google Scholar
Shanahan, M., Harrison, R. D., Yamuna, R., Boen, W., & Thornton, I. W. B. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its caldera lake. V. Colonization by figs (Ficus spp.), their dispersers and pollinators. Journal of Biogeography, 28, 13651377.Google Scholar
Sharpe, J. M. & Shiels, A. B. (2014). Understory fern community structure, growth and spore production responses to a large-scale hurricane experiment in a Puerto Rico rainforest. Forest Ecology and Management, 332, 7586.Google Scholar
Shenoy, A., Kielland, K., & Johnstone, J. F. (2013). Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests. Plant Ecology, 214, 587596.Google Scholar
Shields, L. M. & Crispin, J. (1956). Vascular vegetation of a recent volcanic area in New Mexico. Ecology, 37, 341351.Google Scholar
Shiels, A. B. (2002). Bird perches and soil amendments as revegetation techniques for landslides in Puerto Rico. MS thesis, Department of Biological Sciences, University of Nevada, Las Vegas, NV.Google Scholar
Shiels, A. B. & Walker, L. R. (2003). Bird perches increase forest seeds on Puerto Rican landslides. Restoration Ecology, 11, 457465.Google Scholar
Shiels, A. B. & Walker, L. R. (2013). Landslides cause spatial and temporal gradients at multiple scales in the Luquillo Mountains, Puerto Rico. In Ecological Gradient Analyses in a Tropical Ecosystem, eds. González, G., Willig, M., and Waide, R.. Ecological Bulletins, 54, 211221.Google Scholar
Shiels, A. B., González, G., & Willig, M. R. (2014). Responses to canopy loss and debris deposition in a tropical forest ecosystem: Synthesis from an experimental manipulation simulating effects of hurricane disturbance. Forest Ecology and Management, 332, 124133.Google Scholar
Shiels, A. B., Walker, L. R., & Thompson, D. B. (2006). Organic matter inputs create variable resource patches on Puerto Rican landslides. Plant Ecology, 195, 165178.Google Scholar
Shiels, A. B., Gonzalez, G., Lodge, D. J., Willig, M. R., & Zimmerman, J. K. (2015). Cascading effects of canopy opening and debris deposition from a large-scale hurricane experiment in a tropical rain forest. BioScience, 65, 871881.Google Scholar
Shiels, A. B., West, C. A., Weiss, L., Klawinski, P. D., & Walker, L. R. (2008). Soil factors predict initial plant colonization on Puerto Rican landslides. Plant Ecology, 195, 165178.Google Scholar
Shiels, A. B., Zimmerman, J. K., García-Montiel, D. C., et al. (2010). Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico. Journal of Ecology, 98, 659673.Google Scholar
Shimizu, Y. (2005). A vegetation change during a 20-year period following two continuous disturbances (mass-dieback of pine trees and typhoon damage) in the Pinus-Schima secondary forest on Chichijima in the Ogasawara (Bonin) Islands: Which won, advanced saplings or new seedlings? Ecological Research, 20, 708725.Google Scholar
Shimokawa, E. (1984). A natural process of recovery of vegetation on landslide scars and landslide periodicity in forested drainage basins. In O’Laughlin, C. L. & Pierce, A. J., eds., Symposium on Effects of Forest Land Use on Erosion and Slope Stability, pp. 99107. Honolulu: University of Hawaii, Honolulu, East-West Center.Google Scholar
Shooner, S., Chisholm, C., & Davies, T. J. (2015). The phylogenetics of succession can guide restoration: An example from abandoned mine sites in the subarctic. Journal of Applied Ecology, 52, 15091517.Google Scholar
Shugart, H. H. & West, D. C. (1980). Forest succession models. BioScience, 30, 308313.Google Scholar
Shugart, H. H., Leemans, R., & Bonan, G. B., eds. (1992). A Systems Analysis of the Global Boreal Forest. Cambridge: Cambridge University Press.Google Scholar
Shumway, S. W. (2000). Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia, 124, 138148.Google Scholar
Sidle, R. C. & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. Water Resources Monograph Series, Volume 18. Washington, DC: American Geophysical Union.Google Scholar
Sikes, B. A., Maherali, H. Z., & Klironomos, J. N. (2012). Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos, 121, 17911800.Google Scholar
Silva, J. S., Catry, F. X., Moreira, F., Lopes, T., Forte, T., & Bugalho, M. N. (2014). Effects of deer on the post-fire recovery of a Mediterranean plant community in Central Portugal. Journal of Forest Research, 19, 276284.Google Scholar
Silva, L. C. R., Correa, R. S., Doane, T. A., Pereira, E. I. P., & Horwath, W. R. (2013). Unprecedented carbon accumulation in mined soils: The synergistic effect of resource input and plant species invasion. Ecological Applications, 23, 13451356.Google Scholar
Silva, L. C. R., Hoffmann, W. A., Rossatto, D. R., Haridasan, M., Franco, A. C., & Horwath, W. R. (2013). Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil, 373, 829842.Google Scholar
Silver, W. & Vogt, K. (1993). Fine root dynamics following single and multiple disturbances in a subtropical wet forest ecosystem. Journal of Ecology, 81, 729‒738.Google Scholar
Silver, W. L., Scatena, F. N., Johnson, A. H., Siccama, T. G., & Watt, F. (1996). At what temporal scales does disturbance affect belowground nutrient pools? Biotropica, 28, 441457.Google Scholar
Sklenář, P., Kovář, P., Palice, Z., Stančík, D., & Soldán, Z. (2010). Primary succession of high-altitude Andean vegetation on lahars of Volcán Cotopaxi, Ecuador. Phytocoenologia, 40, 1528.Google Scholar
Sklenička, P. & Molnárová, K. (2010). Visual perception of habitats adopted for post-mining landscape rehabilitation. Environmental Management, 46, 424435.Google Scholar
Skłodowski, J. W., Buszyniewicz, J., & Domański, M. (2014). Spontaniczne odnowienie drzewostanu zaburzonego huraganem w lipcu 2002 roku [Spontaneous regeneration of a stand disturbed by a hurricane in July 2002]. Sylwan, 158, 499508.Google Scholar
Skousen, J. G., Johnson, C. D., & Garbutt, K. (1994). Natural revegetation of 15 abandoned mine land sites in West-Virginia. Journal of Environmental Quality, 23, 12241230.Google Scholar
Slocum, M. G., Aide, T. M., Zimmerman, J. K., & Navarro, L. (2004). Natural regeneration of subtropical montane forest after clearing fern thickets in the Dominican Republic. Journal of Tropical Ecology, 20, 483486.Google Scholar
Smale, M. C. (1990). Ecological role of buddleia (Buddleja davidii) in streambeds in Te Urewera National Park. New Zealand Journal of Ecology, 14, 16.Google Scholar
Smale, M. C., McLeod, M., & Smale, P. N. (1997). Vegetation and soil recovery on shallow landslide scars in Tertiary hill country, East Cape region, New Zealand. New Zealand Journal of Ecology, 21, 3141.Google Scholar
Small, C. & Naumann, T. (2001). The global distribution of human population and recent volcanism. Global Environmental Change Part B. Environmental Hazards, 3, 93109.Google Scholar
Smirnova, E., Bergeron, Y., & Brais, S. (2008). Influence of fire intensity on structure and composition of jack pine stands in the boreal forest of Quebec: Live trees, understory vegetation and dead wood dynamics. Forest Ecology and Management, 255, 29162927.Google Scholar
Smith, G. F., Nicholas, N. S., & Zedaker, S. M. (1997). Succession dynamics in a maritime forest following Hurricane Hugo and fuel reduction burns. Forest Ecology and Management, 95, 275283.Google Scholar
Smith, R. & Olff, H. (1998). Woody species colonisation in relation to habitat productivity. Plant Ecology, 139, 203209.Google Scholar
Smith, R. B., Commandeur, P. R., & Ryan, M. W. (1986). Soils, vegetation, and forest growth on landslides and surrounding logged and old-growth areas on the Queen Charlotte Islands. Land Management Report Number 41. British Columbia Ministry of Forests, Victoria.Google Scholar
Smith, S. M. & Lee, W. G. (1984). Vegetation and soil development on a Holocene river terrace sequence, Arawata Valley, South Westland, New Zealand. New Zealand Journal of Science, 27, 187196.Google Scholar
Smuts, J. C. (1926). Holism and Evolution. New York: MacMillan.Google Scholar
Sojneková, M. & Chytrý, M. (2015). From arable land to species-rich semi-natural grasslands: Succession in abandoned fields in a dry region of central Europe. Ecological Engineering, 77, 373381.Google Scholar
Sommerville, P., Mark, A. F., & Wilson, J. B. (1982). Plant succession on moraines of the upper Dart Valley, southern South Island, New Zealand. New Zealand Journal of Botany, 20, 227244.Google Scholar
Somodi, I., Molnár, Zs., Czúcz, B., et al. (2017). Implementation and application of multiple potential natural vegetation models: A case study of Hungary. Journal of Vegetation Science, 28, 12601269.Google Scholar
Soussana, J.-F., Maire, V., Gross, N., et al. (2012). Gemini: A grassland model simulating the role of plant traits for community dynamics and ecosystem functioning. Parameterization and evaluation. Ecological Modelling, 231, 134145.Google Scholar
Southon, G. E., Field, C., Caporn, S., Britton, A., & Power, S. (2013). Nitrogen deposition reduces plant diversity and alters ecosystem functioning: Field-scale evidence from a nationwide survey of UK heathlands. PLoS ONE, 8, 59031.Google Scholar
Sparrius, L. B., Kooijman, A. M., Riksen, M. P. J. M., & Sevink, J. (2013). Effect of geomorphology and nitrogen deposition on rate of vegetation succession in inland drift sands. Applied Vegetation Science, 16, 379389.Google Scholar
Spellman, B. T. & Wurtz, T. L. (2011). Invasive sweetclover (Melilotus alba) impacts native seedling recruitment along floodplains of interior Alaska. Biological Invasions, 13, 17791790.Google Scholar
Spellman, K. V., Mulder, C. P. H., & Hollingsworth, T. N. (2014). Susceptibility of burned black spruce (Picea mariana) forests to non-native plant invasions in interior Alaska. Biological Invasions, 16, 18791895.Google Scholar
Stadler, J., Trefflich, A., Brandl, R., & Klotz, S. (2007). Spontaneous regeneration of dry grasslands on set-aside fields. Biodiversity and Conservation, 16, 621630.Google Scholar
Standish, R. J., Cramer, V. A., Wild, S. L., & Hobbs, R. J. (2007). Seed dispersal and recruitment limitation are barriers to native recolonization of old-fields in western Australia. Journal of Applied Ecology, 44, 435445.Google Scholar
St. John, M. G., Bellingham, P. J., Walker, L. R., et al. (2012). Loss of a dominant nitrogen-fixing shrub in primary succession: Consequences for plant and below-ground communities. Journal of Ecology, 100, 10741084.Google Scholar
Stokes, A., Lucas, A., & Jouneau, L. (2007). Plant biomechanical strategies in response to frequent disturbance: Uprooting of Phyllostachys nidularia (Poaceae) growing on landslide-prone slopes in Sichuan, China. American Journal of Botany, 94, 11291136.Google Scholar
Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T., & Sidle, R. C. (2009). Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 324, 130.Google Scholar
Stokes, A., Douglas, G. B., Thierry, F., et al. (2014). Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant Soil, 377, 123.Google Scholar
Stover, M. E. & Marks, P. L. (1998). Successional vegetation on abandoned cultivated and pastured land in Tompkins County, New York. Journal of the Torrey Botanical Society, 125, 150164.Google Scholar
Stromberg, J. C., Lite, S. J., Marler, R., et al. (2007). Altered stream-flow regimes and invasive species: The Tamarix case. Global Ecology and Biogeography, 16, 381393.Google Scholar
Stromberg, M. R. & Griffin, J. R. (1996). Long-term patterns in coastal California grasslands in relation to cultivation, gophers, and grazing. Ecological Applications, 6, 11891211.Google Scholar
Strong, W. L. (2009). Populus tremuloides Michx. postfire stand dynamics in the northern boreal-cordilleran ecoclimatic region of central Yukon Territory, Canada. Forest Ecology and Management, 258, 11101120.Google Scholar
Stubbs, W. J. & Wilson, J. B. (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557567.Google Scholar
Sturm, M., Racine, C., & Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature, 411, 546547.Google Scholar
Suárez, E., Orndahl, K., & Godwin, K. (2015). Lava flows and moraines as corridors for early plant colonization of glacier forefronts on tropical volcanoes. Biotropica, 47, 645649.Google Scholar
Suazo-Ortuño, I., Urbina-Cardona, J. N., Lara-Uribe, N., et al. (2018). Impact of a hurricane on the herpetofaunal assemblages of a successional chronosequence in a tropical dry forest. Biotropica, 50, 649663.Google Scholar
Sugg, P. M. & Edwards, J. S. (1998). Pioneer aeolian community development on pyroclastic flows after the eruption of Mount St. Helens, Washington, U.S.A. Arctic and Alpine Research, 30, 400407.Google Scholar
Sulieman, H. M. (2014). Natural regeneration potential of abandoned agricultural land in the southern Gadarif Region, Sudan: Implications for conservation. African Journal of Ecology, 52, 217227.Google Scholar
Svoboda, J. & Henry, G. H. R. (1987). Succession in marginal arctic environments. Arctic and Alpine Research, 19, 373384.Google Scholar
Swanson, F. J., Kratz, T. K., Caine, N., & Woodmansee, R. G. (1988). Landform effects on ecosystem patterns and processes. BioScience, 38, 9298.Google Scholar
Swanson, M. E., Franklin, J. F., Beschtaet, R. L., Crisafulli, Ch. M., & DellaSala, D. A. (2011). The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 9, 117125.Google Scholar
Syers, J. K. & Walker, T. W. (1969). Phosphorus transformations in a chronosequences of soils developed on wind-blown sand in New Zealand. Journal of Soil Science, 20, 5764.Google Scholar
Sykes, M. T. & Wilson, J. B. (1989). The effect of salinity on the growth of some New Zealand sand dune species. Acta Botanica Neerlandica, 38, 173182.Google Scholar
Syphard, A. D., Radeloff, V. C., Hawbaker, T. J., & Stewart, S. I. (2009). Conservation threats due to human‐caused increases in fire frequency in Mediterranean‐climate ecosystems. Conservation Biology, 23, 758769.Google Scholar
Szarek-Lukaszewska, G. (2009). Vegetation of reclaimed and spontaneously vegetated Zn-Pb mine wastes in Southern Poland. Polish Journal of Environmental Studies, 18, 717733.Google Scholar
Tagawa, H. (1964). A study of the volcanic vegetation in Sakurajima, south-west Japan. I. Dynamics of the vegetation. Memoirs of the Faculty of Science, Kyushu University, Series E (Biology), 3, 166228.Google Scholar
Tagawa, H., Suzuki, E., Partomikhardio, T., & Suriadarma, A. (1985). Vegetation and succession on the Krakatau Islands, Indonesia. Vegetatio, 60, 131145.Google Scholar
Takenaka, A., Washitani, I., Kuramoto, N., & Inoue, K. (1996). Life history and demographic features of Aster kantoensis, an endangered local endemic of floodplains. Biological Conservation, 78, 345352.Google Scholar
Takeuchi, K. & Shimano, K. (2009). Vegetation succession at the abandoned Ogushi sulfur mine, central Japan. Landscape and Ecological Engineering, 5, 3344.Google Scholar
Talbot, S. S., Talbot, S. L., & Walker, L. R. (2010). Post-eruption legacy effects and their implications for long-term recovery of the vegetation on Kasatochi Island, Alaska. Arctic, Antarctic & Alpine Research, 42, 285296.Google Scholar
Tang, C. Q., Zhao, M. H., Li, X. S., Ohsawa, M., & Ou, X. K. (2010). Secondary succession of plant communities in a subtropical mountainous region of SW China. Ecological Research, 25, 149161.Google Scholar
Tanner, E. V. J. & Bellingham, P. J. (2006). Less diverse forest is more resistant to hurricane disturbance: Evidence from montane rain forests in Jamaica. Journal of Ecology, 94, 10031010.Google Scholar
Tárrega, R., Luiscalabuig, E., & Alonso, I. (1995). Comparison of the regeneration after burning, cutting and plowing in a Cistus ladanifer shrubland. Vegetatio, 120, 5967.Google Scholar
Tatoni, T. & Roche, P. (1994). Comparison of old-field and forest revegetation dynamics in Provence. Journal of Vegetation Science, 5, 295302.Google Scholar
Tatoni, T., Magnin, F., Bonin, G., & Vaudour, J. (1994). Secondary succession on abandoned cultivation terraces in Provence. 1. Vegetation and soil. Acta Oecologica-International Journal of Ecology, 15, 431447.Google Scholar
Tavşanoğlu, C. & Gürkan, B. (2014). Long-term post-fire dynamics of co-occurring woody species in Pinus brutia forests: The role of regeneration mode. Plant Ecology, 215, 355365.Google Scholar
Taylor, A. R. & Chen, H. Y. H. (2011). Multiple successional pathways of boreal forest stands in central Canada. Ecography, 34, 208219.Google Scholar
Taylor, B. W. (1957). Plant succession on recent volcanoes in Papua. Journal of Ecology, 45, 233243.Google Scholar
Teixeira, L. H., Weisser, W., & Ganade, G. (2016). Facilitation and sand burial affect plant survival during restoration of a tropical coastal sand dune degraded by tourist cars. Restoration Ecology, 24, 390397.Google Scholar
Temperton, V. M., Hobbs, R. J., Nuttle, T., & Halle, S., eds. (2004). Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice. Washington, DC: Island Press.Google Scholar
Tepley, A. J., Swanson, F. J., & Spies, T. A. (2014). Post-fire tree establishment and early cohort development in conifer forests of the western Cascades of Oregon, USA. Ecosphere, 5, article 80.Google Scholar
Teramoto, Y., Shimokawa, E., Ezaki, T., Chun, K.-W., Kim, S.-W., & Lee, Y.-T. (2017). Influence of volcanic activity on vegetation succession and growth environment on the hillslope of Sakurajima Volcano in southern Kyushu, Japan. Journal of Forest Research, 28, 309317.Google Scholar
Terborgh, J. & Petren, K. (1991). Development of habitat structure through succession in an Amazonian floodplain forest. In Bell, S. S., McCoy, E. D., & Mushinsky, H. R., eds., Habitat Structure: The Physical Environment of Objects in Space, pp. 2846. London: Routledge, Chapman & Hall.Google Scholar
Terborgh, J., Nuñez, N. H., Loayza, P. A., & Valverde, F. C. (2017). Gaps contribute tree diversity to a tropical floodplain forest. Ecology, 98, 28952903.Google Scholar
Terwei, A., Zerbe, S., Zeileis, A., et al. (2013). Which are the factors controlling tree seedling establishment in North Italian floodplain forests invaded by non-native tree species? Forest Ecology and Management, 304, 192203.Google Scholar
Teste, F. P. & Laliberté, E. (2019). Plasticity in root symbioses following shifts in soil nutrient availability during long-term ecosystem development. Journal of Ecology, 107, 633649.Google Scholar
Tezuka, Y. (1961). Development of vegetation in relation to soil formation in the volcanic island of Oshima, Izu, Japan. Japanese Journal of Botany, 17, 371402.Google Scholar
Thevs, N., Zerbe, S., Peper, J., & Succow, M. (2008). Vegetation and vegetation dynamics in the Tarim River floodplain of continental-arid Xinjiang, NW China. Phytocoenologia, 38, 6584.Google Scholar
Thomas, D. N., Fogg, G. E., Convey, P., et al. (2008). The Biology of Polar Regions. Oxford: Oxford University Press.Google Scholar
Thompson, K., Bakker, J. P., & Bekker, R. M. (1996). The Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge: Cambridge University Press.Google Scholar
Thoreau, H. D. (1860). Succession of Forest Trees. Massachusetts Board of Agriculture Eighth Annual Report. Boston: Wm. White Printer. Not seen but cited in McIntosh (1999).Google Scholar
Thornton, I. (1996). Krakatau: The Destruction and Reassembly of an Island Ecosystem. Cambridge, MA: Harvard University Press.Google Scholar
Thornton, I. W. B., Cooks, S., Edwards, J. S., et al. (2001). Colonization of an island volcano, Long Island, Papua New Guinea, an emergent island, Motmot, in its caldera lake. VII. Overview and discussion. Journal of Biogeography, 28, 13891410.Google Scholar
Thrall, P. H., Hochberg, M. E., Burdon, J. J., & Bever, J. D. (2007). Coevolution of symbiotic mutualists and parasites in a community context. Trends in Ecology and Evolution, 22, 120126.Google Scholar
Thuiller, W., Albert, C., Araujo, M. B., et al. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137152.Google Scholar
Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, NJ: Princeton University Press.Google Scholar
Timoney, K. P., Peterson, G., & Wein, R. (1997). Vegetation development of boreal riparian plant communities after flooding, fire, and logging, Peace River, Canada. Forest Ecology and Management, 93, 101120.Google Scholar
Tischew, S., Baasch, A., Grunert, H., & Kirmer, A. (2014). How to develop native plant communities in heavily altered ecosystems: Examples from large-scale surface mining in Germany. Applied Vegetation Science, 17, 288301.Google Scholar
Tisdale, E. W., Fosberg, M. A., & Poulton, C. E. (1966). Vegetation and soil development on a recently glaciated area near Mount Robson, British Columbia. Ecology, 47, 517523.Google Scholar
Tissier, E. J., McLoughlin, P. D., Sheard, J. W., & Johnstone, J. F. (2013). Distribution of vegetation along environmental gradients on Sable Island, Nova Scotia. Écoscience, 20, 361372.Google Scholar
Titus, J. H. (2009). Nitrogen-fixers Alnus and Lupinus influence soil characteristics but not colonization by later successional species in primary succession on Mount St. Helens. Plant Ecology, 203, 289301.Google Scholar
Titus, J. H. & Bishop, J. (2014). Propagule limitation and competition with nitrogen fixers limit conifer colonization during primary succession. Journal of Vegetation Science, 25, 9901003.Google Scholar
Titus, J. H. & del Moral, R. (1998). Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos, 81, 495510.Google Scholar
Titus, J. H. & Tsuyuzaki, S. (2003a). Distribution of plants in relation to microsites on recent volcanic substrates on Mount Koma, Hokkaido, Japan. Ecological Research, 18, 9198.Google Scholar
Titus, J. H. & Tsuyuzaki, S. (2003b). Influence of a non-native invasive tree on primary succession at Mt. Kona, Hokkaido, Japan. Plant Ecology, 169, 307315.Google Scholar
Titus, J. H., del Moral, R., & Gamiet, S. (1998). The distribution of vesicular-arbuscular mycorrhizae on Mount St. Helens, Washington. Madroño, 45, 162170.Google Scholar
Titus, J. H., Titus, P. J., & del Moral, R. (1999). Wetland development in primary and secondary successional substrates fourteen years after the eruption of Mount St. Helens, Washington, USA. Northwest Science, 73, 186204.Google Scholar
Tiwari, A. K., Mehta, J. S., Goel, O. P., & Singh, J. S. (1986). Geo-forestry of landslide-affected areas in a part of Central Himalaya. Environmental Conservation, 13, 299309.Google Scholar
Tobias, M. M. (2015). California foredune plant biogeomorphology. Physical Geography, 36, 1933.Google Scholar
Tognetti, P. M., Chaneton, E. J., Omacini, M., Trebino, H. J., & Leon, R. J. C. (2010). Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biological Conservation, 143, 24942503.Google Scholar
Toh, I., Gillespie, M., & Lamb, D. (1999). The role of isolated trees in facilitating tree seedling recruitment at a degraded sub-tropical rainforest site. Restoration Ecology, 7, 288297.Google Scholar
Török, P., Kelemen, A., Valkó, O., Deák, B., Lukács, B., & Tóthmérész, B. (2011). Lucerne-dominated fields recover native grass diversity without intensive management actions. Journal of Applied Ecology, 48, 257264.Google Scholar
Tovilla-Hernández, C., de la Lanza, G. E., & Orihuela-Belmonte, D. E. (2001). Impact of logging on a mangrove swamp in South Mexico: Cost/benefit analysis. Revista de Biología Tropical, 49, 571580.Google Scholar
Trabaud, L. & Campant, C. (1991). Problem of naturally colonizing the Salzmann Pine, Pinus nigra Arn. ssp. Salzmannii (Dunal) Franco after fire. Biological Conservation, 58, 329343.Google Scholar
Trefilova, O. V. & Efimov, D. Y. (2015). Changes in the vegetation cover and soils under natural overgrowth of felled areas in fir forests of the Yenisei Ridge. Eurasian Soil Science, 48, 792801.Google Scholar
Triisberg, T., Karofeld, E., Liira, J., Orru, M., Ramst, R., & Paal, J. (2014). Microtopography and the properties of residual peat are convenient indicators for restoration planning of abandoned extracted peatlands. Restoration Ecology, 22, 3139.Google Scholar
Tropek, R., Hejda, M., Kadlec, R., et al. (2013). Local and landscape factors affecting communities of plants and diurnal Lepidoptera in black coal spoil heaps: Implications for restoration management. Ecological Engineering, 57, 252260.Google Scholar
Tropek, R., Kadlec, T., Karešová, P., et al. (2010). Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. Journal of Applied Ecology, 47, 139147.Google Scholar
Tsuyuzaki, S. (1989). Analysis of revegetation dynamics on the Volcano Usu, Northern Japan, deforested by 1977–1978 eruptions. American Journal of Botany, 68, 14681477.Google Scholar
Tsuyuzaki, S. (1994). Fate of plants from buried seeds on Volcano Usu, Japan, after the 1977–1978 eruptions. American Journal of Botany, 81, 395399.Google Scholar
Tsuyuzaki, S. (1995). Vegetation recovery patterns in early volcanic succession. Journal of Plant Research, 108, 241248.Google Scholar
Tsuyuzaki, S. (2009). Causes of plant community divergence in the early stages of volcanic succession. Journal of Vegetation Science, 20, 959969.Google Scholar
Tsuyuzaki, S. & del Moral, R. (1995). Species attributes in early primary succession on volcanoes. Journal of Vegetation Science, 6, 517522.Google Scholar
Tsuyuzaki, S. & Haruki, M. (1996). Tree regeneration patterns on Mount Usu, northern Japan, since the 1977‒78 eruptions. Vegetatio, 126, 191198.Google Scholar
Tsvuura, Z. & Lawes, M. J. (2016). Light availability drives tree seedling success in a subtropical coastal dune forest in South Africa. South African Journal of Botany, 104, 9197.Google Scholar
Tu, M., Titus, J. H., del Moral, R., & Tsuyuzaki, S. (1998). Composition and dynamics of wetland seed banks on Mount St. Helens, Washington, USA. Folia Geobotanica, 33, 316.Google Scholar
Tucker, C. J., Dregne, H. E., & Newcomb, W. W. (1991). Expansion and contraction of the Sahara Desert from 1980 to 1990. Science, 253, 299300.Google Scholar
Tulande-M., E., Barrera-Cataño, J. I., Alonso-Malaver, C. E., Moranted-Ariza, C., & Basto, S. (2018). Soil macrofauna in areas with different ages after Pinus patula clearcutting. Universitas Scientiarum, 23, 383417.Google Scholar
Tullus, T., Tullus, A., Roosaluste, E., Kaasik, A., Lutter, R., & Tullus, H. (2013). Understorey vegetation in young naturally regenerated and planted birch (Betula spp.) stands on abandoned agricultural land. New Forests, 44, 591611.Google Scholar
Türkmen, N. & Düzenli, A. (2005). Changes in floristic composition of Quercus coccifera macchia after fire in the Qukurova region (Turkey). Annales Botanici Fennici, 42, 453460.Google Scholar
Turner, B. L., Zemunik, G., Laliberté, E., Drake, J. J., Jones, F. A., & Saltonstall, K. (2019). Contrasting patterns of plant and microbial diversity during long-term ecosystem development. Journal of Ecology, 107, 606621.Google Scholar
Turner, T. R., Duke, S. D., Fransen, B. R., et al. (2010). Landslide densities associated with rainfall, stand age, and topography on forested landscaped, southwestern Washington, USA. Forest Ecology and Management, 259, 22332247.Google Scholar
Tyler, G. (2008). The ground beetle fauna (Coleoptera: Carabidae) of abandoned fields, as related to plant cover, previous management and succession stage. Biodiversity and Conservation, 17, 155172.Google Scholar
Tzanopoulos, J., Mitchley, J., & Pantis, J. D. (2007). Vegetation dynamics in abandoned crop fields on a Mediterranean island: Development of succession model and estimation of disturbance thresholds. Agriculture Ecosystems & Environment, 120, 370376.Google Scholar
Tzeng, H.-Y., Wang, W., Tseng, Y.-H., Chiu, C.-A., Kuo, C.-C., & Tsai, S.-T. (2018). Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan. PLoS ONE, 13, Article Number e0190832.Google Scholar
Uesaka, S. & Tsuyuzaki, S. (2004). Differential establishment and survival of species in deciduous and evergreen shrub patches and on bare ground, Mt. Koma, Hokkaido, Japan. Plant Ecology, 175, 165177.Google Scholar
Uhe, G. (1988). The composition of the plant communities inhabiting the volcanic ejecta of Yasour “Tanna” New Hebrides. Tropical Ecology, 29, 4854.Google Scholar
Ujházy, K., Fanta, J., & Prach, K. (2011). Two centuries of vegetation succession in an inland sand dune area, central Netherlands. Applied Vegetation Science, 14, 316325.Google Scholar
Uliassi, D. D. & Ruess, R. W. (2002). Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology, 83, 88103.Google Scholar
Uriarte, M., Rivera, L. W., Zimmerman, J. K., Aide, T. M., Power, A. G., & Flecker, A. S. (2004). Effects of land use history on hurricane damage and recovery in a neotropical forests. Plant Ecology, 174, 4958.Google Scholar
Uriarte, M., Canham, Ch. D., Thompson, J., et al. (2009). Natural disturbance and human land use as determinants of tropical forest dynamics: Results from a forest simulator. Ecological Monographs, 79, 423443.Google Scholar
Uriarte, M., Clark, J. S., Zimmerman, J. K., et al. (2012). Multidimensional trade-offs in species responses to disturbance: Implications for diversity in a subtropical forest. Ecology, 93, 191205.Google Scholar
USGS (2017). www2.usgs.gov/faq/categories/9840/2554 (accessed April 14, 2017).Google Scholar
Usher, M. B. (1992). Statistical models of succession. In Glenn-Lewin, D. C., Peet, R. K, & Veblen, T. T., eds., Plant Succession: Theory and Prediction, pp. 215248. London: Chapman & Hall.Google Scholar
Valdez-Hernández, M., Sánchez, O., Islebee, G. A., Snook, L. K., & Negreros-Castillo, P. (2014). Recovery and early succession after experimental disturbance in a seasonally dry tropical forest in Mexico. Forest Ecology and Management, 334, 331343.Google Scholar
van Andel, J. & Aronson, J. (2012). Restoration Ecology: The New Frontier, 2nd ed. London: Wiley-Blackwell.Google Scholar
van Andel, T. (2001). Floristic composition and diversity of mixed primary and secondary forests in northwest Guyana. Biodiversity and Conservation, 10, 16451682.Google Scholar
Van Auken, O. W. & Bush, J. K. (1985). Secondary succession on terraces of the San Antonio River. Bulletin of the Torrey Botanical Club, 112, 158166.Google Scholar
Van Bloem, S. J., Murphy, P. G., Lugo, A. E., et al. (2005). The influence of hurricane winds on Caribbean dry forest structure and nutrient pools. Biotropica, 27, 571583.Google Scholar
Van Breugel, M., Craven, D., Lai, H. R., Baillon, M., Turner, B. L., & Hall, J. S. (2019). Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. Journal of Ecology, 107, 566581.Google Scholar
Van Cleve, K. & Viereck, L. A. (1981). Forest succession in relation to nutrient cycles in the boreal forest of Alaska. In West, D. C., Shugart, H. H., & Botkin, D. B., eds., Forest Succession, pp. 185211. New York: Springer.Google Scholar
Van Cleve, K., Viereck, L. A., & Schlentner, R. L. (1971). Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research, 3, 101114.Google Scholar
Van Cleve, K., Yarie, J., Viereck, L. A., & Dyrness, C. T. (1993). Conclusions on the role of salt-affected soils in primary succession on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research, 23, 10151018.Google Scholar
van Coller, A. L., Rogers, K. H., & Heritage, G. L. (2000). Riparian vegetation-environment relationships: Complimentarity of gradients versus patch hierarch approaches. Journal of Vegetation Science, 11, 337350.Google Scholar
van der Biest, K., De Nocker, L., Provoost, S., Boerema, A., Staes, J., & Meire, P. (2017). Dune dynamics safeguard ecosystem services. Ocean and Coastal Management, 149, 148158.Google Scholar
Van der Burght, L., Stoffel, M., & Bigler, C. (2012). Analysis and modeling of tree succession on a recent rockslide deposit. Plant Ecology, 213, 3546.Google Scholar
van der Ent, A., van Vugt, R., & Wellinga, S. (2015). Ecology of Paphiopedilum rothschildianum at the type locality in Kinabalu Park (Sabah, Malaysia). Biodiversity and Conservation, 24, 16411656.Google Scholar
van der Maarel, E. (1998). Coastal dunes: Pattern and process, zonation and succession. In van der Maarel, E., ed., Dry Coastal Ecosystems: Ecosystems of the World 2C, pp. 505517. The Hague: Elsevier.Google Scholar
van der Maarel, E., Boot, R., van Dorp, D., & Rijntjes, J. (1985). Vegetation succession on the dunes near Oostvoorne, The Netherlands: A comparison of the vegetation in 1959 and 1980. Vegetatio, 58, 137187.Google Scholar
van der Merwe, H. & van Rooyen, M. W. (2011). Life form and species diversity on abandoned croplands, Roggeveld, South Africa. African Journal of Range & Forage Science, 28, 99110.Google Scholar
van der Putten, W. H., Dijk, C. V., & Peters, B. A. M. (1993). Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 5356.Google Scholar
van der Putten, W. H., Bardgett, R. D., Bever, J. D., et al. (2013). Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265276.Google Scholar
van der Putten, W. H., Mortimer, S. R., Hedlund, K., et al. (2000). Plant species diversity as a driver of early succession in abandoned fields: A multi-site approach. Oecologia, 124, 9199.Google Scholar
van der Valk, A. G. (1992). Establishment, colonization and persistence. In Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T., eds., Plant Succession: Theory and Prediction, pp. 60102. London: Chapman & Hall.Google Scholar
van der Valk, A. G. & Davis, C. B. (1978). The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology, 59, 322335.Google Scholar
van de Voorde, T. F. J., van der Putten, W. H., & Bezemer, T. M. (2012). The importance of plant-soil interactions, soil nutrients, and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of old-fields. Oikos, 121, 12511262.Google Scholar
Van Eynde, E., Dondeyne, S., Isabirye, M., Deckers, J., & Poesen, J. (2017). Impact of landslides on soil characteristics for estimating their age. Catena, 157, 173179.Google Scholar
Van Gemerden, B. S., Shu, G. N., & Olff, H. (2003). Recovery of conservation values in Central African rain forest after logging and shifting cultivation. Biodiversity and Conservation, 12, 15531570.Google Scholar
van Moorleghem, C. & de la Peña, E. (2016). Aphid herbivory as a potential driver of primary succession in coastal dunes. Arthropod-Plant Interactions, 10, 89100.Google Scholar
Van Pelt, R., O’Keefe, T. C., Latterell, J. J., & Naiman, R. J. (2006). Riparian forest stand development along the Queets River in Olympic National Park, Washington. Ecological Monographs, 76, 277298.Google Scholar
Vandermeer, J., Brenner, A., & Granzow de la Cerda, I. (1998). Growth rates of tree height six years after hurricane damage at four localities in eastern Nicaragua. Biotropica, 30, 502509.Google Scholar
Vandermeer, J., Granzow de la Cerda, I., Boucher, D., Perfecto, I., & Ruiz, J. (2000). Hurricane disturbance and tropical tree species diversity. Science, 290, 788791.Google Scholar
Varnes, D. J. (1958). Special Report 29: Landslides and Engineering Practice. Washington, DC: National Academy of Sciences, Transportation Research Board.Google Scholar
Vavrus, S., Ruddiman, W. F., & Kutzbach, J. E. (2008). Climate model tests of the anthropogenic influence on greenhouse-induced climate change: The role of early human agriculture, industrialization, and vegetation feedbacks. Quaternary Science Reviews, 27, 14101425.Google Scholar
Vázquez-Yanes, C. & Smith, H. (1982). Phytochrome control of seed germination in the tropical rain forest pioneer trees Cecropia obtusifolia and Piper auritum and its ecological significance. New Phytologist, 92, 477485.Google Scholar
Vazquez-Yanes, C., Orozco-Segovia, A., Rincón, E., et al. (1990). Light beneath the litter in a tropical forest: Effect on seed germination. Ecology, 71, 19521958.Google Scholar
Veblen, T. T. & Ashton, D. H. (1978). Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio, 36, 149167.Google Scholar
Veblen, T. T., Ashton, D. H., Schlegel, F. M., & Veblen, A. T. (1977). Plant succession in a timberline depressed by volcanism in south-central Chile. Journal of Biogeography, 4, 275294.Google Scholar
Veblen, T. T., Ashton, D. H., Rubulis, S., Lorenz, D. C., & Cortes, M. (1989). Nothofagus stand development on in-transit moraines, Casa Pangue Glacier, Chile. Arctic and Alpine Research, 21, 144155.Google Scholar
Veblen, T. T., Hadley, K. S., Nel, E. M., Kitzberger, T., Reid, M., & Villalba, R. (1994). Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. Journal of Ecology, 82, 125135.Google Scholar
Velázquez, E. & Gómez-Sal, A. (2007). Environmental control of early succession in a landslide on a dry tropical ecosystem (Casita Volcano, Nicaragua). Biotropica, 35, 601609.Google Scholar
Velázquez, E. & Gómez-Sal, A. (2008). Landslide early succession in a neotropical dry forest. Plant Ecology, 199, 295308.Google Scholar
Velázquez, E. & Gómez-Sal, A. (2009a). Different growth strategies in the tropical pioneer tree Trema micrantha during succession on a large landslide on Casita Volcano, Nicaragua. Journal of Tropical Ecology, 25, 249260.Google Scholar
Velázquez, E. & Gómez-Sal, A. (2009b). Changes in the herbaceous communities on the landslide of the Casita Volcano, Nicaragua, during early succession. Folia Geobotanica, 44, 118.Google Scholar
Velázquez, E., De la Cruz, M., & Gómez-Sal, A. (2014). Changes in spatial point patterns of pioneer woody plants across a large tropical landslide. Acta Oecologica, 61, 918.Google Scholar
Velle, L. G. & Vandvik, V. (2014). Succession after prescribed burning in coastal Calluna heathlands along a 340-km latitudinal gradient. Journal of Vegetation Science, 25, 546558.Google Scholar
Vesipa, R., Camporeale, C., & Ridolfi, L. (2017). Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Advances in Water Resources, 110, 2950.Google Scholar
Vetaas, O. R. (1994). Primary succession of plant assemblages on a glacier foreland ‒ Bodalsbreen, southern Norway. Journal of Biogeography, 21, 297308.Google Scholar
Viereck, L. A. (1966). Plant succession and soil development on gravel outwash of the Muldrow Glacier, Alaska. Ecological Monographs, 36, 181199.Google Scholar
Viereck, L. A. (1970). Forest succession and soil development adjacent to the Chena River in interior Alaska. Arctic and Alpine Research, 2, 126.Google Scholar
Viereck, L. A., Van Cleve, K., Adams, P. C., & Schlentner, R. E. (1993). Climate of the Tanana River floodplain near Fairbanks, Alaska. Canadian Journal of Forest Research, 23, 899913.Google Scholar
Vindušková, O. & Frouz, J. (2013). Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environmental Earth Sciences, 69, 16851698.Google Scholar
Vitousek, P. M. (1999). Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems, 2, 505510.Google Scholar
Vitousek, P. M. (2004). Nutrient Cycling and Limitation: Hawai’i as a Model System. Princeton, NJ: Princeton University Press.Google Scholar
Vitousek, P. M. & Farrington, H. (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry, 37, 6375.Google Scholar
Vitousek, P. M. & Hobbie, S. (2000). Heterotrophic nitrogen fixation in decomposing litter: Patterns and regulation. Ecology, 81, 23662376.Google Scholar
Vitousek, P. M. & Walker, L. R. (1987). Colonization, succession and resource availability: Ecosystem-level interactions. In Gray, A. J., Crawley, M. J., & Edwards, P. J., eds., Colonization, Succession and Stability, pp. 207223. Oxford: Blackwell.Google Scholar
Vitousek, P. M. & Walker, L. R. (1989). Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, and ecosystem effects. Ecological Monographs, 59, 247265.Google Scholar
Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 515.Google Scholar
Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., & Matson, P. A. (1987). Biological invasion by Myrica faya alters primary succession in Hawaii. Science, 238, 802804.Google Scholar
Vitousek, P. M., Aber, J. D., Howarth, R. W., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737750.Google Scholar
Vogt, K. A., Vogt, D. J., Boon, P., et al. (1996). Litter dynamics along stream, riparian and upslope areas following Hurricane Hugo, Luquillo Experimental Forest, Puerto Rico. Biotropica, 28, 458470.Google Scholar
Wali, M. K. (1999). Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213, 195220.Google Scholar
Walker, J. & Reddell, P. (2007). Retrogressive succession and restoration on old landscapes. In Walker, L. R., Walker, J., & Hobbs, R. J., eds., Linking Restoration and Ecological Succession, pp. 6989. New York: Springer.Google Scholar
Walker, J., Lees, B., Olley, J., & Thompson, C. (2018). Dating the Cooloola coastal dunes of South-Eastern Queensland, Australia. Marine Geology, 398, 7385.Google Scholar
Walker, J., Thompson, C. H., Fergus, I. F., & Tunstall, B. R. (1981). Plant succession and soil development in coastal sand dunes of subtropical eastern Australia. In West, D. C., Shugart, H. H., & Botkin, D. B., eds., Forest Succession: Concepts and Applications, pp. 107131. New York: Springer.Google Scholar
Walker, L. R. (1989). Soil nitrogen changes during primary succession on a floodplain in Alaska, USA. Arctic and Alpine Research, 21, 341349.Google Scholar
Walker, L. R. (1991). Tree damage and recovery from Hurricane Hugo in Luquillo Experimental Forest, Puerto Rico. Biotropica, 23, 379385.Google Scholar
Walker, L. R. (1993). Nitrogen fixers and species replacements in primary succession. In Miles, J. & Walton, D. W. H., eds., Primary Succession on Land, pp. 249272. Oxford: Blackwell.Google Scholar
Walker, L. R. (1994). Effects of fern thickets on woodland development on landslides in Puerto Rico. Journal of Vegetation Science, 5, 525532.Google Scholar
Walker, L. R. (1995). How unique is primary plant succession at Glacier Bay? In Engstrom, D. R., ed., Proceedings of the Third Glacier Bay Science Symposium, 1993, pp. 137146. Anchorage, AK: National Park Service.Google Scholar
Walker, L. R. (1999b). Patterns and processes in primary succession. In Walker, L. R., ed., Ecosystems of Disturbed Ground, Ecosystems of the World 16, pp. 585610. Amsterdam: Elsevier.Google Scholar
Walker, L. R. (2000). Seedling and sapling dynamics of treefall pits in Puerto Rico. Biotropica, 32, 262275.Google Scholar
Walker, L. R. (2011). Integration of the study of natural and anthropogenic disturbances using severity gradients. Austral Ecology, 36, 916922.Google Scholar
Walker, L. R. (2012). The Biology of Disturbed Habitats. Oxford: Oxford University Press.Google Scholar
Walker, L. R. & Bellingham, P. J. (2011). Island Environments in a Changing World. Cambridge: Cambridge University Press.Google Scholar
Walker, L. R. & Boneta, W. (1995). Plant and soil responses to fire on a fern-covered landslide in Puerto Rico. Journal of Tropical Ecology, 11, 473479.Google Scholar
Walker, L. R. & Chapin, F. S. III. (1987). Interactions among processes controlling successional change. Oikos, 50, 131135.Google Scholar
Walker, L. R. & del Moral, R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press.Google Scholar
Walker, L. R. & Neris, L. E. (1993). Posthurricane seed rain dynamics in Puerto Rico. Biotropica, 25, 408418.Google Scholar
Walker, L. R. & Sharpe, J. M. (2010). Ferns, disturbance and succession. In Mehltreter, K., Walker, L. R., & Sharpe, J. M., eds., Fern Ecology, pp. 177219. Cambridge: Cambridge University Press.Google Scholar
Walker, L. R. & Shiels, A. B. (2008). Post-disturbance erosion impacts carbon fluxes and plant succession on recent tropical landslides. Plant and Soil, 313, 205216.Google Scholar
Walker, L. R. & Shiels, A. B. (2013). Landslide Ecology. Cambridge: Cambridge University Press.Google Scholar
Walker, L. R. & Vitousek, P. M. (1991). An invader alters germination and growth of a native dominant tree in Hawai’i. Ecology, 72, 14491455.Google Scholar
Walker, L. R. & Wardle, D. A. (2014). Plant succession as an integrator of contrasting ecological time scale. Trends in Ecology and Evolution, 29, 504510.Google Scholar
Walker, L. R., Bellingham, P. B., & Peltzer, D. A. (2006). Plant characteristics are poor predictors of microsite colonization during the first two years of primary succession. Journal of Vegetation Science, 17, 397406.Google Scholar
Walker, L. R., Zasada, J. C., & Chapin, F. S. III. (1986). The role of life history processes in primary succession on an Alaskan floodplain. Ecology, 67, 12431253.Google Scholar
Walker, L. R., Lodge, D. J., Guzmán-Grajales, S. M., & Fetcher, N. (2003). Species-specific seedling responses to hurricane disturbance in a Puerto Rican forest. Biotropica, 35, 472485.Google Scholar
Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010b). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 98, 725736.Google Scholar
Walker, L. R., Zimmerman, J. K., Lodge, D. J., & Guzmán-Grajales, S. (1996b). An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. Journal of Ecology, 84, 877889.Google Scholar
Walker, L. R., Landau, F. H., Velázquez, E., Shiels, A. B., & Sparrow, A. (2010a). Early successional woody plants facilitate and ferns inhibit forest development on Puerto Rican landslides. Journal of Ecology, 98, 625635.Google Scholar
Walker, L. R., Voltzow, J., Ackerman, J. D., Fernández, D. S., & Fetcher, N. (1992). Immediate impact of Hurricane Hugo on a Puerto Rican rain forest. Ecology, 73, 691694.Google Scholar
Walker, L. R., Zarin, D. J., Fetcher, N., Myster, R. W., & Johnson, A. H. (1996). Ecosystem development and plant succession on landslides in the Caribbean. Biotropica, 28, 566576.Google Scholar
Walker, L. R., Shiels, A. B., Bellingham, P. J., et al. (2013a). Changes in abiotic influences on seed plants and ferns during 18 years of primary succession on Puerto Rican landslides. Journal of Ecology, 101, 650661.Google Scholar
Walker, L. R., Sikes, D. S., DeGange, A. R., et al. (2013b). Biological legacies: Direct early ecosystem recovery and food web reorganization after a volcanic eruption in Alaska. Écoscience, 20, 240251.Google Scholar
Walker, L. R., ed. (1999a). Ecosystems of Disturbed Ground. Ecosystems of the World 16. Amsterdam: Elsevier.Google Scholar
Walker, L. R., Walker, J., & Hobbs, R. J., eds. (2007). Linking Restoration and Ecological Succession. New York: Springer.Google Scholar
Walker, L. R., Brokaw, N. V. L., Lodge, D. J., & Waide, R. B., eds. (1991). Ecosystem, plant and animal responses to hurricanes in the Caribbean. Biotropica, 23, 313521.Google Scholar
Walker, L. R., Silver, W. L., Willig, M. R., & Zimmerman, J. K., eds. (1996a). Long term responses of Caribbean ecosystems to disturbance. Biotropica, 28, 414614.Google Scholar
Walker, T. W. & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 119.Google Scholar
Walter, H. 1970. Vegetationszonen und Klima. Stuttgart: Verlag Eugen Ulmer.Google Scholar
Wang, N., Jiao, J. Y., Jia, Y. F., Bai, W. J., & Zhang, Z. G. (2010). Germinable soil seed banks and the restoration potential of abandoned cropland on the Chinese Hilly-Gullied Loess Plateau. Environmental Management, 46, 367377.Google Scholar
Wang, Y.-C., Ooi, M. K. J., Ren, G.-H., et al. (2015). Species shifts in above-ground vegetation and the soil seed bank in the inter-dune lowlands of an active dune field in Inner Mongolia, China. Basic and Applied Ecology, 16, 490499.Google Scholar
Ward, D. (2016). The Biology of Deserts. 2nd ed. Oxford: Oxford University Press.Google Scholar
Wardle, D. A., Walker, L. R., & Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509513.Google Scholar
Wardle, D. A., Jonsson, M., Bansal, S., Bardgett, R. D., Gundale, M. J., & Metcalfe, D. B. (2012). Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosytems in a long-term natural experiment. Journal of Ecology, 100, 1630.Google Scholar
Wardle, P. 1979. Primary succession in Westland National Park and its vicinity, New Zealand. New Zealand Journal of Botany, 18, 221232.Google Scholar
Warming, E. (1895). Plantesamfund: Grundträk af den Ökologiska Plantegeografi. Copenhagen: Philipsen.Google Scholar
Warming, E. (1909). Oecology of Plants: An Introduction to the Study of Plant Communities. Oxford: Clarendon Press.Google Scholar
Warren, D. R., Keeton, W. S., Kiffney, P. M., Kaylor, M. J., Bechtold, H. A., & Magee, J. (2016). Changing forests-changing streams: Riparian forest stand development and ecosystem function in temperate headwaters. Ecosphere, 7, e01435.Google Scholar
Wassenaar, T. D., van Aarde, R. J., Pimm, S. L., & Ferreira, S. M. (2005). Community convergence in disturbed subtropical dune forests. Ecology, 86, 655666.Google Scholar
Watts, A. C. & Kobziar, L. N. (2013). Smoldering combustion and ground fires: Ecological effects and multi-scale significance. Fire Ecology, 9, 124132.Google Scholar
Weaver, P. L. (1989). Forest changes after hurricanes in Puerto Rico’s Luquillo Mountains. Interciencia, 14, 181192.Google Scholar
Webb, L. J. (1958). Cyclones as an ecological factor in tropical lowland rain forest, North Queensland. Australian Journal of Botany, 6, 220230.Google Scholar
Webb, S. L. (1999). Disturbance by wind in temperate-zone forests. In Walker, L. R., ed., Ecosystems of Disturbed Ground. Ecosystems of the World 16, pp. 187222. Amsterdam: Elsevier.Google Scholar
Webb, S. L. & Scanga, S. E. (2001). Windstorm disturbance without patch dynamics: Twelve years of change in a Minnesota forest. Ecology, 82, 893897.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H.-R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846.Google Scholar
Weiher, E., Clarke, G. D. P., & Keddy, P. A. (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309322.Google Scholar
Weiher, E. & Keddy, P. A., eds. (1999). Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge: Cambridge University Press.Google Scholar
Welc, M., Frossard, E., Egli, S., Bünemann, E. K., & Jansa, J. (2014). Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biology & Biochemistry, 74, 2130.Google Scholar
Wen, S., Fetcher, N., & Zimmerman, J. K. (2008). Acclimation of tropical tree species to hurricane disturbance: Ontogenetic differences. Tree Physiology, 28, 935946.Google Scholar
Werdin-Pfisterer, N. R., Kielland, K., & Boone, R. D. (2012). Buried organic horizon represent amino acid reservoirs in boreal forest soils. Soil Biology and Biochemistry, 55, 122131.Google Scholar
Whelan, P. & Bach, A. J. (2017). Retreating glaciers, incipient soils, emerging forests: 100 years of landscape change on Mount Baker, Washington, USA. Annals of the American Association of Geographers, 107, 336349.Google Scholar
Whelan, R. J. (1994). The Ecology of Fire. Cambridge: Cambridge University Press.Google Scholar
Whigham, D. F., Olmsted, I., Cabrera Cano, E., & Harmon, M. E. (1991). The impact of Hurricane Gilbert on trees, litter fall, and woody debris in a dry tropical forest in the northeastern Yucatan Peninsula. Biotropica, 23, 434441.Google Scholar
Whisenant, S. G. (1999). Repairing Damaged Wildlands. Cambridge: Cambridge University Press.Google Scholar
Whisenant, S. G., Thurow, T. L., & Maranz, S. J. (1995). Initiating autogenic restoration on shallow semiarid sites. Restoration Ecology, 3, 6167.Google Scholar
White, P. S. & Jentsch, A. (2001). The search for generality in studies of disturbance and ecosystem dynamics. Progress in Botany, 62, 399450.Google Scholar
White, P. S. & Jentsch, A. (2004). Disturbance, succession, and community assembly in terrestrial plant communities. In Temperton, V. M., Hobbs, R. J., Nuttle, T., & Halle, S., eds., Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice, pp. 342366. Washington, DC: Island Press.Google Scholar
Whitfeld, T. J. S., Kress, W. J., Erickson, D. L., & Weiblen, G. D. (2012). Change in community phylogenetic structure during tropical forest succession: Evidence from New Guinea. Ecography, 35, 821830.Google Scholar
Whitford, W. (2002). Ecology of Desert Systems. New York: Academic Press.Google Scholar
Whitmore, T. C. (1974). Change with time and the role of cyclones in tropical rain forest on Kolombangara, Solomon Islands. Institute Paper No. 46, Commonwealth Forestry Institute, University of Oxford.Google Scholar
Whitmore, T. C. (1989). Changes over twenty-one years in the Kolombangara rain forests. Journal of Ecology, 77, 469483.Google Scholar
Whitmore, T. C. (1998). An Introduction to Tropical Rain Forests. Oxford: Oxford University Press.Google Scholar
Whittaker, R. H. (1975). Communities and Ecosystems. New York: MacMillan.Google Scholar
Whittaker, R. H. (1953). A consideration of climax theory: The climax as a population and a pattern. Ecological Monographs, 23, 4178.Google Scholar
Whittaker, R. J. & Bush, M. B. (1993). Dispersal and establishment of tropical forest assemblages, Krakatau, Indonesia. In Miles, J. & Walton, D. W. H., eds., Primary Succession on Land, pp. 147160, Oxford: Blackwell.Google Scholar
Whittaker, R. J. & Jones, S. H. (1994). The role of frugivorous bats and birds in the rebuilding of a tropical forest ecosystem, Krakatau, Indonesia. Journal of Biogeography, 21, 689702.Google Scholar
Whittaker, R. J. & Turner, B. D. (1994). Dispersal, fruit utilization and seed predation of Dysoxylum gaudichaudianum in early successional rainforest, Krakatau, Indonesia. Journal of Tropical Ecology, 10, 167181.Google Scholar
Whittaker, R. J., Bush, M. B., & Richards, K. (1989). Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecological Monographs, 59, 59123.Google Scholar
Whittaker, R. J., Jones, S. H., & Partomihardjo, T. (1997). The rebuilding of an isolated rain forest assemblage, how disharmonic is the flora of Krakatau? Biodiversity and Conservation, 6, 16711696.Google Scholar
Whittaker, R. J., Walden, J., & Hill, J. (1992). Post-1883 ash fall on Panjang and Sertung and its ecological impact. GeoJournal, 28, 153171.Google Scholar
Widenfalk, O. & Weslien, J. (2009). Plant species richness in managed boreal forests: Effects of stand succession and thinning. Forest Ecology and Management, 257, 13861394.Google Scholar
Wiegleb, G. & Felinks, B. (2001). Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Applied Vegetation Science, 4, 518.Google Scholar
Wieland, L. M., Mesquita, R. C. G., Bobrowiec, P. E. D., Bentos, T. V., & Williamson, G. B. (2011). Seed rain and advance regeneration in secondary succession in the Brazilian Amazon. Tropical Conservation Science, 4, 300316.Google Scholar
Wielgolaski, F. E., ed. (1997). Polar and Alpine Tundra: Ecosystems of the World 3. Amsterdam: Elsevier.Google Scholar
Williams, B. K. (2011). Adaptive management of natural resources: Framework and issues. Journal of Environmental Management, 92, 13461353.Google Scholar
Willig, M. R., Kaufman, D. M., & Stevens, R. D. (2003). Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology and Systematics, 34, 273309.Google Scholar
Wilmshurst, J. M. & McGlone, M. S. (1996). Forest disturbance in the central North Island, New Zealand, following the 1850 BP Taupo eruption. The Holocene, 6, 399411.Google Scholar
Wilsey, B. (2018). The Biology of Grasslands. Oxford: Oxford University Press.Google Scholar
Wilson, J. B. (1994). Who makes the assembly rules? Journal of Vegetation Science, 2, 289290.Google Scholar
Wilson, J. B. & Agnew, A. D. Q. (1992). Positive-feedback switches in plant communities. Advances in Ecological Research, 23, 263336.Google Scholar
Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: The world records. Journal of Vegetation Science, 23, 796802.Google Scholar
Wilson, R. E. (1970). Succession in stands of Populus deltoids along the Missouri River in southeastern South Dakota. The American Midland Naturalist, 83, 330342.Google Scholar
Wilson, S. D. & Tilman, D. (2002). Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology, 83, 492504.Google Scholar
Wiser, S. K., Allen, R. B., & Platt, K. H. (1997). Mountain beech forest succession after a fire at Mount Thomas Forest, Canterbury, New Zealand. New Zealand Journal of Botany, 35, 505515.Google Scholar
Wittmann, F. & Parolin, P. (2005). Aboveground roots in Amazonian floodplain trees. Biotropica, 37, 609619.Google Scholar
Woch, M. W., Kapusta, P., & Stefanowicz, A. M. (2016). Variation in dry grassland communities along a heavy metals gradient. Ecotoxicology, 25, 8090.Google Scholar
Wohlgemuth, T., Jentsch, A., & Seidl, R. (2019). Störungsökologie. Bern, Switzerland: UBT.Google Scholar
Wolkovich, E. M., Cook, B. I., McLauchlan, K. K., & Davies, T. J. (2014). Temporal ecology in the Anthropocene. Ecology Letters, 17, 13651379.Google Scholar
Wong, N. K., Morgan, J. W., & Dorrough, J. (2010). A conceptual model of plant community changes following cessation of cultivation in semi-arid grassland. Applied Vegetation Science, 13, 389402.Google Scholar
Wood, T. W. W. (1970). Wind damage in the forest of Western Samoa. The Malayan Forester, 23, 9299.Google Scholar
Woodley, J. D., Chornesky, E. A., Clifford, P. A., et al. (1981). Hurricane Allen’s impact on Jamaican coral reefs. Science, 214, 749755.Google Scholar
Worley, I. A. (1973). The “black crust“ phenomena in upper Glacier Bay, Alaska. Northwest Science, 47, 2029.Google Scholar
Woziwoda, B. & Kopec, D. (2014). Afforestation or natural succession? Looking for the best way to manage abandoned cut-over peatlands for biodiversity conservation. Ecological Engineering, 63, 143152.Google Scholar
Wozniak, G., Chmura, D., Blonska, A., Tokarska-Guzik, B., & Sierka, E. (2011). Applicability of functional groups concept in analysis of spatiotemporal vegetation changes on manmade habitats. Polish Journal of Environmental Studies, 20, 623631.Google Scholar
Wright, A., Schnitzer, S., Dickie, I., et al. (2013). Complex facilitation and competition in a temperate grassland: Loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. Oecologia, 171, 449458.Google Scholar
Wright, J. P. & Fridley, J. D. (2010). Biogeographic synthesis of secondary succession rates in eastern North America. Journal of Biogeography, 37, 15841596.Google Scholar
Wright, R. A. & Mueller-Dombois, D. (1988). Relationships among shrub population structure, species associations, seedling root form and early volcanic succession, Hawaii. In Werger, M. J. A., van der Aart, P. J. M., During, H. J., & Verhoeven, J. T. A., eds., Plant Form and Vegetation Structure, pp. 87104. The Hague: SPB Academic Publishing.Google Scholar
Wu, G. L., Zhao, L. P., Wang, D., & Shi, Z. H. (2014). Effects of time-since-fire on vegetation composition and structures in semi-arid perennial grassland on the Loess Plateau, China. Clean-Soil Air Water, 42, 98103.Google Scholar
Wu, G., Jiang, S., Liu, W., Zhao, C., & Li, J. (2016). Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability. Journal of Arid Land, 2, 293303.Google Scholar
Wynn-Williams, D. D. (1993). Microbial processes and initial stabilization of fellfield soil. In Miles, J. & Walton, D. W. H., eds., Primary Succession on Land, pp. 1732. Oxford: Blackwell.Google Scholar
Xi, H., Feng, Q., Zhang, L., et al. (2016). Effects of water and salinity on plant species composition and community succession in Ejina Desert Oasis, northwest China. Environmental Earth Sciences, 75, 138. doi: 10.1007/s12665-015-4823-7.Google Scholar
Xue, S., Zhu, F., Kong, X., et al. (2016). A review of the characterization and revegetation of bauxite residues (red mud). Environmental Science Pollution Research, 23, 11201132.Google Scholar
Yamamoto, S.-I. (1995). Natural disturbance and tree species coexistence in an old-growth beech-dwarf bamboo forest, southwestern Japan. Journal of Vegetation Science, 6, 875886.Google Scholar
Yamanaka, T. & Okabe, H. (2006). Distribution of Frankia, ectomycorrhizal fungi, and bacteria in soil after the eruption of Miyake-Jima (Izu Islands, Japan) in 2000. Journal of Forest Research, 11, 2126.Google Scholar
Yanagawa, A., Sasaki, T., Jamsran, U., Okuro, T., & Takeuchi, K. (2016). Factors limiting vegetation recovery processes after cessation of cropping in a semiarid grassland in Mongolia. Journal of Arid Environments, 131, 15.CrossRefGoogle Scholar
Yang, Q.-W., Liu, S.-J., Hu, C.-H., et al. (2016). Ecological species groups and interspecific association of vegetation in natural recovery process at Xiejiadian landslide after 2008 Wenchuan earthquake. Journal of Mountain Science, 13, 16091620.Google Scholar
Yannelli, F. A., Tabeni, S., Mastrantonio, L. E., & Vezzani, N. (2014). Assessing degradation of abandoned farmlands for conservation of the Monte Desert biome in Argentina. Environmental Management, 53, 231239.Google Scholar
Yao, J., He, X. Y., Wang, A. Z., et al. (2012). Influence of forest management regimes on forest dynamics in the upstream region of the Hun River in Northeastern China. PLoS ONE, 7(6), e39058.Google Scholar
Yap, S. L., Davies, S. J., & Condit, R. (2016). Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. Journal of Vegetation Science, 27, 133143.Google Scholar
Yates, C. J., Hopper, S. D., Brown, A., & van Leeuwen, S. (2003). Impact of two wildfires on endemic granite outcrop vegetation in Western Australia. Journal of Vegetation Science, 14, 185194.Google Scholar
Yoshida, T. & Noguchi, M. (2008). Vulnerability to strong winds for major tree species in a northern Japanese mixed forest: Analyses of historical data. Ecological Research, 24, 909‒919.Google Scholar
Young, D. R., Erickson, D. L., & Semones, S. W. (1994). Salinity and the small-scale distribution of three barrier island shrubs. Canadian Journal of Botany, 72, 13651372.Google Scholar
Young, I. W. R., Naguit, C., Halwas, S. J., Renault, S., & Markham, J. H. (2013). Natural revegetation of a boreal gold mine tailings pond. Restoration Ecology, 21, 498505.Google Scholar
Young, T. P., Chase, J. M., & Huddleston, R. T. (2001). Community succession and assembly comparing contrasting and combining paradigms in the context of ecological restoration. Ecological Restoration, 19, 518.Google Scholar
Zarin, D. J. & Johnson, A. H. (1995a). Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma, 65, 317330.Google Scholar
Zarin, D. J. & Johnson, A. H. (1995b). Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Science Society of America Journal, 59, 14441452.Google Scholar
Zhang, J.-Y. & Wu, Y.-X. (2014). Changes in diversity and importance of clonal plants during sand dune succession in northeastern China. Ecological Research, 29, 393399.Google Scholar
Zhao, D., Allen, B., & Sharitz, R. (2006). Twelve year response of old-growth southeastern bottomland hardwood forests to disturbance from Hurricane Hugo. Canadian Journal of Forest Research, 36, 31363147.Google Scholar
Zhu, W. Z., Cheng, S., Cai, X. H., He, F., & Wang, J. X. (2009). Changes in plant species diversity along a chronosequence of vegetation restoration in the humid evergreen broad-leaved forest in the Rainy Zone of West China. Ecological Research, 24, 315325.Google Scholar
Zimmerman, J. K., Aide, T. M., & Lugo, A. E. (2007). Implications of land use history for natural forest regeneration and restoration strategies in Puerto Rico. In Cramer, V. A. & Hobbs, R. J., eds., Old Field Dynamics and Restoration of Abandoned Farmland, pp. 5174. Washington, DC: Island Press.Google Scholar
Zimmerman, J. K., Willig, M. R., Walker, L. R., & Silver, W. L. (1996). Introduction: Disturbance and Caribbean ecosystems. Biotropica, 28, 414423.CrossRefGoogle Scholar
Zimmerman, J. K., Aide, T. M., Rosario, M., Serrano, M., & Herrera, L. (1995). Effects of land management and a recent hurricane on forest structure and composition in the Luquillo Experimental Forest, Puerto Rico. Forest Ecology and Management, 77, 6576.Google Scholar
Zimmerman, J. K., Everham, E. M. III, Waide, R. B., Lodge, D. J., Taylor, C. M., & Brokaw, N. V. L. (1994). Responses of tree species to hurricane winds in sub-tropical wet forest in Puerto Rico: Implications for tropical tree life histories. Journal of Ecology, 82, 911922.Google Scholar
Zobel, D. B. & Antos, J. A. (1991). Growth and development of natural seedlings of Abies and Tsuga in old-growth forest. Journal of Ecology, 79, 985998.Google Scholar
Zobel, D. B. & Antos, J. A. (2009). Species properties and recovery from disturbance: Forest herbs buried by volcanic tephra. Journal of Vegetation Science, 20, 650662.CrossRefGoogle Scholar
Zobel, D. B. & Antos, J. A. (2016). Flowering patterns of understory herbs 30 years after disturbance of subalpine old-growth forests by tephra from Mount St. Helens. International Journal of Plant Sciences, 177, 145156.Google Scholar
Zobel, M. (1997). The relative of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends in Ecology and Evolution, 12, 266269.Google Scholar
Zobel, M., van der Maarel, E., & Dupré, C. (1998). Species pool: The concept, its determination and significance for community restoration. Applied Vegetation Science, 1, 5566.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Karel Prach, University of South Bohemia, Czech Republic, Lawrence R. Walker, University of Nevada, Las Vegas
  • Book: Comparative Plant Succession among Terrestrial Biomes of the World
  • Online publication: 08 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108561167.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Karel Prach, University of South Bohemia, Czech Republic, Lawrence R. Walker, University of Nevada, Las Vegas
  • Book: Comparative Plant Succession among Terrestrial Biomes of the World
  • Online publication: 08 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108561167.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Karel Prach, University of South Bohemia, Czech Republic, Lawrence R. Walker, University of Nevada, Las Vegas
  • Book: Comparative Plant Succession among Terrestrial Biomes of the World
  • Online publication: 08 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108561167.024
Available formats
×