Book contents
- Frontmatter
- Contents
- Participants
- Preface
- The orbital motion and impact circumstances of Comet Shoemaker-Levy 9
- Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9
- Tidal breakup of the nucleus of Comet Shoemaker–Levy 9
- Earth-based observations of impact phenomena
- HST imaging of Jupiter shortly after each impact: Plumes & fresh sites
- Galileo observations of the impacts
- Models of fragment penetration and fireball evolution
- Entry and fireball models vs. observations: What have we learned?
- Dynamics and chemistry of SL9 plumes
- Chemistry induced by the impacts: Observations
- SL9 impact chemistry: Long-term photochemical evolution
- Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9
- Jupiter's post-impact atmospheric thermal response
- Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging
- Waves from the Shoemaker-Levy 9 impacts
- Jovian magnetospheric and auroral effects of the SL9 impacts
Jupiter's post-impact atmospheric thermal response
Published online by Cambridge University Press: 12 September 2009
- Frontmatter
- Contents
- Participants
- Preface
- The orbital motion and impact circumstances of Comet Shoemaker-Levy 9
- Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9
- Tidal breakup of the nucleus of Comet Shoemaker–Levy 9
- Earth-based observations of impact phenomena
- HST imaging of Jupiter shortly after each impact: Plumes & fresh sites
- Galileo observations of the impacts
- Models of fragment penetration and fireball evolution
- Entry and fireball models vs. observations: What have we learned?
- Dynamics and chemistry of SL9 plumes
- Chemistry induced by the impacts: Observations
- SL9 impact chemistry: Long-term photochemical evolution
- Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9
- Jupiter's post-impact atmospheric thermal response
- Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging
- Waves from the Shoemaker-Levy 9 impacts
- Jovian magnetospheric and auroral effects of the SL9 impacts
Summary
Measurements of thermal emission in spectral regions, ranging from the near-infrared to mm wavelengths provide information on the atmospheric thermal structure over impact sites from μbar levels in the upper stratosphere down to the upper troposphere. Systematic time series of observations relevant to this entire height range over individual spots do not exist. However, by piecing together information at different times from various spots, it is possible to obtain a provisional, semi-quantitative picture of the behavior of the thermal structure over a typical impact site. Immediately after fall-back of the ejecta plume, the upper stratosphere is heated to ∼ 600–1300 K above ambient temperature. The amplitude of the temperature perturbation diminishes with increasing depth in the atmosphere, but even in the upper troposphere a temperature increase of a few kelvins is observed. Initially, the upper stratosphere cools very rapidly with time scales of tens of minutes, presumably the result of strong radiative cooling associated with the high temperatures. After the initial cooling, all levels continue to cool at slower rates with time scales of a few days; however, this is still very rapid compared to radiative cooling of the ambient atmosphere. Enhancements in infrared opacity necessary to produce the cooling radiatively do not appear to be viable, suggesting that dynamical effects may play a dominant role. Possible mechanisms include horizontal mixing with the ambient atmosphere and adiabatic cooling produced by upward motion associated with an anticyclonic vortex.
- Type
- Chapter
- Information
- The Collision of Comet Shoemaker-Levy 9 and JupiterIAU Colloquium 156, pp. 293 - 306Publisher: Cambridge University PressPrint publication year: 1996
- 1
- Cited by