Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T14:34:03.917Z Has data issue: false hasContentIssue false

Part I - Clinical relevance of cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Edited in association with
Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 1 - 144
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aas, M., Steen, N. E., Agartz, I., Aminoff, S. R., Lorentzen, S., Sundet, K., … Melle, I. (2012). Is cognitive impairment following early life stress in severe mental disorders based on specific or general cognitive functioning? Psychiatry Research, 198(3): 495500.CrossRefGoogle ScholarPubMed
Abramson, L. Y., Alloy, L. B., Hogan, M. E., Whitehouse, W. G., Donovan, P., Rose, D. T., & Raniere, D. (1999). Cognitive vulnerability to depression: Theory and evidence. Journal of Cognitive Psychotherapy, 13(1): 520.Google Scholar
Airaksinen, E., Wahlin, Å., Forsell, Y., & Larsson, M. (2007). Low episodic memory performance as a premorbid marker of depression: Evidence from a 3-year follow-up. Acta Psychiatrica Scandinavica, 115(6): 458465.Google Scholar
Alloy, L. B., Abramson, L. Y., Gibb, B. E., Crossfield, A. G., Pieracci, A. M., Spasojevic, J., & Steinberg, J. A. (2004). Developmental antecedents of cognitive vulnerability to depression: Review of findings from the cognitive vulnerability to depression project. Journal of Cognitive Psychotherapy, 18(2): 115133.CrossRefGoogle Scholar
Alloy, L. B., Abramson, L. Y., Tashman, N. A., Berrebbi, D. S., Hogan, M. E., Whitehouse, W. G., … Morocco, A. (2001). Developmental origins of cognitive vulnerability to depression: Parenting, cognitive, and inferential feedback styles of the parents of individuals at high and low cognitive risk for depression. Cognitive Therapy and Research, 25(4): 397423.CrossRefGoogle Scholar
Alpert, J. E., Maddocks, A., Nierenberg, A. A., O’Sullivan, R., Pava, J. A., Worthington III, J. J., … Fava, M. (1996). Attention deficit hyperactivity disorder in childhood among adults with major depression. Psychiatry Research, 62(3): 213219.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Barrera, A. Z., Torres, L. D., & Muñoz, R. F. (2007). Prevention of depression: The state of the science at the beginning of the 21st century. International Review of Psychiatry, 19(6): 655670.CrossRefGoogle Scholar
Baune, B. T., Fuhr, M., Air, T., & Hering, C. (2014). Neuropsychological functioning in adolescents and young adults with major depressive disorder: A review. Psychiatry Research, 218(3): 261271.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8): 969977.CrossRefGoogle ScholarPubMed
Berger, A. K., Small, B. J., Forsell, Y., Winblad, B., & Bäckman, L. (1998). Preclinical symptoms of major depression in very old age: A prospective longitudinal study. American Journal of Psychiatry, 155(8): 10391043.CrossRefGoogle ScholarPubMed
Biederman, J., Ball, S. W., Monuteaux, M. C., Mick, E., Spencer, T. J., McCreary, M., & Faraone, S. V. (2008). New insights into the comorbidity between ADHD and major depression in adolescent and young adult females. Journal of the American Academy of Child & Adolescent Psychiatry, 47(4): 426434.Google Scholar
Biederman, J., Faraone, S., Milberger, S., Guite, J., Mick, E., Chen, L., … Perrin, J. (1996). A prospective 4-year follow-up study of attention-deficit hyperactivity and related disorders. Archives of General Psychiatry, 53(5): 437446.Google Scholar
Boonstra, A. M., Oosterlaan, J., Sergeant, J. A., & Buitelaar, J. K. (2005). Executive functioning in adult ADHD: A meta-analytic review. Psychological Medicine, 35(8): 10971108.Google Scholar
Buist-Bouwman, M. A., Ormel, J., De Graaf, R., De Jonge, P., Van Sonderen, E., Alonso, J., … Vollebergh, W. A. M. (2008). Mediators of the association between depression and role functioning. Acta Psychiatrica Scandinavica, 118(6): 451458.Google Scholar
Campbell, S., Marriott, M., Nahmias, C., & MacQueen, G. M. (2004). Lower hippocampal volume in patients suffering from depression: A meta-analysis. American Journal of Psychiatry, 161(4): 598607.Google Scholar
Cannon, M., Jones, P., Gilvarry, C., Rifkin, L., McKenzie, K., Foerster, A., & Murray, R. M. (1997). Premorbid social functioning in schizophrenia and bipolar disorder: similarities and differences. American Journal of Psychiatry, 154(11): 15441550.Google ScholarPubMed
Colby, C. A. & Gotlib, I. H. (1988). Memory deficits in depression. Cognitive Therapy and Research, 12(6): 611627.CrossRefGoogle Scholar
Colman, I., Ploubidis, G. B., Wadsworth, M. E. J., Jones, P. B., & Croudace, T. J. (2007). A longitudinal typology of symptoms of depression and anxiety over the life course. Biological Psychiatry, 62(11): 12651271.CrossRefGoogle ScholarPubMed
Conradi, H. J., Ormel, J., & De Jonge, P. (2011). Presence of individual (residual) symptoms during depressive episodes and periods of remission: A 3-year prospective study. Psychological Medicine, 41(6): 11651174.Google Scholar
De Raedt, R. & Koster, E. H. W. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and new conceptual framework. Cognitive, Affective & Behavioral Neuroscience, 10(1): 5070.CrossRefGoogle ScholarPubMed
Friedman, N. P., Miyake, A., Young, S. E., Defries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology, 137(2): 201225.Google Scholar
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Groll, C., Jäger, M., … Möller, H. J. (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry, 159(7): 11121118.Google Scholar
Goksøyr, P. K. & Nøttestad, J. A. (2008). The burden of untreated ADHD among adults: The role of stimulant medication. Addictive Behaviors, 33(2): 342346.Google Scholar
Grady, C. L., Haxby, J. V., Horwitz, B., Gillette, J., Salerno, J. A., Gonzalez-Aviles, A., … Rapoport, S. (1993). Activation of cerebral blood flow during a visuoperceptual task in patients with Alzheimer-type dementia. Neurobiology of Aging, 14(1): 3544.Google Scholar
Hellgren, L., Gillberg, I. C., Bågenholm, A., & Gillberg, C. (1994). Children with deficits in attention, motor control and perception (DAMP) almost grown up: Psychiatric personality disorders at age 16 years. Journal of Child Psychology and Psychiatry, 35(7): 12551271.Google Scholar
Hervey, A. S., Epstein, J. N., & Curry, J. F. (2004). Neuropsychology of adults with attention-deficit/hyperactivity disorder: A meta-analytic review. Neuropsychology, 18(3): 495503.CrossRefGoogle ScholarPubMed
Ingram, R. E. (2001). Developing perspectives on the cognitive-developmental origins of depression: Back is the future. Cognitive Therapy and Research, 25(4): 497504.CrossRefGoogle Scholar
Ingram, R. E. & Ritter, J. (2000). Vulnerability to depression: Cognitive reactivity and parental bonding in high-risk individuals. Journal of Abnormal Psychology, 109(4): 588596.CrossRefGoogle ScholarPubMed
Ingram, R. E., Steidtmann, D. K., & Bistricky, S. L. (2008). Information processing: Attention and memory. In Dobson, K. S. & Dozois, D. J. (eds.), Risk Factors in Depression (pp. 145170). Amsterdam: Academic Press.Google Scholar
Isohanni, I., Jarvelin, M. R., Nieminen, P., Jones, P., Rantakallio, P., Jokelainen, J., & Isohanni, M. (1998). School performance as predictor of psychiatric hospitalization in adult life: A 28-year follow-up in the Northern Finland 1966 Birth Cohort. Psychological Medicine, 28(4): 967974.CrossRefGoogle ScholarPubMed
Jacobson, S., Fasman, J., & DiMascio, A. (1975). Deprivation in the childhood of depressed women. Journal of Nervous and Mental Disease, 160(1): 514.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.CrossRefGoogle ScholarPubMed
Kempermann, G. (2008). The neurogenic reserve hypothesis: What is adult hippocampal neurogenesis good for? Trends in Neuroscience, 31(4): 163169.Google Scholar
Kessler, R. C., Akiskal, H. S., Ames, M., Birnbaum, H., Greenberg, P., Hirschfeld, R. M., … Wang, P. S. (2006). Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. American Journal of Psychiatry, 163(9): 15611568.Google Scholar
Kessler, R. C., Berglund, P., Demier, O., Jin, R., Merijangas, K. R., & Walters, E. E. (2005). Lifetime prevalence of age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey replication. Archives of General Psychiatry, 62(6): 593602.CrossRefGoogle ScholarPubMed
Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H. (2012). Twelve‐month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3): 169184.Google Scholar
Knouse, L. E., Barkley, R. A., & Murphy, K. R. (2013). Does executive functioning (EF) predict depression in clinic-referred adults? EF tests vs. rating scales. Journal of Affective Disorders, 145(2): 270275.CrossRefGoogle ScholarPubMed
Martínez-Arán, A., Vieta, E., Reinares, M., Colom, F., Torrent, C., Sánchez-Moreno, J., … Salamero, M. (2004). Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. American Journal of Psychiatry, 161(2): 262270.Google Scholar
McGillivray, J. A. & Baker, K. L. (2009). Effects of comorbid ADHD with learning disabilities on anxiety, depression, and aggression in adults. Journal of Attention Disorders, 12(6): 525531.Google Scholar
McIntosh, A. R., Sekuler, A. B., Penpeci, C., Rajah, M. N., Grady, C. L., Sekuler, R., & Bennett, P. J. (1999). Recruitment of unique neural systems to support visual memory in normal aging. Current Biology, 9(21): 12751278, S1–S2.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety,30(6): 515527.Google Scholar
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4): 621640.Google Scholar
Olvet, D. M., Burdick, K. E., & Cornblatt, B. A. (2013). Assessing the potential to use neurocognition to predict who is at risk for developing bipolar disorder: A review of the literature. Cognitive Neuropsychiatry, 18(1–2): 129145.Google Scholar
Pennington, B. F. & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37(1): 5187.Google Scholar
Poznanski, E., Krahenbuhl, V., & Zrull, J. (1976). Childhood depression: A longitudinal perspective. Journal of the American Academy of Child Psychiatry, 15(3): 491501.CrossRefGoogle ScholarPubMed
Reichenbert, A., Weiser, M., Rabinowitz, J., Caspi, A., Schmeidler, J., Mark, M., & Davidson, M. (2002). A population-based cohort study of premorbid intellectual, language, and behavioral functioning in patients with schizophrenia, schizoaffective disorder, and nonpsychotic bipolar disorder. American Journal of Psychiatry, 159(12): 20272035.Google Scholar
Roiser, J. P. & Sahakian, (2013). Hot and cold cognition in depression. CNS Spectrums, 18(3): 139149.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport, 9(9): 20232028.Google Scholar
Sigurdsson, E., Fombonne, E., Sayal, K., & Checkley, S. (1999). Neurodevelopmental antecedents of early-onset bipolar affective disorder. British Journal of Psychiatry, 174(2): 121127.Google Scholar
Simons, C. J. P., Jacobs, N., Derom, C., Thiery, E., Jolles, J., Van Os, J., & Kraggendam, L. (2009). Cognition as predictor of current and follow-up depressive symptoms in the general population. Acta Psychiatrica Scandinavica, 120(1): 4552.CrossRefGoogle ScholarPubMed
Stern, Y. (2003). The concept of cognitive reserve: A catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5): 589593.Google Scholar
Van Os, J., Jones, P., Lewis, G., Wasworth, M., & Murray, R. (1997). Developmental precursors of affective illness in a general population birth cohort. General Psychiatry, 54(7): 625631.Google Scholar
Vinberg, M., Miskowiak, K. W., & Vedel Kessing, L. (2013). Impairment of executive function and attention predicts onset of affective disorder in healthy high-risk twins. Journal of Clinical Psychiatry, 74(8): 747753.CrossRefGoogle ScholarPubMed
World Health Organization (2008). The Global Burden of Disease: 2004 Update. Geneva: World Health Organization.Google Scholar
Yoshimasu, K., Barbaresi, W. J., Colligan, R. C., Voigt, R. G., Killian, J. M., Weaver, A. L., & Katusic, S. K. (2012). Childhood ADHD is strongly associated with a broad range of psychiatric disorders during adolescence: A population-based birth cohort study. Journal of Child Psychology and Psychiatry, 53(10): 10361043.CrossRefGoogle ScholarPubMed
Zakzanis, K. K., Leach, L., & Kaplan, E. (1998). On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 11(3): 111119.Google ScholarPubMed
Zammit, S., Allebeck, P., David, A. S., Dalman, C., Hemmingsson, T., Lundberg, I., & Lewis, G. (2004). A longitudinal study of premorbid IQ score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry, 61(4): 354360.Google Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Barch, D. M. & Carter, C. S. (2005). Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophrenia Research, 77(1): 4358.Google Scholar
Baune, B. T., Fuhr, M., Air, T., & Hering, C. (2014). Neuropsychological functioning in adolescents and young adults with major depressive disorder: A review. Psychiatry Research, 218(3): 261271.Google Scholar
Bora, E., Harrison, B. J., Yücel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43(10): 20172026.Google Scholar
Collie, A., Maruff, P., Darby, D. G., & McStephen, M. (2003). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. Journal of the International Neuropsychological Society, 9(3): 419428.Google Scholar
Criswell, H. E. & Breese, G. R. (2005). A conceptualization of integrated actions of ethanol contributing to its GABA mimetic profile: A commentary. Neuropsychopharmacology, 30(8): 14071425.Google Scholar
Di Milia, L., Smolensky, M. H., Costa, G., Howarth, H. D., Ohayon, M. M., & Philip, P. (2011). Demographic factors, fatigue, and driving accidents: An examination of the published literature. Accident Analysis & Prevention, 43(2): 516532.Google Scholar
Douglas, K. M., Porter, R. J., Knight, R. G., & Maruff, P. (2011). Neuropsychological changes and treatment response in severe depression. British Journal of Psychiatry, 198(2): 115122.Google Scholar
Falleti, M. G., Maruff, P., Collie, A., & Darby, D. G. (2006). Practice effects associated with the repeated assessment of cognitive function using the CogState Battery at 10-minute, one week and one month test–retest intervals. Journal of Clinical and Experimental Neuropsychology, 28(7): 10951112.Google Scholar
Falleti, M. G., Maruff, P., Collie, A., Darby, D. G., & McStephen, M. (2003). Qualitative similarities in cognitive impairment associated with 24 h of sustained wakefulness and a blood alcohol concentration of 0.05%. Journal of Sleep Research, 12(4): 265274.Google Scholar
Fava, M., McCall, W. V., Krystal, A., Wessel, T., Rubens, R., Caron, J., … Roth, T. (2006). Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biological Psychiatry, 59(11): 10521060.Google Scholar
Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11): e1001547.Google Scholar
Fletcher, A., McCulloch, K., Baulk, S. D., & Dawson, D. (2005). Countermeasures to driver fatigue: A review of public awareness campaigns and legal approaches. Australian and New Zealand Journal of Public Health, 29(5): 471476.Google Scholar
Goeldner, C., Ballard, T. M., Knoflach, F., Wichmann, J., Gatti, S., & Umbricht, D. (2013). Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target. Neuropharmacology, 64 (January): 337346.CrossRefGoogle ScholarPubMed
Hammar, A. & Ardal, G. (2009). Cognitive functioning in major depression: A summary. Frontiers in Human Neuroscience, 3(September): 26.Google Scholar
Harry, R. D. J. & Zakzanis, K. K. (2005). A comparison of donepezil and galantamine in the treatment of cognitive symptoms of Alzheimer’s disease: A meta-analysis. Human Psychopharmacology, 20(3): 183187.Google Scholar
Hinton-Bayre, A. D. (2011). Specificity of reliable change models and review of the within-subjects standard deviation as an error term. Archives of Clinical Neuropsychology, 26(1): 6775.CrossRefGoogle ScholarPubMed
Ingraham, L. J. & Aiken, C. B. (1996). An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology, 10(1): 120124.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Jaeger, J. & Maruff, P. (2014). Cognitive dysfunction in major depressive disorder is associated with higher levels of self-rated disability and lower work productivity. Paper presented at the International Society for Clinical Trials Methodology Conference, Boston.Google Scholar
Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3): 169184.Google Scholar
Kurlander, J. K., Samp, J. C., & Akhras, K. S (2013). Association between cognitive function, disability, productivity, and quality of life among patients treated for depression in an ambulatory care setting. Paper presented at the ECNP Congress, Barcelona.Google Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological Assessment (5th edn.). New York: Oxford University Press.Google Scholar
Lim, Y. Y., Jaeger, J., Harrington, K., Ashwood, T., Ellis, K. A., Stöffler, A., … Maruff, P. (2013). Three-month stability of the CogState Brief Battery in healthy older adults, mild cognitive impairment, and Alzheimer’s disease: Results from the Australian Imaging, Biomarkers, and Lifestyle-Rate of Change Substudy (AIBL-ROCS). Archives of Clinical Neuropsychology, 28(4): 320330.Google Scholar
Lin, K., Xu, G., Lu, W., Ouyang, H., Dang, Y., Lorenzo-Seva, U., … Lee, T. M. C. (2014). Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study. Journal of Affective Disorders, 168(2): 184191.Google Scholar
Louey, A. G., Cromer, J. A., Schembri, A. J., Darby, D. G., Maruff, P., Makdissi, M., & McCrory, P. (2014). Detecting cognitive impairment after concussion: Sensitivity of change from baseline and normative data methods using the CogSport/Axon cognitive test battery. Archives of Clinical Neuropsychology, 29(5): 432441.Google Scholar
Magnusson, K. (2014). New d3.js visualization: Interpreting Cohen’s d effect size. Available at: http://rpsychologist.com/new-d3-js-visualization-interpreting-cohens-d-effect-size. Accessed March 3, 2014.Google Scholar
Makdissi, M., McCrory, P., Ugoni, A., Darby, D., & Brukner, P. (2009). A prospective study of postconcussive outcomes after return to play in Australian football. American Journal of Sports Medicine, 37(5): 877883.Google Scholar
Maruff, P., Falleti, M. G., Collie, A., Darby, D., & McStephen, M. (2005). Fatigue-related impairment in the speed, accuracy and variability of psychomotor performance: Comparison with blood alcohol levels. Journal of Sleep Research, 14(1): 2127.Google Scholar
Maruff, P., Kurlander, J., & Kingery, L. (2013). Assessment of cognitive function in patients treated for major depressive disorder in ambulatory care settings in the United States: Results from a prospective observational study. Paper presented at the ECNP Congress, Barcelona.Google Scholar
Maruff, P., Thomas, E., Cysique, L., Brew, B., Collie, A., Snyder, P., & Pietrzak, R. H. (2009). Validity of the CogState Brief Battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Archives of Clinical Neuropsychology, 24(2): 165178.Google Scholar
Maruff, P., Werth, J., Giordani, B., Caveney, A. F., Feltner, D., & Snyder, P. J. (2006). A statistical approach for classifying change in cognitive function in individuals following pharmacologic challenge: An example with alprazolam. Psychopharmacology (Berlin), 186(1): 717.Google Scholar
McClintock, S. M., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: A review and synthesis. Neuropsychology, 24(1): 934.Google Scholar
McCrory, P., Makdissi, M., Davis, G., & Collie, A. (2005). Value of neuropsychological testing after head injuries in football. British Journal of Sports Medicine, 39(Suppl. 1): i58i63.Google Scholar
McDermott, L. M. & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3): 18.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.Google Scholar
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr., Kawas, C. H., … Phelps, C. H. (2011).The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: Journal of the Alzheimer’s Association, 7(3): 263269.Google Scholar
Ogden, E. J. D. & Moskowitz, H. (2004). Effects of alcohol and other drugs on driver performance. Traffic Injury Prevention, 5(3): 185198.Google Scholar
Olver, J. S., Ignatiadis, S., Maruff, P., Burrows, G. D., & Norman, T. R. (2008). Quetiapine augmentation in depressed patients with partial response to antidepressants. Human Psychopharmacology, 23(8): 653660.Google Scholar
Pietrzak, R. H., Snyder, P. J., Jackson, C. E., Olver, J., Norman, T., Piskulic, D., & Maruff, P. (2009). Stability of cognitive impairment in chronic schizophrenia over brief and intermediate re-test intervals. Human Psychopharmacology, 24(2): 113121.Google Scholar
Pietrzak, R. H. , Snyder, P. J., & Maruff, P. (2010a). Amphetamine-related improvement in executive function in patients with chronic schizophrenia is modulated by practice effects. Schizophrenia Research, 124(1–3): 176182.Google Scholar
Pietrzak, R. H., Snyder, P. J., & Maruff, P. (2010b). Use of an acute challenge with d-amphetamine to model cognitive improvement in chronic schizophrenia. Human Psychopharmacology, 25(4): 353358.Google Scholar
Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1997). Neuropsychological function in young patients with unipolar major depression. Psychological Medicine, 27(6): 12771285.Google Scholar
Reichenberg, A. & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133(5): 833858.Google Scholar
Robb, G., Sultana, S., Ameratunga, S., & Jackson, R. (2008). A systematic review of epidemiological studies investigating risk factors for work-related road traffic crashes and injuries. Injury Prevention, 14(1): 5158.Google Scholar
Rockwood, K. (2004). Size of the treatment effect on cognition of cholinesterase inhibition in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75(5): 677685.Google Scholar
Senserrick, T. (2003). Graduation from zero to .05 BAC restriction in an Australian graduated licensing system: A difficult transition for young drivers? Annual Proceedings of the Association for the Advancement of Automotive Medicine, 47: 215231.Google Scholar
Taylor, B., Irving, H. M., Kanteres, F., Room, R., Borges, G., Cherpitel, C., … Rehm, J. (2010). The more you drink, the harder you fall: A systematic review and meta-analysis of how acute alcohol consumption and injury or collision risk increase together. Drug and Alcohol Dependence, 110(1–2): 108116.Google Scholar
Trivedi, M. H. & Greer, T. L. (2014). Cognitive dysfunction in unipolar depression: Implications for treatment. Journal of Affective Disorders, 152–154: 1927.Google Scholar
Zakzanis, K. K. (2001). Statistics to tell the truth, the whole truth, and nothing but the truth: Formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Archives of Clinical Neuropsychology, 16(7): 653667.Google Scholar

References

Apkarian, A. V., Baliki, M. N., & Geha, P. Y. (2009). Towards a theory of chronic pain. Progress in Neurobiology, 87(2): 8197.Google Scholar
Baer, L., Ball, S., Sparks, J., Raskin, J., Dubé, S., Ferguson, M., & Fava, M. (2014). Further evidence for the reliability and validity of the Massachusetts General Hospital Cognitive and Physical Functioning Questionnaire (CPFQ). Annals of Clinical Psychiatry: Official Journal of the American Academy of Clinical Psychiatrists, 26(4): 270280.Google Scholar
Baglioni, C., Spiegelhalder, K., Lombardo, C., & Riemann, D. (2010). Sleep and emotions: A focus on insomnia. Sleep Medicine Reviews, 14(4): 227238.Google Scholar
Bair, M. J., Robinson, R. L., Eckert, G. J., Stang, P. E., Croghan, T. W., & Kroenke, K. (2004). Impact of pain on depression treatment response in primary care. Psychosomatic Medicine, 66(1): 1722.Google Scholar
Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: A literature review. Archives of Internal Medicine, 163(20): 24332445.Google Scholar
Barthas, F., Sellmeijer, J., Hugel, S., Waltisperger, E., Barrot, M., & Yalci, I. (2015). The anterior cingulate cortex is a critical hub for pain-induced depression. Biological Psychiatry, 77: 236245.Google Scholar
Berryman, C., Stanton, T. R., Bowering, K. J., Tabor, A., McFarlane, A., & Moseley, G. L. (2014). Do people with chronic pain have impaired executive function? A meta-analytical review. Clinical Psychology Review, 34(7): 563579.Google Scholar
Blom, K., Jernelöv, S., Kraepelien, M., Bergdahl, M. O., Jungmarker, K., Ankartjärn, L., … Kaldo, V. (2015). Internet treatment addressing either insomnia or depression, for patients with both diagnoses: A randomized trial. Sleep, 38(2): 267277.Google Scholar
Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., … Petersen, S. E. (2001). Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14(1): 4859.Google Scholar
Breslau, N., Roth, T., Rosenthal, L., & Andreski, P. (1996). Sleep disturbance and psychiatric disorders: A longitudinal epidemiological study of young adults. Biological Psychiatry, 39(6): 411418.Google Scholar
Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews Neuroscience, 14(7): 502511.Google Scholar
Chiu, Y. H., Silman, A. J., Macfarlane, G. J., Ray, D., Gupta, A., Dickens, C., … McBeth, J.(2005). Poor sleep and depression are independently associated with a reduced pain threshold: Results of a population based study. Pain, 115(3): 316321.Google Scholar
Cleeland, C. S. & Ryan, K. M. (1994). Pain assessment: Global use of the Brief Pain Inventory. Annals of the Academy of Medicine, Singapore, 23(2): 129138.Google ScholarPubMed
Daley, M., Morin, C. M., LeBlanc, M., Gregoire, J. P., Savard, J., & Baillargeon, L. (2009). Insomnia and its relationship to health-care utilization, work absenteeism, productivity and accidents. Sleep Medicine, 10(4): 427438.Google Scholar
Daly, E. J, Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Gaynes, B. N., Warden, D., … Rush, A. J.(2010). Health-related quality of life in depression: A STAR*D report. Annals of Clinical Psychiatry: Official Journal of the American Academy of Clinical Psychiatrists, 22(1): 4355.Google Scholar
Fava, M., Schaefer, K., Huang, H., Wilson, A., Iosifescu, D. V., Mischoulon, D., & Wessel, T. C. (2011). A post hoc analysis of the effect of nightly administration of eszopiclone and a selective serotonin reuptake inhibitor in patients with insomnia and anxious depression. Journal of Clinical Psychiatry, 72(4): 473479.Google Scholar
Fields, H. L. (2000). Pain modulation: Expectation, opioid analgesia and virtual pain. Progress in Brain Research, 122: 245253.Google Scholar
Fortier-Brochu, E., Beaulieu-Bonneau, S., Ivers, H., & Morin, C. M. (2012). Insomnia and daytime cognitive performance: A meta-analysis. Sleep Medicine Reviews, 16(1): 8394.Google Scholar
Garra, G., Singer, A. J., Taira, B. R., Chohan, J., Cardoz, H., Chisena, E., & Thode, J. C. Jr. (2010). Validation of the Wong-Baker FACES Pain Rating Scale in pediatric emergency department patients. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine, 17(1): 5054.Google Scholar
Giesecke, T., Gracely, R. H., Williams, D. A., Geisser, M. E., Petzke, F. W., & Clauw, D. J. (2005). The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis and Rheumatism, 52(5): 15771584.Google Scholar
Gualtieri, C. T. & Morgan, D. W. (2008). The frequency of cognitive impairment in patients with anxiety, depression, and bipolar disorder: An unaccounted source of variance in clinical trials. Journal of Clinical Psychiatry, 69(7): 11221130.Google Scholar
Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., & Parker, G. B. (2015). Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia.JAMA Psychiatry, 72(4): 350358.Google Scholar
Kendzerska, T. B., Smith, P. M., Brignardello-Petersen, R., Leung, R. S., & Tomlinson, G. A. (2014). Evaluation of the measurement properties of the Epworth sleepiness scale: A systematic review. Sleep Medicine Reviews, 18(4): 321331.Google Scholar
Kroenke, K. & Price, R. K. (1993). Symptoms in the community: Prevalence, classification, and psychiatric comorbidity. Archives of Internal Medicine, 153(21): 24742480.Google Scholar
Kroenke, K., Shen, J., Oxman, T. E., Williams, J. W. Jr., & Dietrich, A. J. (2008). Impact of pain on the outcomes of depression treatment: Results from the RESPECT trial. Pain, 134(1–2): 209215.Google Scholar
Leon, A. C., Olfson, M., Portera, L., Farber, L., & Sheehan, D. V. (1997). Assessing psychiatric impairment in primary care with the Sheehan Disability Scale. International Journal of Psychiatry in Medicine, 27(2): 93105.Google Scholar
Lovera, J., Bagert, B., Smoot, K. H., Wild, K., Frank, R., Bogardus, K., … Bourdette, D. N. (2006). Correlations of Perceived Deficits Questionnaire of Multiple Sclerosis Quality of Life Inventory with Beck Depression Inventory and neuropsychological tests. Journal of Rehabilitation Research and Development, 43(1): 7382.Google Scholar
Magni, G., Marchetti, M., Moreschi, C., Merskey, H., & Luchini, S. R. (1993). Chronic musculoskeletal pain and depressive symptoms in the National Health and Nutrition Examination. I: Epidemiologic follow-up study. Pain, 53(2): 163168.Google Scholar
Melzack, R. (1975). The McGill Pain Questionnaire: Major properties and scoring methods. Pain, 1(3): 277299.Google Scholar
Moriarty, O., McGuire, B. E., & Finn, D. P. (2011). The effect of pain on cognitive function: A review of clinical and preclinical research. Progress in Neurobiology, 93(3): 385404.Google Scholar
Morin, C. M., Belleville, G., Belanger, L., & Ivers, H. (2011). The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep, 34(5): 601608.Google Scholar
Noel, P. H., Williams, J. W. Jr., Unützer, J., Worchel, J., Lee, S., Cornell, J., … Hunkeler, E. (2004). Depression and comorbid illness in elderly primary care patients: Impact on multiple domains of health status and well-being. Annals of Family Medicine, 2(6): 555562.Google Scholar
Norell-Clarke, A., Jansson-Frojmark, M., Tillfors, M., Harvey, A. G., & Linton, S. J. (2014). Cognitive processes and their association with persistence and remission of insomnia: Findings from a longitudinal study in the general population. Behaviour Research and Therapy, 54: 3848.Google Scholar
Okada, K., Murase, K., & Kawakita, K. (1999). Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat. Brain Research, 834(1–2): 112121.Google Scholar
Rosekind, M. R., Gregory, K. B., Mallis, M. M., Brandt, S. L., Seal, B., & Lerner, D. (2010). The cost of poor sleep: Workplace productivity loss and associated costs. Journal of Occupational and Environmental Medicine/American College of Occupational and Environmental Medicine, 52(1): 9198.Google Scholar
Roth, T., Jaeger, S., Jin, R., Kalsekar, A., Stang, P. E., & Kessler, R. C. (2006). Sleep problems, comorbid mental disorders, and role functioning in the national comorbidity survey replication. Biological Psychiatry, 60(12): 13641371.Google Scholar
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3): 154167.Google Scholar
Sheehan, K. H. & Sheehan, D. V. (2008). Assessing treatment effects in clinical trials with the discan metric of the Sheehan Disability Scale. International Clinical Psychopharmacology, 23(2): 7083.Google Scholar
Shekleton, J. A., Flynn-Evans, E. E., Miller, B., Epstein, L. J., Kirsch, D., Brogna, L. A., … Rajaratnam, S. M. W. (2014). Neurobehavioral performance impairment in insomnia: Relationships with self-reported sleep and daytime functioning. Sleep, 37(1): 107116.CrossRefGoogle ScholarPubMed
Tait, R. C., Chibnall, J. T., & Krause, S. (1990).The Pain Disability Index: Psychometric properties. Pain, 40(2): 171182.Google Scholar
Tian, H., Robinson, R. L., & Sturm, R. (2005). Labor market, financial, insurance and disability outcomes among near elderly Americans with depression and pain. Journal of Mental Health Policy and Economics, 8(4): 219228.Google Scholar
Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience, 6(7): 533544.Google Scholar
Von Korff, M., Dworkin, S. F., Le Resche, L., & Kruger, A. (1988). An epidemiologic comparison of pain complaints. Pain, 32(2): 173183.Google Scholar
Wilson, K. G., Eriksson, M. Y., D’Eon, J. L., Mikail, S. F., & Emery, P. C. (2002). Major depression and insomnia in chronic pain. Clinical Journal of Pain, 18(2): 7783.Google Scholar
Wolfe, F., Clauw, D. J., Fitzcharles, M. A., Goldenberg, D. L., Häuser, W., Katz, R. S., … Winfield, J. B. (2011). Fibromyalgia criteria and severity scales for clinical and epidemiological studies: A modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. Journal of Rheumatology, 38(6): 11131122.Google Scholar

References

Auerbach, R. P., Admon, R., & Pizzagalli, D. A. (2014). Adolescent depression: Stress and reward dysfunction. Harvard Review of Psychiatry, 22(3): 139148.Google Scholar
Baert, S., De Raedt, R., Schacht, R., & Koster, E. H. (2010). Attentional bias training in depression: Therapeutic effects depend on depression severity. Journal of Behavior Therapy and Experimental Psychiatry, 41(3): 265274.Google Scholar
Baune, B. T., Fuhr, M., Air, T., & Hering, C. (2014). Neuropsychological functioning in adolescents and young adults with major depressive disorder: A review. Psychiatry Research, 218(3): 261271.Google Scholar
Baune, B. T. & Renger, L. (2014). Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression: A systematic review. Psychiatry Research, 219(1): 2550.Google Scholar
Birmaher, B., Brent, D. A., & Benson, R. S. (1998). Summary of the practice parameters for the assessment and treatment of children and adolescents with depressive disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 37(11): 12341238.Google Scholar
Birmaher, B., Ryan, N. D., Williamson, D. E., Brent, D. A., Kaufman, J., Dahl, R. E., … Nelson, B. (1996). Childhood and adolescent depression: A review of the past 10 years. Part I. Journal of the American Academy of Child & Adolescent Psychiatry, 35(11): 14271439.Google Scholar
Brent, D., Emslie, G., Clarke, G., Wagner, K. D., Asarnow, J. R., Keller, M., … Zelazny, J. (2008). Switching to another SSRI or to venlafaxine with or without cognitive behavioral therapy for adolescents with SSRI-resistant depression: The TORDIA randomized controlled trial. JAMA, 299(8): 901913.Google Scholar
Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1): 7481.Google Scholar
Carver, C. S., Johnson, S. L., & Joormann, J. (2013). Major depressive disorder and impulsive reactivity to emotion: Toward a dual-process view of depression. British Journal of Clinical Psychology, 52(3): 285299.Google Scholar
Casement, M. D., Guyer, A. E., Hipwell, A. E., McAloon, R. L., Hoffmann, A. M., Keenan, K. E., & Forbes, E. E. (2014). Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Developmental Cognitive Neuroscience, 8: 1827.Google Scholar
Cataldo, M. G., Nobile, M., Lorusso, M. L., Battaglia, M., & Molteni, M. (2005). Impulsivity in depressed children and adolescents: A comparison between behavioral and neuropsychological data. Psychiatry Research, 136(2–3): 123133.Google Scholar
Cheung, A. H., Zuckerbrot, R. A., Jensen, P. S., Ghalib, K., Laraque, D., Stein, R. E. K., & the GLAD-PC Steering Group (2007). Guidelines for adolescent depression in primary care (GLAD-PC): II. Treatment and ongoing management. Pediatrics, 120(5): e1313e1326.Google Scholar
Clasen, P. C., Beevers, C. G., Mumford, J. A., & Schnyer, D. M. (2014). Cognitive control network connectivity in adolescent women with and without a parental history of depression. Developmental Cognitive Neuroscience, 7: 1322.Google Scholar
Dickstein, D. P., Finger, E. C., Skup, M., Pine, D. S., Blair, J. R., & Leibenluft, E. (2010). Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disorders, 12(7): 707719.Google Scholar
Favre, T., Hughes, C., Emslie, G., Stavinoha, P., Kennard, B., & Carmody, T. (2009). Executive functioning in children and adolescents with major depressive disorder. Child Neuropsychology, 15(1): 8598.Google Scholar
Galecki, P., Talarowska, M., Bobińska, K., Kowalczyk, E., Gałecka, E., & Lewiński, A. (2013). Thiol protein groups correlate with cognitive impairment in patients with recurrent depressive disorder. Neuro Endocrinology Letters, 34(8): 780786.Google Scholar
Günther, T., Holtkamp, K., Jolles, J., Herpertz-Dahlmann, B., & Konrad, K. (2004). Verbal memory and aspects of attentional control in children and adolescents with anxiety disorders or depressive disorders. Journal of Affective Disorders, 82(2): 265269.Google Scholar
Halari, R., Simic, M., Pariante, C. M., Papadopoulos, A., Cleare, A., Brammer, M., … Rubia, K. (2009). Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naive adolescents with depression compared to controls. Journal of Child Psychology and Psychiatry, 50(3): 307316.Google Scholar
Han, G., Klimes-Dougan, B., Jepsen, S., Ballard, K., Nelson, M., Houri, A., … Cullen, K. (2012). Selective neurocognitive impairments in adolescents with major depressive disorder. Journal of Adolescence, 35(1): 1120.Google Scholar
Hankin, B. L., Wetter, E. K., & Flory, K. (2012). Appetitive motivation and negative emotion reactivity among remitted depressed youth. Journal of Clinical Child & Adolescent Psychology, 41(5): 611620.Google Scholar
Hardin, M. G., Schroth, E., Pine, D. S., & Ernst, M. (2007). Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences. Journal of Child Psychology and Psychiatry, 48(5): 446454.Google Scholar
Ho, T. C., Yang, G., Wu, J., Cassey, P., Brown, S. D., Hoang, N., … Yang, T. T. (2014). Functional connectivity of negative emotional processing in adolescent depression. Journal of Affective Disorders, 155: 6574.Google Scholar
Jacobson, L. A., Ryan, M., Martin, R. B., Ewen, J., Mostofsky, S. H., Denckla, M. B., & Mahone, E. M. (2011). Working memory influences processing speed and reading fluency in ADHD. Child Neuropsychology, 17(3): 209224.Google Scholar
Jenness, J. L., Hankin, B. L., Young, J. F., & Gibb, B. E. (2015). Misclassification and identification of emotional facial expressions in depressed youth: A preliminary study. Journal of Clinical Child & Adolescent Psychology, 44(4): 559565.Google Scholar
Klimes-Dougan, B., Ronsaville, D., Wiggs, E. A., & Martinez, P. E. (2006). Neuropsychological functioning in adolescent children of mothers with a history of bipolar or major depressive disorders. Biological Psychiatry, 60(9): 957965.Google Scholar
Korhonen, V., Laukkanen, E., Antikainen, R., Peiponen, S., Lehtonen, J., & Viinamäki, H. (2002). Effect of major depression on cognitive performance among treatment-seeking adolescents. Nordic Journal of Psychiatry, 56(3): 187193.Google Scholar
Kowatch, R. A., Carmody, T. J., Emslie, G. J., Rintelmann, J. W., Hughes, C. W., & Rush, A. J. (1999). Prediction of response to fluoxetine and placebo in children and adolescents with major depression: A hypothesis generating study. Journal of Affective Disorders, 54(3): 269276.Google Scholar
Kyte, Z. A., Goodyer, I. M., & Sahakian, B. J. (2005). Selected executive skills in adolescents with recent first episode major depression. Journal of Child Psychology and Psychiatry, 46(9): 9951005.Google Scholar
Lees, C. & Hopkins, J. (2013). Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: A systematic review of randomized control trials. Preventing Chronic Disease, 10: E174.Google Scholar
Lin, A., Reniers, R. L., & Wood, S. J. (2013). Clinical staging in severe mental disorder: Evidence from neurocognition and neuroimaging. British Journal of Psychiatry. Supplement, 54: s11s17.Google Scholar
Merikangas, K. R., He, J. P., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., … Swendsen, J. (2010). Lifetime prevalence of mental disorders in US adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS–A). Journal of the American Academy of Child & Adolescent Psychiatry, 49(10): 980989.Google Scholar
Morgan, J. K., Olino, T. M., McMakin, D. L., Ryan, N. D., & Forbes, E. E. (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52: 6674.Google Scholar
Moylan, S., Maes, M., Wray, N. R., & Berk, M. (2013). The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry, 18(5): 595606.Google Scholar
Neshat-Doost, H. T., Moradi, A. R., Taghavi, M. R., Yule, W., & Dalgleish, T. (2000). Lack of attentional bias for emotional information in clinically depressed children and adolescents on the dot probe task. Journal of Child Psychology and Psychiatry, 41(3): 363368.Google Scholar
Olino, T. M., McMakin, D. L., Morgan, J. K., Silk, J. S., Birmaher, B., Axelson, D. A., … Forbes, E. E. (2014). Reduced reward anticipation in youth at high-risk for unipolar depression: A preliminary study. Developmental Cognitive Neuroscience, 8: 5564.Google Scholar
Oral, E., Canpolat, S., Yildirim, S., Gulec, M., Ailyev, E., & Aydin, N. (2012). Cognitive functions and serum levels of brain-derived neurotrophic factor in patients with major depressive disorder. Brain Research Bulletin, 88(5): 454459.Google Scholar
Owens, M., Herbert, J., Jones, P. B., Sahakian, B. J., Wilkinson, P. O., Dunn, V. J., … Goodyer, I. M. (2014). Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 36383643.Google Scholar
Pan, L. A., Hassel, S., Segreti, A. M., Nau, S. A., Brent, D. A., & Phillips, M. L. (2013). Differential patterns of activity and functional connectivity in emotion processing neural circuitry to angry and happy faces in adolescents with and without suicide attempt. Psychological Medicine, 43(10): 21292142.Google Scholar
Rengasamy, M., Mansoor, B. M., Hilton, R., Porta, G., He, J., Emslie, G. J., … Brent, D. A. (2013). The bi-directional relationship between parent–child conflict and treatment outcome in treatment-resistant adolescent depression. Journal of the American Academy of Child & Adolescent Psychiatry, 52(4): 370377.Google Scholar
Roiser, J. P. & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18(3): 139149.Google Scholar
Shamseddeen, W., Clarke, G., Wagner, K. D., Ryan, N. D., Birmaher, B., Emslie, G., … Brent, D. A. (2011). Treatment-resistant depressed youth show a higher response rate if treatment ends during summer school break. Journal of the American Academy of Child & Adolescent Psychiatry, 50(11): 11401148.Google Scholar
Stuart, M. J. & Baune, B. T. (2014). Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies. Neuroscience and Biobehavioral Reviews, 42: 93115.Google Scholar
Thapar, A., Collishaw, S., Pine, D. S., & Thapar, A. K. (2012). Depression in adolescence. The Lancet, 379(9820): 10561067.Google Scholar

References

Brouwer, R. M., Mandl, R. C. W., Schnack, H. G., van Soelen, I. L. C., van Baal, G. C., Peper, J. S., … Pol, H. H. (2012). White matter development in early puberty: A longitudinal volumetric and diffusion tensor imaging twin study. PLoS ONE, 7: e32316.Google Scholar
Brown, F., Lewine, R., Hudgins, P., & Risch, S. (1992). White matter hyperintensity signals in psychiatric and nonpsychiatric subjects, American Journal of Psychiatry, 149(5): 620625.Google Scholar
Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., … Markus, H. S. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2): 217222.Google Scholar
Cheng, Y. Q., Xu, J., Chai, P., Li, H. J., Luo, C. R., Yang, T., … Xu, L. (2010). Brain volume alteration and the correlations with the clinical characteristics in drug-naïve first-episode MDD patients: A voxel-based morphometry study. Neuroscience Letters, 480(1): 3034.Google Scholar
Cole, J., Costafreda, S. G., McGuffin, P., & Fu, C. H. Y. (2011). Hippocampal atrophy in first episode depression: A meta-analysis of magnetic resonance imaging studies. Journal of Affective Disorders, 134(1–3): 483487.Google Scholar
Dupont, R. M., Jernigan, T. L., Heindel, W., Butters, N., Shafer, K., Wilson, T., … Gillin, J. C. (1995). Magnetic resonance imaging and mood disorders: Localization of white matter and other subcortical abnormalities. Archives of General Psychiatry, 52(9): 747755.Google Scholar
Ellison-Wright, I. & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3): 310.Google Scholar
Fields, R. D., Araque, A., Johansen-Berg, H., Lim, S.-S., Lynch, G., Nave, K.-A., … Wake, H. (2014). Glial biology in learning and cognition. Neuroscientist, 20(5): 426431.Google Scholar
Frodl, T., Carballedo, A., Fagan, A. J., Lisiecka, D., Ferguson, Y., & Meaney, J. F. (2012). Effects of early-life adversity on white matter diffusivity changes in patients at risk for major depression. Journal of Psychiatry & Neuroscience, 37(1): 3745.Google Scholar
Harrison, P. J. (2002). The neuropathology of primary mood disorder. Brain, 125(7): 14281449.Google Scholar
Hettema, J. M., Kettenmann, B., Ahluwalia, V., McCarthy, C., Kates, W. R., Schmitt, J. E., … Fatouros, P. (2012). A pilot multimodal twin imaging study of generalized anxiety disorder. Depression and Anxiety, 29(3): 202209.Google Scholar
Huang, H., Fan, X., Williamson, D. E., & Rao, U. (2011). White matter changes in healthy adolescents at familial risk for unipolar depression: A diffusion tensor imaging study. Neuropsychopharmacology, 36(3): 684691.Google Scholar
Johansen-Berg, H., Gutman, D. A., Behrens, T. E., Matthews, P. M., Rushworth, M. F., Katz, E., … Mayberg, H. S. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex, 18(6): 13741383.Google Scholar
Kempton, M. J., Geddes, J. R., Ettinger, U., Williams, S. C., & Grasby, P. M. (2008). Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Archives of General Psychiatry, 65(9): 10171032.Google Scholar
Korgaonkar, M. S., Grieve, S. M., Koslow, S. H., Gabrieli, J. D. E., Gordon, E., & Williams, L. M. (2011). Loss of white matter integrity in major depressive disorder: Evidence using tract-based spatial statistical analysis of diffusion tensor imaging. Human Brain Mapping, 32(12): 21612171.Google Scholar
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3): 10441055.Google Scholar
Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience, 38(1): 4956.Google Scholar
MacQueen, G. M. (2009). Magnetic resonance imaging and prediction of outcome in patients with major depressive disorder. Journal of Psychiatry & Neuroscience, 34(5): 343349.Google Scholar
Onorati, M., Camnasio, S., Binetti, M., Jung, C. B., Moretti, A., & Cattaneo, E. (2010). Neuropotent self-renewing neural stem (NS) cells derived from mouse induced pluripotent stem (iPS) cells. Molecular and Cellular Neuroscience, 43(3): 287295.Google Scholar
Rajkowska, G. & Stockmeier, C. A. (2013). Astrocyte pathology in major depressive disorder: Insights from human postmortem brain tissue. Current Drug Targets, 14(11): 12251236.Google Scholar
Sacher, J., Neumann, J., Fünfstück, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2): 142148.Google Scholar
Sexton, C. E., Allan, C. L., Le Masurier, M., McDermott, L. M., Kalu, U. G., Herrmann, L. L., … Ebmeier, K. P. (2012a). Magnetic resonance imaging in late-life depression: Multimodal examination of network disruption. Archives of General Psychiatry, 69(7): 680689.Google Scholar
Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66(9): 814823.Google Scholar
Sexton, C. E., McDermott, L., Kalu, U. G., Herrmann, L. L., Bradley, K. M., Allan, C. L., … Ebmeier, K. P. (2012b). Exploring the pattern and neural correlates of neuropsychological impairment in late-life depression. Psychological Medicine, 42(6): 11951202.Google Scholar
Shah, P. J., Ebmeier, K. P., Glabus, M. F., & Goodwin, G. M. (1998). Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression: Controlled magnetic resonance imaging study. British Journal of Psychiatry, 172: 527532.Google Scholar
Song, S.-K., Sun, S.-W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3): 14291436.Google Scholar
Thomas, A. J., Gallagher, P., Robinson, L. J., Porter, R. J., Young, A. H., Ferrier, I. N., & O’Brien, J. T. (2009). A comparison of neurocognitive impairment in younger and older adults with major depression. Psychological Medicine, 39(5): 725733.Google Scholar
van Ewijk, H., Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., & Oosterlaan, J. (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 36(4): 10931106.Google Scholar
Walhovd, K. B., Johansen-Berg, H., & Karadottir, R. T. (2014). Unraveling the secrets of white matter: Bridging the gap between cellular, animal and human imaging studies. Neuroscience, 276: 213.Google Scholar
Yip, S. W., Chandler, R. A., Rogers, R. D., Mackay, C. E., & Goodwin, G. M. (2013a). White matter alterations in antipsychotic- and mood stabilizer-naive individuals with bipolar II/NOS disorder. NeuroImage: Clinical, 3: 271278.Google Scholar
Yip, S. W., Lacadie, C., Xu, J., Worhunsky, P. D., Fulbright, R. K., Constable, R. T., & Potenza, M. N. (2013b). Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World Journal of Biological Psychiatry, 14(2): 129138.Google Scholar
Zhao, Y.-J., Du, M.-Y., Huang, X.-Q., Lui, S., Chen, Z.-Q., Liu, J., … Gong, Q.-Y. (2014). Brain grey matter abnormalities in medication-free patients with major depressive disorder: A meta-analysis. Psychological Medicine, 44: 29272937.Google Scholar
Zhou, Y., Qin, L. D., Chen, J., Qian, L. J., Tao, J., Fang, Y. R., & Xu, J. R. (2011). Brain microstructural abnormalities revealed by diffusion tensor images in patients with treatment-resistant depression compared with major depressive disorder before treatment. European Journal of Radiology, 80(2): 450454.Google Scholar
Zhu, X., Wang, X., Xiao, J., Zhong, M., Liao, J., & Yao, S. (2011). Altered white matter integrity in first-episode, treatment-naive young adults with major depressive disorder: A tract-based spatial statistics study. Brain Research, 1369: 223229.Google Scholar

References

Abas, M. A., Sahakian, B. J., & Levy, R. (1990). Neuropsychological deficits and CT scan changes in elderly depressives. Psychological Medicine, 20(3): 507520.Google Scholar
Aleman, A., Hijman, R., de Haan, E. H., & Kahn, R. S. (1999). Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry, 156(9): 13581366.Google Scholar
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9: 357381.Google Scholar
Alloway, T. P. & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1): 2029.Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Bang-Andersen, B., Ruhland, T., Jørgensen, M., Smith, G., Frederiksen, K., Jensen, K. G., … Stensbøl, T. B. (2011). Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): A novel multimodal compound for the treatment of major depressive disorder. Journal of Medicinal Chemistry, 54(9): 32063221.Google Scholar
Beats, B. C., Sahakian, B. J., & Levy, R. (1996). Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychological Medicine, 26(3): 591603.Google Scholar
Beck, A. (1967). Depression: Clinical, Experimental, and Theoretical Aspects. New York: Harper & Row.Google Scholar
Clark, L., Chamberlain, S. R., & Sahakian, B. J. (2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32: 5774.Google Scholar
Clark, L., Sarna, A., & Goodwin, G. M. (2005). Impairment of executive function but not memory in first-degree relatives of patients with bipolar I disorder and in euthymic patients with unipolar depression. American Journal of Psychiatry, 162: 19801982.Google Scholar
Cuthbert, B. & Insel, T. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11: 126.Google Scholar
di Simplicio, M., Norbury, R., & Harmer, C. J. (2012). Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression. Molecular Psychiatry, 17(5): 503510.Google Scholar
Drevets, W. C., Price, J. L., Simpson, J. R., Todd, R. D., Reich, T., Vannier, M., & Raichle, M. E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627): 824827.Google Scholar
Duman, R. S. & Aghajanian, G. K. (2014). Neurobiology of rapid acting antidepressants: Role of BDNF and GSK-3 [beta]. Neuropsychopharmacology, 39(1): 233.Google Scholar
Elliott, R., Rubinsztein, J. S., Sahakian, B. J., & Dolan, R. J. (2000). Selective attention to emotional stimuli in a verbal go/no-go task: An fMRI study. Neuroreport, 11(8): 17391744.Google Scholar
Elliott, R., Sahakian, B. J., Herrod, J. J., Robbins, T. W., & Paykel, E. S. (1997). Abnormal response to negative feedback in unipolar depression: Evidence for a diagnosis specific impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 63(1): 7482.Google Scholar
Elliott, R., Sahakian, B. J., Mckay, A. P., Herrod, J. J., Robbins, T. W., & Paykel, E. S. (1996). Neuropsychological impairments in unipolar depression: The influence of perceived failure on subsequent performance. Psychological Medicine, 26(5): 975989.Google Scholar
Erickson, K., Drevets, W. C., Clark, L., Cannon, D. M., Bain, E. E., Zarate, C. A., … Sahakian, B. J. (2005). Mood-congruent bias in affective Go/No-Go performance of unmedicated patients with major depressive disorder. American Journal of Psychiatry, 162(11): 21712173.Google Scholar
Eshel, N. & Roiser, J. P. (2010). Reward and punishment processing in depression. Biological Psychiatry, 68(2): 118124.Google Scholar
Fineberg, N. A., Haddad, P. M., Carpenter, L., Gannon, B., Sharpe, R., Young, A. H., … Sahakian, B. J. (2013). The size, burden and cost of disorders of the brain in the UK. Journal of Psychopharmacology, 27(9): 761770.Google Scholar
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2): 172179.Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456): 815836.Google Scholar
Ghio, L., Gotelli, S., Marcenaro, M., Amore, M., & Natta, W. (2014). Duration of untreated illness and outcomes in unipolar depression: A systematic review and meta-analysis. Journal of Affective Disorders, 152–154: 4551.CrossRefGoogle ScholarPubMed
Goss, A. J., Kaser, M., Costafreda, S. G., Sahakian, B. J., & Fu, C. (2013). Modafinil augmentation therapy in unipolar and bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Psychiatry, 74(11): 11011107.Google Scholar
Graham, J., Salimi-Khorshidi, G., Hagan, C., Walsh, N., Goodyer, I., Lennox, B., & Suckling, J. (2013). Meta-analytic evidence for neuroimaging models of depression: State or trait? Journal of Affective Disorders, 151(2): 423431.Google Scholar
Hardy, S. E. (2009). Methylphenidate for the treatment of depressive symptoms, including fatigue and apathy, in medically ill older adults and terminally ill adults. American Journal of Geriatric Pharmacotherapy, 7(1): 3459.Google Scholar
Harmer, C. J. (2008). Serotonin and emotional processing: Does it help explain antidepressant drug action? Neuropharmacology, 55(6): 10231028.Google Scholar
Harmer, C. J., Cowen, P. J., & Goodwin, G. M. (2011). Efficacy markers in depression. Journal of Psychopharmacology, 25: 11481158.Google Scholar
Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009a). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. British Journal of Psychiatry, 195(2): 102108.Google Scholar
Harmer, C. J., O’Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., … Cowen, P. (2009b). Effect of acute antidepressant administration on negative affective bias in depressed patients. American Journal of Psychiatry, 166: 11781184.Google Scholar
Harvey, P.-O., Fossati, P., Pochon, J.-B., Levy, R., Lebastard, G., Lehéricy, S., … Dubois, B. (2005). Cognitive control and brain resources in major depression: An fMRI study using the n-back task. NeuroImage, 26(3): 860869.Google Scholar
Insel, T. R. & Gogtay, N. (2014). National Institute of Mental Health clinical trials: New opportunities, new expectations. JAMA Psychiatry, 71(7): 745746.Google Scholar
Insel, T. R., Sahakian, B. J., Voon, V., Nye, J., Brown, V. J., Altevogt, B. M., … Williams, J. H. (2012). Drug research: A plan for mental illness. Nature, 483(7389): 269.Google Scholar
Insel, T. R., Voon, V., Nye, J. S., Brown, V. J., Altevogt, B. M., Bullmore, E. T., … Sahakian, B. J. (2013). Innovative solutions to novel drug development in mental health. Neuroscience & Biobehavioral Reviews, 37(10): 24382444.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Katona, C., Hansen, T., & Olsen, C. K. (2012). A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. International Clinical Psychopharmacology, 27(4): 215223.Google Scholar
Kennedy, S. H., Evans, K. R., Krüger, S., Mayberg, H. S., Meyer, J. H., McCann, S., … Vaccarino, F. J. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry, 158(6): 899905.Google Scholar
Kennedy, S. H., Giacobbe, P., Rizvi, S. J., Placenza, F. M., Nishikawa, Y., Mayberg, H. S., & Lozano, A. M. (2011). Deep brain stimulation for treatment-resistant depression: Follow-up after 3 to 6 years. American Journal of Psychiatry, 168(5): 502510.Google Scholar
Kyte, Z. A., Goodyer, I. M., & Sahakian, B. J. (2005). Selected executive skills in adolescents with recent first episode major depression. Journal of Child Psychology and Psychiatry, 46(9): 9951005.Google Scholar
Luckenbaugh, D. A., Niciu, M. J., Ionescu, D. F., Nolan, N. M., Richards, E. M., Brutsche, N. E., … Zarate, C. A. (2014). Do the dissociative side effects of ketamine mediate its antidepressant effects? Journal of Affective Disorders, 159: 5661.Google Scholar
Maalouf, F. T., Clark, L., Tavitian, L., Sahakian, B. J., Brent, D., & Phillips, M. L. (2012). Bias to negative emotions: A depression state-dependent marker in adolescent major depressive disorder. Psychiatry Research, 198(1): 2833.Google Scholar
Malhotra, A. K., Pinals, D. A., Weingartner, H., Sirocco, K., Missar, C. D., Pickar, D., & Breier, A. (1996). NMDA receptor function and human cognition: The effects of ketamine in healthy volunteers. Neuropsychopharmacology, 14(5): 301307.Google Scholar
Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44(4): 377384.Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.Google Scholar
Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20(6): RC65.Google Scholar
Mørk, A., Pehrson, A., Brennum, L. T., Nielsen, S. M., Zhong, H., Lassen, A. B., … Stensbøl, T. B. (2012). Pharmacological effects of Lu AA21004: A novel multimodal compound for the treatment of major depressive disorder. Journal of Pharmacology and Experimental Therapeutics, 340(3): 666675.Google Scholar
Müller, U., Rowe, J. B., Rittman, T., Lewis, C., Robbins, T. W., & Sahakian, B. J. (2013). Effects of modafinil on oligem cognition, task enjoyment and creative thinking in healthy volunteers. Neuropharmacology, 64: 490495.Google Scholar
Murphy, F. C., Michael, A., Robbins, T. W., & Sahakian, B. J. (2003). Neuropsychological impairment in patients with major depressive disorder: The effects of feedback on task performance. Psychological Medicine, 33(3): 455467.Google Scholar
Murphy, F. C., Rubinsztein, J. S., Michael, A., Rogers, R. D., Robbins, T. W., Paykel, E. S., & Sahakian, B. J. (2001). Decision-making cognition in mania and depression. Psychological Medicine, 31(4): 679693.Google Scholar
Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H. U., & Jönsson, B., on behalf of the CDBE2010 study group and the European Brain Council (2012). The economic cost of brain disorders in Europe. European Journal of Neurology, 19: 155162.Google Scholar
Olvet, D. M., Burdick, K. E., & Cornblatt, B. A. (2012). Assessing the potential to use neurocognition to predict who is at risk for developing bipolar disorder: A review of the literature. Cognitive Neuropsychiatry, 18(1–2): 129145.Google Scholar
ONS (2005). Suicide rates in England and Wales, 2000 to 2003. Office for National Statistics (www.statistics.gov.uk).Google Scholar
Ormel, J., Koeter, M. J., van den Brink, W., & van de Willige, G. (1991). Recognition, management, and course of anxiety and depression in general practice. Archives of General Psychiatry, 48(8): 700706.Google Scholar
Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6(1): 3138.Google Scholar
Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P. M. J., Carpenter, T. A., … Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11(2): 567574.Google Scholar
Owens, M., Goodyer, I. M., Wilkinson, P., Bhardwaj, A., Abbott, R., Croudace, T., … Sahakian, B. J. (2012). 5-HTTLPR and early childhood adversities moderate cognitive and emotional processing in adolescence. PLoS ONE, 7: e48482.Google Scholar
Owens, M., Herbert, J., Jones, P. B., Sahakian, B. J., Wilkinson, P. O., Dunn, V. J., … Goodyer, I. M. (2014). Elevated morning cortisol is a stratified population-level biomarker for major depression in boys only with high depressive symptoms. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 36383643.Google Scholar
Paykel, E. & Priest, R. (1992). Recognition and management of depression in general practice: Consensus statement. British Medical Journal, 305(6863): 11981202.Google Scholar
Pulcu, E., Trotter, P., Thomas, E., McFarquhar, M., Juhasz, G., Sahakian, B., … Elliott, R. (2014). Temporal discounting in major depressive disorder. Psychological Medicine, 44: 18251834.Google Scholar
Robinson, O. J., Cools, R., & Sahakian, B. J. (2012). Tryptophan depletion disinhibits punishment but not reward prediction: Implications for resilience. Psychopharmacology (Berlin), 219(2): 599605.Google Scholar
Robinson, O. J. & Sahakian, B. J. (2008). Recurrence in major depressive disorder: A neurocognitive perspective. Psychological Medicine, 38: 315318.Google Scholar
Robinson, O. J. & Sahakian, B. J. (2013). Cognitive biomarkers in depression. In Lavretsky, H., Sajatovic, M., & Reynolds, C. (eds.), Late-Life Mood Disorders (pp. 606626). New York: Oxford University Press.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44: 20292040.Google Scholar
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37(1): 117136.Google Scholar
Roiser, J. P. & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18(3): 139149.Google Scholar
Sahakian, B. J. (2014). What do experts think we should do to achieve brain health? Neuroscience and Biobehavioral Reviews, 43: 240258.Google Scholar
Scoriels, L., Barnett, J. H., Murray, G. K., Cherukuru, S., Fielding, M., Cheng, F., … Jones, P. B. (2011). Effects of modafinil on emotional processing in first episode psychosis. Biological Psychiatry, 69(5): 457464.Google Scholar
Scoriels, L., Jones, P. B., & Sahakian, B. J. (2013). Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology, 64: 168184.Google Scholar
Tang, W., Liang, H., Lau, C., Tang, A., & Ungvari, G. S. (2013). Relationship between cognitive impairment and depressive symptoms in current ketamine users. Journal of Studies on Alcohol and Drugs, 74(3): 460468.Google Scholar
Taylor-Tavares, J., Clark, L., Furey, M., Williams, G., Sahakian, B., & Drevets, W. (2008). Neural basis of abnormal response to negative feedback in unmedicated mood disorders. NeuroImage, 42(3): 11181126.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., … Memish, Z. A. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380: 21632196.Google Scholar
Walsh, N. D., Williams, S. C. R., Brammer, M. J., Bullmore, E. T., Kim, J., Suckling, J., … Fu, C. H. Y. (2007). A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biological Psychiatry, 62(11): 12361243.Google Scholar
Yuan, K., Steedle, J., Shavelson, R., Alonzo, A., & Oppezzo, M. (2006). Working memory, fluid intelligence, and science learning. Educational Research Review, 1(2): 8398.Google Scholar
Zarate, C. A., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., … Manji, H. K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry, 63(8): 856864.Google Scholar

References

Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3): 165178.Google Scholar
Armstrong, T. & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8): 704723.Google Scholar
Baron-Cohen, S., Wheelright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2): 241251.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3): 497529.Google Scholar
Bhanji, J. P. & Delgado, M. R. (2013). The social brain and reward: Social information processing in the human striatum. Wiley Interdisciplinary Reviews: Cognitive Science, 5(1): 6173.Google Scholar
Carver, C. S. & Scheier, M. F. (1982). Control theory: A useful conceptual framework for personality-social, clinical, and health psychology. Psychological Bulletin, 92(1): 111135.Google Scholar
Clark, L. A. & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100(3): 316336.Google Scholar
Cusi, A., Nazarov, A., Holshausen, K., MacQueen, G. M., & McKinnon, M. C. (2012). Systematic review of the neural basis of social cognition in patients with mood disorders. Journal of Psychiatry & Neuroscience, 37(3): 154169.Google Scholar
Davey, C. G., Allen, N. B., Harrison, B. J., & Yücel, M. (2011). Increased amygdala response to positive social feedback in young people with major depressive disorder. Biological Psychiatry, 69(8): 734741.Google Scholar
Dickerson, S. S., Gable, S. L., Irwin, M. R., Aziz, N., & Kemeny, M. E. (2009). Social-evaluative threat and proinflammatory cytokine regulation: An experimental laboratory investigation. Psychological Science, 20(10): 12371244.Google Scholar
Dozois, D. J. & Dobson, K. S. (2001). Information processing and cognitive organization in unipolar depression: Specificity and comorbidity issues. Journal of Abnormal Psychology, 110(2): 236246.Google Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643): 290292.Google Scholar
Elliott, R., Lythe, K., Lee, R., McKie, S., Juhasz, G., Thomas, E. J., … Anderson, I. M. (2012). Reduced medial prefrontal responses to social interaction images in remitted depression. Archives of General Psychiatry, 69(1): 3745.Google Scholar
Fossati, P. (2012). Neural correlates of emotion processing: From emotional to social brain. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 22(Suppl. 3): S487S491.Google Scholar
Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., & Mayberg, H. (2003). In search of the emotional self: An fMRI study using positive and negative emotional words. American Journal of Psychiatry, 160(11): 19381945.Google Scholar
Franck, E. & Deraedt, R. (2007). Self-esteem reconsidered: Unstable self-esteem outperforms level of self-esteem as vulnerability marker for depression. Behaviour Research and Therapy, 45(7): 15311541.Google Scholar
Gramer, M. & Saria, K. (2007). Effects of social anxiety and evaluative threat on cardiovascular responses to active performance situations. Biological Psychology, 74(1): 6774.Google Scholar
Grimm, S., Ernst, J., Boesiger, P., Schuepbach, D., Hell, D., Boeker, H., & Northoff, G. (2009). Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Human Brain Mapping, 30(8): 26172627.Google Scholar
Guionnet, S., Nadel, J., Bertasi, E., Sperduti, M., Delaveau, P., & Fossati, P. (2012). Reciprocal imitation: Toward a neural basis of social interaction. Cerebral Cortex, 22(4): 971978.Google Scholar
Harmer, C. J. & Cowen, P. J. (2013).“It’s the way that you look at it”: A cognitive neuropsychological account of SSRI action in depression. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1615): 20120407.Google Scholar
Holtzheimer, P. E. & Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression and its treatment. Trends in Neurosciences, 34(1): 19.Google Scholar
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60: 653670.Google Scholar
Inoue, Y., Tonooka, Y., Yamada, K., & Kanba, S. (2004). Deficiency of theory of mind in patients with remitted mood disorder. Journal of Affective Disorders, 82(3): 403409.Google Scholar
Inoue, Y., Yamada, K., & Kanba, S. (2006). Deficit in theory of mind is a risk for relapse of major depression. Journal of Affective Disorders, 95(1–3): 125127.Google Scholar
Johnson, M. K., Nolen-Hoeksema, S., Mitchell, K. J., & Levin, Y. (2009). Medial cortex activity, self-reflection and depression. Social Cognitive and Affective Neuroscience, 4(4): 313327.Google Scholar
Kendler, K. S., Hettema, J. M., Butera, F., Gardner, C. O., & Prescott, C. A. (2003). Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Archives of General Psychiatry, 60(8): 789796.Google Scholar
Kettle, J. W. L., O’Brien-Simpson, L., & Allen, N. B. (2008). Impaired theory of mind in first-episode schizophrenia: Comparison with community, university and depressed controls. Schizophrenia Research, 99(1–3): 96102.Google Scholar
Ladegaard, N., Larsen, E. R., Videbech, P., & Lysaker, P. H. (2014). Higher-order social cognition in first-episode major depression. Psychiatry Research, 216(1): 3743.Google Scholar
Lee, L., Harkness, K. L., Sabbagh, M. A., & Jacobson, J. A. (2005). Mental state decoding abilities in clinical depression. Journal of Affective Disorders, 86(2–3): 247258.Google Scholar
Lemogne, C., Delaveau, P., Freton, M., Guionnet, S., & Fossati, P. (2012). Medial prefrontal cortex and the self in major depression. Journal of Affective Disorders, 136(1–2): e1e11.Google Scholar
Lemogne, C., Gorwood, P., Boni, C., Pessiglione, M., Lehéricy, S., & Fossati, P. (2011). Cognitive appraisal and life stress moderate the effects of the 5-HTTLPR polymorphism on amygdala reactivity. Human Brain Mapping, 32(11): 18561867.Google Scholar
Lemogne, C., Le Bastard, G., Mayberg, H., Volle, E., Bergouignan, L., Lehéricy, S., … Fossati, P. (2009). In search of the depressive self: Extended medial prefrontal network during self-referential processing in major depression. Social Cognitive and Affective Neuroscience, 4(3): 305312.Google Scholar
Leppänen, J. M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1): 3439.Google Scholar
Masten, C. L., Eisenberger, A. I., Borofsky, L. A., McNealy, K., Pfeifer, J. H., & Dapretto, M. (2011). Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression. Development and Psychopathology, 23(1): 283292.Google Scholar
Miller, G. (2011). Why loneliness is hazardous to your health. Science, 331(6014): 138140.Google Scholar
Nolen-Hoeksema, S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. Journal of Abnormal Psychology, 109(3): 504511.Google Scholar
Onoda, K., Okamoto, Y., Nakashima, K., Nittono, H., Yoshimura, S., Yamawaki, S., … Ura, M. (2010). Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism. Social Cognitive and Affective Neuroscience, 5(4): 385391.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54(5): 504514.Google Scholar
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9): 833857.Google Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2): 676682.Google Scholar
Rotge, J.-Y., Lemogne, C., Hinfray, S., Huguet, P., Grynszpan, O., Tartour, E., … Fossati, P. (2015). A meta-analysis of the anterior cingulate contribution to social pain. Social Cognitive and Affective Neuroscience, 10(1): 1927.Google Scholar
Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers in Human Neuroscience, 8: 278.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9): 23492356.Google Scholar
Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51(9): 693707.Google Scholar
Slavich, G. M. & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3): 774815.Google Scholar
Slavich, G. M., Thornton, T., Torres, L. D., Monroe, S. M., & Gotlib, I. H. (2009). Targeted rejection predicts hastened onset of major depression. Journal of Social and Clinical Psychology, 28(2): 223243.Google Scholar
Somerville, L. H., Kelley, W. M., & Heatherton, T. F. (2010). Self-esteem modulates medial prefrontal cortical responses to evaluative social feedback. Cerebral Cortex, 20(12): 30053013.Google Scholar
Sperduti, M., Guionnet, S., Fossati, P., & Nadel, J. (2014). Mirror neuron system and mentalizing system connect during online social interaction. Cognitive Processing, 15(3): 307316.Google Scholar
Symons, C. S. & Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin, 121(3): 371394.Google Scholar
Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: The role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, 11(4): 153157.Google Scholar
Wang, Y.-G., Wang, Y.-Q., Chen, S.-L., Zhu, C.-Y., & Wang, K. (2008). Theory of mind disability in major depression with or without psychotic symptoms: A componential view. Psychiatry Research, 161(2): 153161.Google Scholar
Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., … Vos, T. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 382(9904): 15751586.Google Scholar
Williams, K. D. (2007). Ostracism. Annual Review of Psychology, 58: 425452.Google Scholar
Williams, K. D. & Jarvis, B. (2006). Cyberball: A program for use in research on interpersonal ostracism and acceptance. Behavior Research Methods, 38(1): 174180.Google Scholar
Wisco, B. E. (2009). Depressive cognition: Self-reference and depth of processing. Clinical Psychology Review, 29(4): 382392.Google Scholar
Yoshimura, S., Okamoto, Y., Onoda, K., Matsunaga, M., Ueda, K., Suzuki, S.-I., & Yamawaki, S. (2010). Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. Journal of Affective Disorders, 122(1–2): 7685.Google Scholar
Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L., & Wang, J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2): 531539.Google Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Association.Google Scholar
Anderson, I. M., Shippen, C., Juhasz, G., Chase, D., Thomas, E., Downey, D., … Deakin, J. W. (2011). State-dependent alteration in face emotion recognition in depression. British Journal of Psychiatry, 198(4): 302308.Google Scholar
Bazin, N., Brunet-Gouet, E., Bourdet, C., Kayser, N., Falissard, B., Hardy-Bayle, M. C., & Passerieux, C. (2009). Quantitative assessment of attribution of intentions to others in schizophrenia using an ecological video-based task: A comparison with manic and depressed patients. Psychiatry Research, 167(1–2): 2835.Google Scholar
Beck, A. T. (1963). Thinking and depression: I. Idiosyncratic content and cognitive distortions. Archives of General Psychiatry, 9(4): 324333.Google Scholar
Beck, A. T. (1964). Thinking and depression: II. Theory and therapy. Archives of General Psychiatry, 10(6): 561571.Google Scholar
Bediou, B., Krolak-Salmon, P., Saoud, M., Henaff, M. A., Burt, M., Dalery, J., & D’Amato, T. (2005). Facial expression and sex recognition in schizophrenia and depression. Canadian Journal of Psychiatry, 50(9): 525533.Google Scholar
Bertoux, M., Delavest, M., De Souza, L. C., Funkiewiez, A., Lepine, J. P., Fossati, P., … Sarazin, M. (2012). Social cognition and emotional assessment differentiates frontotemporal dementia from depression. Journal of Neurology, Neurosurgery, and Psychiatry, 83(4): 411416.Google Scholar
Bhagwagar, Z., Cowen, P. J., Goodwin, G. M., & Harmer, C. J. (2004). Normalization of enhanced fear recognition by acute SSRI treatment in subjects with a previous history of depression. American Journal of Psychiatry, 161(1): 166168.Google Scholar
Bourke, C., Douglas, K., & Porter, R. (2010). Processing of facial emotion expression in major depression: A review. Australian and New Zealand Journal of Psychiatry, 44(8): 681696.Google Scholar
Cao, Y., Zhao, Q.-D., Hu, L.-J., Sun, Z.-Q., Sun, S.-P., Yun, W.-W., & Yuan, Y.-G. (2013). Theory of mind deficits in patients with esophageal cancer combined with depression. World Journal of Gastroenterology, 19(19): 29692973.Google Scholar
Csukly, G., Czobor, P., Szily, E., Takács, B., & Simon, L. (2009). Facial expression recognition in depressed subjects: The impact of intensity level and arousal dimension. Journal of Nervous and Mental Disease, 197(2): 98103.Google Scholar
Csukly, G., Telek, R., Filipovits, D., Takacs, B., Unoka, Z., & Simon, L. (2011). What is the relationship between the recognition of emotions and core beliefs: Associations between the recognition of emotions in facial expressions and the maladaptive schemas in depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 42(1): 129137.Google Scholar
Demenescu, L. R., Kortekaas, R., Den Boer, J. A., & Aleman, A. (2010). Impaired attribution of emotion to facial expressions in anxiety and major depression. PLoS One, 5: e15058.Google Scholar
Derntl, B., Seidel, E. M., Eickhoff, S. B., Kellermann, T., Gur, R. C., Schneider, F., & Habel, U. (2011). Neural correlates of social approach and withdrawal in patients with major depression. Social Neuroscience, 6(5–6): 482501.Google Scholar
Donges, U.-S., Kersting, A., Dannlowski, U., Lalee-Mentzel, J., Arolt, V., & Suslow, T. (2005). Reduced awareness of others’ emotions in unipolar depressed patients. Journal of Nervous and Mental Disease, 193(5): 331337.Google Scholar
Elliott, R., Zahn, R., Deakin, J. W., & Anderson, I. M. (2011). Affective cognition and its disruption in mood disorders. Neuropsychopharmacology, 36(1): 153182.Google Scholar
Gollan, J. K., McCloskey, M., Hoxha, D., & Coccaro, E. F. (2010). How do depressed and healthy adults interpret nuanced facial expressions? Journal of Abnormal Psychology, 119(4): 804810.Google Scholar
Gollan, J. K., Pane, H. T., McCloskey, M. S., & Coccaro, E. F. (2008). Identifying differences in biased affective information processing in major depression. Psychiatry Research, 159(1–2): 1824.Google Scholar
Harkness, K. L., Washburn, D., Theriault, J. E., Lee, L., & Sabbagh, M. A. (2011). Maternal history of depression is associated with enhanced theory of mind in depressed and nondepressed adult women. Psychiatry Research, 189(1): 9196.Google Scholar
Harmer, C. J., Goodwin, G. M., & Cowen, P. J. (2009). Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. British Journal of Psychiatry, 195(2): 102108.Google Scholar
Holdnack, J., Goldstein, G., & Drozdick, L. (2011). Social perception and WAIS-IV performance in adolescents and adults diagnosed with Asperger’s syndrome and autism. Assessment, 18(2): 192200.Google Scholar
Joormann, J. & Gotlib, I. H. (2006). Is this happiness I see? Biases in the identification of emotional facial expressions in depression and social phobia. Journal of Abnormal Psychology, 115(4): 705714.Google Scholar
Kandalaft, M. R., Didehbani, N., Cullum, C. M., Krawczyk, D. C., Allen, T. T., Tamminga, C. A., & Chapman, S. B. (2012). The Wechsler ACS Social Perception Subtest: A preliminary comparison with other measures of social cognition. J Psychoeducational Assessment, 30(5): 455465.Google Scholar
Langenecker, S. A., Bieliauskas, L. A., Rapport, L. J., Zubieta, J.-K., Wilde, E. A., & Berent, S. (2005). Face emotion perception and executive functioning deficits in depression. Journal of Clinical and Experimental Psychology, 27(3): 320333.Google Scholar
Lee, L., Harkness, K. L., Sabbagh, M. A., & Jacobson, J. A. (2005). Mental state decoding abilities in clinical depression. Journal of Affective Disorders, 86(2–3): 247258.Google Scholar
LeMoult, J., Joormann, J., Sherdell, L., Wright, Y., & Gotlib, I. H. (2009). Identification of emotional facial expressions following recovery from depression. Journal of Abnormal Psychology, 118(4): 828833.Google Scholar
Leppänen, J. M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1): 3439.Google Scholar
Leppänen, J. M., Milders, M., Bell, J. S., Terriere, E., & Hietanen, J. K. (2004). Depression biases the recognition of emotionally neutral faces. Psychiatry Research, 128(2): 123133.Google Scholar
Matthews, S. C., Strigo, I. A., Simmons, A. N., Yang, T. T., & Paulus, M. P. (2008). Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. Journal of Affective Disorders, 111(1): 1320.Google Scholar
Milders, M., Bell, S., Platt, J., Serrano, R., & Runcie, O. (2010). Stable expression recognition abnormalities in unipolar depression. Psychiatry Research, 179(1): 3842.Google Scholar
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry, 54(5): 515528.Google Scholar
Raes, F., Hermans, D., & Williams, J. M. (2006). Negative bias in the perception of others’ facial emotional expressions in major depression: The role of depressive rumination. Journal of Nervous and Mental Disease, 194(10): 796799.Google Scholar
Seidel, E. M., Habel, U., Finkelmeyer, A., Schneider, F., Gur, R. C., & Derntl, B. (2010). Implicit and explicit behavioral tendencies in male and female depression. Psychiatry Research, 177(1–2): 124130.Google Scholar
Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biology of Mood & Anxiety Disorders, 1(1) 10.Google Scholar
Surguladze, S. A., El-Hage, W., Dalgleish, T., Radua, J., Gohier, B., & Phillips, M. L. (2010). Depression is associated with increased sensitivity to signals of disgust: A functional magnetic resonance imaging study. Journal of Psychiatric Research, 44(14): 894902.Google Scholar
Surguladze, S. A., Young, A. W., Senior, C., Brebion, G., Travis, M. J., & Phillips, M. L. (2004). Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 18(2): 212218.Google Scholar
Suslow, T., Dannlowski, U., Lalee-Mentzel, J., Donges, U.-S., Arolt, V., & Kersting, A. (2004). Spatial processing of facial emotion in patients with unipolar depression: A longitudinal study. Journal of Affective Disorders, 83(1): 5963.Google Scholar
Suslow, T., Konrad, C., Kugel, H., Rumstadt, D., Zwitserlood, P., Schöning, S., … Kersting, A. 2010. Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biological Psychiatry, 67(2): 155160.Google Scholar
Szanto, K., Dombrovski, A. Y., Sahakian, B. J., Mulsant, B. H., Houck, P. R., Reynolds, C. F. III, & Clark, L. (2012). Social emotion recognition, social functioning, and attempted suicide in late-life depression. American Journal of Geriatric Psychiatry, 20(3): 257265.Google Scholar
Szily, E. & Keri, S. (2009). Anomalous subjective experience and psychosis risk in young depressed patients. Psychopathology, 42: 229235.Google Scholar
Tse, W. S. & Bond, A. J. (2004). The impact of depression on social skills: A review. Journal of Nervous and Mental Disease, 192(4): 260268.Google Scholar
Venn, H. R., Watson, S., Gallagher, P., & Young, A. H. (2006). Facial expression perception: An objective outcome measure for treatment studies in mood disorders? International Journal of Neuropsychopharmacology, 9(2): 229245.Google Scholar
Wang, Y. G., Wang, Y. Q., Chen, S. L., Zhu, C. Y., & Wang, K. (2008). Theory of mind disability in major depression with or without psychotic symptoms: A componential view. Psychiatry Research, 161(2): 153161.Google Scholar
Weniger, G., Lange, C., Ruther, E., & Irle, E. (2004). Differential impairments of facial affect recognition in schizophrenia subtypes and major depression. Psychiatry Research, 128(2): 135146.Google Scholar
Wilbertz, G., Brakemeier, E. L., Zobel, I., Harter, M., & Schramm, E. (2010). Exploring preoperational features in chronic depression. Journal of Affective Disorders, 124(3): 262269.Google Scholar
Wolkenstein, L., Schonenberg, M., Schirm, E., & Hautzinger, M. (2011). I can see what you feel, but I can’t deal with it: Impaired theory of mind in depression. Journal of Affective Disorders, 132(1–2): 104111.Google Scholar
Zobel, I., Werden, D., Linster, H., Dykierek, P., Drieling, T., Berger, M., & Schramm, E. (2010). Theory of mind deficits in chronically depressed patients. Depression and Anxiety, 27(9): 821828.Google Scholar

References

Airaksinen, E., Wahlin, A., Larsson, M., & Forsell, Y. (2006). Cognitive and social functioning in recovery from depression: Results from a population-based three-year follow-up. Journal of Affective Disorders, 96(1–2): 107110.Google Scholar
Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: Possible implications for functional neuropathology. British Journal of Psychiatry, 178(3): 200206.Google Scholar
Basso, M. R. & Bornstein, R. A. (1999). Relative memory deficits in recurrent versus first-episode major depression on a word-list learning task. Neuropsychology, 13(4): 557563.Google Scholar
Baune, B. T., Miller, R., McAfoose, J., Johnson, M., Quirk, F., & Mitchell, D. (2010). The role of cognitive impairment in general functioning in major depression. Psychiatry Research, 176(2–3): 183189.Google Scholar
Beats, B. C., Sahakian, B. J., & Levy, R. (1996). Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychological Medicine, 26(3): 591603.Google Scholar
Behnken, A., Schöning, S., Gerss, J., Konrad, C., de Jong-Meyer, R., Zwanzger, P., & Arolt, V. (2010). Persistent non-verbal memory impairment in remitted major depression: Caused by encoding deficits? Journal of Affective Disorders, 122(1–2): 144148.Google Scholar
Bhardwaj, A., Wilkinson, P., Srivastava, C., & Sharma, M. (2010). Cognitive deficits in euthymic patients with recurrent depression. Journal of Nervous and Mental Disease, 198(7): 513515.Google Scholar
Biringer, E., Lundervold, A., Stordal, K., Mykletun, A., Egeland, J., Bottlender, R., & Lund, A. (2005). Executive function improvement upon remission of recurrent unipolar depression. European Archives of Psychiatry and Clinical Neuroscience, 255(6): 373380.Google Scholar
Boeker, H., Schulze, J., Richter, A., Nikisch, G., Schuepbach, D., & Grimm, S. (2012). Sustained cognitive impairments after clinical recovery of severe depression. Journal of Nervous and Mental Disease, 200(9): 773776.Google Scholar
Bora, E., Harrison, B. J., Yucel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43(10): 20172026.Google Scholar
Bremner, J. D., Vythilingam, M., Vermetten, E., Vaccarino, V., & Charney, D. S. (2004). Deficits in hippocampal and anterior cingulate functioning during verbal declarative memory encoding in midlife major depression. American Journal of Psychiatry, 161(4): 637645.Google Scholar
Christensen, M. V., Kyvik, K. O., & Kessing, L. V. (2006). Cognitive function in unaffected twins discordant for affective disorder. Psychological Medicine, 36(8): 11191129.Google Scholar
Clark, L., Chamberlain, S. R., & Sahakian, B. J. (2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32: 5774.Google Scholar
Colla, M., Kronenberg, G., Deuschle, M., Meichel, K., Hagen, T., Bohrer, M., & Heuser, I. (2007). Hippocampal volume reduction and HPA-system activity in major depression. Journal of Psychiatric Research, 41(7): 553560.Google Scholar
Czeh, B., Simon, M., Schmelting, B., Hiemke, C., & Fuchs, E. (2006). Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology, 31: 16161626.Google Scholar
Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53: 545574.Google Scholar
Den Hartog, H. M., Derix, M. M. A., Van Bemmel, A. L., Kremer, B., & Jolles, J. (1999). Cognitive functioning in young and middle-aged unmedicated out-patients with major depression: Testing the effort and cognitive speed hypotheses. Psychological Medicine, 33(8): 14431451.Google Scholar
Douglas, K. M. & Porter, R. J. (2009). Longitudinal assessment of neuropsychological function in major depression. Australian and New Zealand Journal of Psychiatry, 43(12): 11051117.Google Scholar
Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48(8): 813829.Google Scholar
Duman, R. S. (2002). Pathophysiology of depression: The concept of synaptic plasticity. European Psychiatry, 17(Suppl. 3): 306310.Google Scholar
Frodl, T., Carballedo, A., Fagan, A. J., Lisiecka, D., Ferguson, Y., & Meaney, J. F. (2012). Effects of early-life adversity on white matter diffusivity changes in patients at risk for major depression. Journal of Psychiatry & Neuroscience, 37(1): 3745.Google Scholar
Gallagher, P., Robinson, L. J., Gray, J. M., Porter, R. J., & Young, A. H. (2007). Neurocognitive function following remission in major depressive disorder: Potential objective marker of response? Australian and New Zealand Journal of Psychiatry, 41(1): 5461.Google Scholar
Gorwood, P., Corruble, E., Falissard, B., & Goodwin, G. M. (2008). Toxic effects of depression on brain function: Impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. American Journal of Psychiatry, 165(6): 731739.Google Scholar
Gottesman, I. I. & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4): 636645.Google Scholar
Grant, M. M., Thase, M. E., & Sweeney, J. A. (2001). Cognitive disturbance in outpatient depressed younger adults: Evidence of modest impairment. Biological Psychiatry, 50(1): 3543.Google Scholar
Hasselbalch, B. J., Knorr, U., Hasselbalch, S. G., Gade, A., & Kessing, L. V. (2013). The cumulative load of depressive illness is associated with cognitive function in the remitted state of unipolar depressive disorder. European Psychiatry, 28(6): 349355.Google Scholar
Herrera-Guzman, I., Gudayol-Ferré, E., Herrera-Abarca, J. E., Herrera-Guzmán, D., Montelongo-Pedraza, P., Padrós Blázquez, F., … Guàrdia-Olmos, J. (2010). Major depressive disorder in recovery and neuropsychological functioning: Effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery. Journal of Affective Disorders, 123(1–3): 341350.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2000). Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. American Journal of Psychiatry, 157(8): 12431251.Google Scholar
Kessing, L. V. (2012). Depression and the risk for dementia. Current Opinion in Psychiatry, 25(6): 457461.Google Scholar
Kessing, L. V., Andersen, P. K., Mortensen, P. B., & Bolwig, T. G. (1998). Recurrence in affective disorder. I: Case register study. British Journal of Psychiatry, 172(1): 2328.Google Scholar
Krzysztof, K., Krzystanek, M., Janas-Kozik., M., Klasik, A., & Krupka-Matuszczyk, I. (2015). Impact of pharmacological and psychological treatment methods of depressive and anxiety disorders on cognitive functioning. Journal of Neural Transmission, 122(Suppl. 1): 101110.Google Scholar
Lampe, I. K., Sitskoorn, M. M., & Heeren, T. J. (2004). Effects of recurrent major depressive disorder on behavior and cognitive function in female depressed patients. Psychiatry Research, 125(2): 7379.Google Scholar
Lee, R. S., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
Lorenzetti, V., Allen, N. B., Fornito, A., & Yucel, M. (2009). Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. Journal of Affective Disorders, 117(1–2): 117.Google Scholar
MacQueen, G. M., Campbell, S., McEwen, B. S., Macdonald, K., Amano, S., Joffe, R. T., … Young, L. T. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America, 100(3): 13871392.Google Scholar
MacQueen, G. M., Galway, T. M., Hay, J., Young, L. T., & Joffe, R. T. (2002). Recollection memory deficits in patients with major depressive disorder predicted by past depressions but not current mood state or treatment status. Psychological Medicine, 32(2): 251258.Google Scholar
Majer, M., Ising, M., Künzel, H., Binder, E. B., Holsboer, F., & Modell, S. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34(8): 14531463.Google Scholar
Mannie, Z. N., Barnes, J., Bristow, G. C., Harmer, C. J., & Cowen, P. J. (2009). Memory impairment in young women at increased risk of depression: Influence of cortisol and 5-HTT genotype. Psychological Medicine, 39(5): 757762.Google Scholar
Marazziti, D., Consoli, G., Picchetti, M., Carlini, M., & Faravelli, L. (2010). Cognitive impairment in major depression. European Journal of Pharmacology, 626(1): 8386.Google Scholar
McIntyre, R. S. (2013). Using measurement strategies to identify and monitor residual symptoms. Journal of Clinical Psychiatry, 74(Suppl. 2): 1418.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
Monroe, S. M. & Harkness, K. L. (2005). Life stress, the “kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychological Review, 112(2): 417445.Google Scholar
Nagane, A., Baba, H., Nakano, Y., Maeshima, H., Hukatsu, M., Ozawa, A., … Arai, H. (2014). Comparative study of cognitive impairment between medicated and medication-free patients with remitted major depression: Class-specific influence by tricyclic antidepressants and newer antidepressants. Psychiatry Research, 218(1–2): 101105.Google Scholar
Neu, P., Bajbouj, M., Schilling, A., Godemann, F., Berman, R. M., & Schlattmann, P. (2005). Cognitive function over the treatment course of depression in middle-aged patients: Correlation with brain MRI signal hyperintensities. Journal of Psychiatric Research, 39(2): 129135.Google Scholar
Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1–3): 125135.Google Scholar
Pedersen, A., Küppers, K., Behnken, A., Kroker, K., Schöning, S., Baune, B. T., … Suslow, T. (2009).Implicit and explicit procedural learning in patients recently remitted from severe major depression. Psychiatry Research, 169(1): 16.Google Scholar
Porter, R. J., Gallagher, P., Thompson, J. M., & Young, A. H. (2003). Neurocognitive impairment in drug-free patients with major depressive disorder. British Journal of Psychiatry, 182: 214220.Google Scholar
Preiss, M., Kucerova, H., Lukavsky, J., Stepankova, H., Sos, P., & Kawaciukova, R. (2009). Cognitive deficits in the euthymic phase of unipolar depression. Psychiatry Research, 169(3): 235239.Google Scholar
Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1997). Neuropsychological function in young patients with unipolar major depression. Psychological Medicine, 27(6): 12771285.Google Scholar
Rapp, M. A., Dahlman, K., Sano, M., Grossman, H. T., Haroutunian, V., & Gorman, J. M. (2005). Neuropsychological differences between late-onset and recurrent geriatric major depression. American Journal of Psychiatry, 162(4): 691698.Google Scholar
Reppermund, S., Ising, M., Lucae, S., & Zihl, J. (2009). Cognitive impairment in unipolar depression is persistent and non-specific: Further evidence for the final common pathway disorder hypothesis. Psychological Medicine, 39(4): 603614.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10): 20292040.Google Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8): 15161518.Google Scholar
Sheline, Y. I., Sanghavi, M., Mintun, M. A., & Gado, M. H. (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience, 19(12): 50345043.Google Scholar
Trivedi, M. H. & Greer, T. L. (2014). Cognitive dysfunction in unipolar depression: Implications for treatment. Journal of Affective Disorders, 152–154: 1927.Google Scholar
Vythilingam, M., Vermetten, E., Anderson, G. M., Luckenbaugh, D., Anderson, E. R., Snow, J., … Bremner, J. D. (2004). Hippocampal volume, memory, and cortisol status in major depressive disorder: Effects of treatment. Biological Psychiatry, 56(2): 101112.Google Scholar
Weiland-Fiedler, P., Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike, D., Bonne, O., … Neumeister, A. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2): 253258.Google Scholar
Weingartner, H., Cohen, R. M., Murphy, D. L., Martello, J., & Gerdt, C. (1981). Cognitive processes in depression. Archives of General Psychiatry, 38(1): 4247.Google Scholar

References

Airaksinen, E., Wahlin, A., Larsson, M., & Forsell, Y. (2006). Cognitive and social functioning in recovery from depression: Results from a population-based three-year follow-up. Journal of Affective Disorders, 96(1–2): 107110.Google Scholar
Bakish, D. (2001). New standard of depression treatment: Remission and full recovery. Journal of Clinical Psychiatry, 62(Suppl. 26): 59.Google Scholar
Baune, B. T., Miller, R., McAfoose, J., Jonson, M., Quirk, F., & Mitchell, D. (2010). The role of cognitive impairment in general functioning in major depression disorder. Psychiatry Research, 176(2–3): 183189.Google Scholar
Birnbaum, H. G., Kessler, R. C., Kelley, D., Ben-Hamadi, R., Joish, V. N., & Greenberg, P. E. (2010). Employer burden of mild, moderate, and severe major depressive disorder: Mental health services utilization and costs, and work performance. Depression and Anxiety, 27(1): 7889.Google Scholar
Buist-Bouwman, M. A., Ormel, J., De Graaf, R., De Jonge, P., Van Sonderen, E., Alonso, J., … Vollebergh, W. A. M. (2008). Mediators of the association between depression and role functioning. Acta Psychiatrica Scandinavica, 118(6): 451458.Google Scholar
Druss, B. G., Hwang, I., Petukhova, M., Sampson, N. A., Wang, P. S., & Kessler, R. C. (2009). Impairment in role functioning in mental and chronic medical disorders in the United States: Results from the National Comorbidity Survey Replication. Molecular Psychiatry, 14(7): 728737.Google Scholar
Evans, V. C., Chan, S. S. L., Iverson, G. L., Bond, D. J., Yatham, L. N., & Lam, R. W. (2013). Systematic review of neurocognition and occupational functioning in major depressive disorder. Neuropsychiatry, 3(1): 97105.Google Scholar
Godard, J., Grondin, S., Baruch, P., & LaFleur, M. F. (2011). Psychosocial and neurocognitive profiles in depressed patients with major depressive disorder and bipolar disorder. Psychiatry Research, 190(2–3): 244252.Google Scholar
Greer, T. L., Kurian, B. T., & Trivedi, M. H. (2010). Defining and measuring functional recovery from depression.CNS Drugs, 24(4): 267284.Google Scholar
Greer, T. L., Sunderajan, P., Grannemann, B. D., Kurian, B. T., & Trivedi, M. H. (2014). Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorder and subjective reports of cognitive dysfunction? Depression Research and Treatment, 2014: 627863.Google Scholar
Greer, T. L., Sunderajan, P., Grannemann, B. D., & Trivedi, M. H. (2013). Cognitive and psychosocial improvements following aripiprazole augmentation of SSRI antidepressant therapy in treatment refractory depression.Open Journal of Depression, 2(4): 4553.Google Scholar
Gupta, M., Holshausen, K., Best, M. W., Jokic, R., Milev, R., Bernard, T., … Bowie, C. R.(2013). Relationships among neurocognition, symptoms, and functioning in treatment-resistant depression. Archives of Clinical Neuropsychology, 28(3): 272281.Google Scholar
Hasselbalch, B. J., Knorr, U., & Kessing, L. V. (2011). Cognitive impairment in the remitted state of unipolar depressive disorder: A systematic review. Journal of Affective Disorders, 134(1–3): 2031.Google Scholar
Hermann, H., Patrick, D. L., Diehr, P., Martin, M. L., Fleck, M., Simon, G. E., & Buesching, D. P. (2002). Longitudinal investigation of depression outcomes in primary care in six countries: The LIDO study. Functional status, health service use and treatment of people with depressive symptoms. Psychological Medicine, 32(5): 889902.Google Scholar
Herrera-Guzmán, I., Gudayol-Ferré, E., Herrera-Guzmán, D., Guàrdia-Olmos, J., Hinojosa-Calvo, E., & Herrera-Abarca, J. E. (2009). Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on memory and mental processing speed in patients with major depressive disorder. Journal of Psychiatric Research, 43(9): 855863.Google Scholar
Hirschfeld, R. M., Dunner, D. L., Keitner, G., Klein, D. N., Koran, L. M., Kornstein, S. G., … Keller, M. B.(2002). Does psychosocial functioning improve independent of depressive symptoms? A comparison of nefazodone, psychotherapy, and their combination. Biological Psychiatry, 51(2): 123133.Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1): 3948.Google Scholar
Judd, L. L., Schettler, P. J., Solomon, D. A., Maser, J. D., Coryell, W., Endicott, J., & Akiskal, H. S. (2008). Psychosocial disability and work role function compared across the long-term course of bipolar I, bipolar II and unipolar major depressive disorders. Journal of Affective Disorders, 108(1–2): 4958.Google Scholar
Kocsis, J. H., Schatzberg, A., Rush, A. J., Klein, D. N., Howland, R., Gniwesch, L., … Harrison, W. (2002). Psychosocial outcomes following long-term, double-blind treatment of chronic depression with sertraline vs placebo. Archives of General Psychiatry, 59(8): 723728.Google Scholar
Lam, R. W., Filteau, M. J., & Milev, R. (2011). Clinical effectiveness: The importance of psychosocial functioning outcomes. Journal of Affective Disorders, 132(Suppl. 1): S9S13.Google Scholar
Lam, R. W., Michalak, E. E., Bond, D. J., Tam, E. M., Axler, A., & Yatham, L. N. (2012). Which depressive symptoms and medication side effects are perceived by patients as interfering most with occupational functioning? Depression Research and Treatment, 2012: 630206.Google Scholar
Lawrence, C., Roy, A., Harikrishnan, V., Yu, S., & Dabbous, O. (2013). Association between severity of depression and self-perceived cognitive difficulties among full time employees. The Primary Care Companion for CNS Disorders, 15(3).Google Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
Lerner, D., Adler, D. A., Chang, H., Berndt, E. R., Irish, J. T., & Lapitsky, L. (2004). The clinical and occupational correlates of work productivity loss among employed patients with depression. Journal of Occupational and Environmental Medicine, 46(6): S46S55.Google Scholar
McCall, W. V. & Dunn, A. G. (2003). Cognitive deficits are associated with functional impairment in severely depressed patients. Psychiatry Research, 121(2): 179184.Google Scholar
McClintock, S. M., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: A review and synthesis. Neuropsychology, 24(1): 934.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
Miller, I. W., Keitner, G. I., Schatzberg, A. F., Klein, D. N., Thase, M. E., Rush, A. J., … Keller, M. B. (1998). The treatment of chronic depression, part 3: Psychosocial functioning before and after treatment with sertraline or imipramine. Journal of Clinical Psychiatry, 59(11): 608619.Google Scholar
Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., & Ustun, B. (2007). Depression, chronic diseases, and decrements in health: Results from the World Health Surveys. Lancet, 370(9590): 851858.Google Scholar
Naismith, S. L., Longley, W. A., Scott, E. M., & Hickie, I. B. (2007). Disability in major depression related to self-related and objectively measured cognitive deficits: A preliminary study.BMC Psychiatry, 7: 32.Google Scholar
Papakostas, G. I., Petersen, T., Denninger, J. W., Tossani, E., Pava, J. A., Alpert, J. E., … Fava, M.(2004). Psychosocial functioning during the treatment of major depressive disorder with fluoxetine. Journal of Clinical Psychopharmacology, 24(5): 507511.Google Scholar
Shimizu, Y., Kitagawa, N., Mitsui, N., Fujii, Y., Toyomaki, A., Hashimoto, N., … Kusumi, I. (2013). Neurocognitive impairments and quality of life in unemployed patients with remitted major depressive disorder. Psychiatry Research, 210(3): 913918.Google Scholar
Stange, J. P., Hamlat, E. J., Hamilton, J. L., Abramson, L. Y., & Alloy, L. B. (2013). General autobiographical memory, emotional maltreatment, and depressive symptoms in adolescence: Evidence of a cognitive vulnerability-stress interaction. Journal of Adolescence, 36: 201208.Google Scholar
Stewart, W. F., Ricci, J. A., Chee, E., Hahn, S. R., & Marganstein, D. (2003). Cost of lost productive work time among US workers with depression. JAMA, 289: 31353144.Google Scholar
Trivedi, M. H. & Greer, T. L. (2014). Cognitive dysfunction in unipolar depression: Implications for treatment. Journal of Affective Disorders, 152–154: 1927.Google Scholar
Wang, Y., Zhou, Y., Li, S., Wang, P., Wu, G. W., & Liu, Z. N. (2014). Impaired social decision making in patients with major depressive disorder.BMC Psychiatry, 14(1): 1418.Google Scholar
Wells, K. B., Stewart, A., Hays, R. D., Burnham, M. A., Rogers, W., Daniels, M., … Ware, J. (1989). The functioning and well-being of depressed patients: Results from the Medical Outcomes Study. JAMA, 262(7): 914919.Google Scholar
Withall, A., Harris, L. M., & Cumming, S. R. (2009). The relationship between cognitive function and clinical and functional outcomes in major depressive disorder. Psychological Medicine, 39(3): 393402.Google Scholar
Zimmerman, M., Martinez, J., Attiullah, N., Friedman, M., Toba, C., Boerescu, D. A., & Rahgeb, M. (2012). Further evidence that the cutoff to define remission on the 17-item Hamilton Depression Rating Scale should be lowered. Depression and Anxiety, 29(2): 159165.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×