Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-18T14:07:30.210Z Has data issue: false hasContentIssue false

3 - Open-coast sandy beaches and coastal dunes

Published online by Cambridge University Press:  05 June 2014

Thomas A. Schlacher
Affiliation:
The University of the Sunshine Coast
Alan R. Jones
Affiliation:
The Australian Museum
Jenifer E. Dugan
Affiliation:
University of California, Santa Barbara
Michael A. Weston
Affiliation:
Deakin University
Linda Harris
Affiliation:
Nelson Mandela Metropolitan University
David S. Schoeman
Affiliation:
The University of the Sunshine Coast
David M. Hubbard
Affiliation:
University of California, Santa Barbara
Felicita Scapini
Affiliation:
University of Florence
Ronel Nel
Affiliation:
Nelson Mandela Metropolitan University
Mariano Lastra
Affiliation:
University of Vigo
Anton McLachlan
Affiliation:
University of Sydney
Charles H. Peterson
Affiliation:
University of North Carolina
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Synopsis

Beaches and dunes of the open coast form one of the globe’s longest ecological interfaces, linking the oceans with the land. These systems are of great importance to society as prime sites for housing and recreation, buffers against storms, and providers of fisheries and mineral resources. By contrast, their unique ecological attributes and biodiversity are much less recognized. In this chapter, we provide a synthesis of the key ecological features and functions of beaches and dunes, outline the main elements of their faunal biodiversity, examine human threats and their biological consequences, and sketch some salient issues in management to achieve conservation of these unique ecosystems. It is apparent that the range of ecosystem goods and services is broad, but nutrient cycling, water filtration, and the provision of habitat and prey for a diverse range of animals are often the key ecological traits. Contrary to common perceptions, beaches and dunes contain a diverse and unique set of species, many of which are found nowhere else. In addition to the complement of highly adapted invertebrates, many wildlife species (e.g. birds, turtles, fishes) are dependent on beaches and dunes for nesting and feeding, and they use these habitats extensively. Human pressures on sandy shorelines and their biodiversity are numerous. Coastal squeeze is, however, the most pervasive, trapping beaches and their biota between the pressures of development from the terrestrial side and the consequences of climate change from the marine side. Beaches are also naturally malleable habitats whose interlinkages, including the exchange of organisms, with the abutting dunes and surf zones are essential to their functioning. Unfortunately, human actions intended to arrest the dynamics of beach habitats, such as seawalls and dune stabilizations, run counter to these natural dynamics and generally produce negative environmental outcomes. These present a set of formidable management challenges when the primary goal is to conserve intact ecosystems and biodiversity, calling for more systematic approaches in conservation design and implementation for beach and dune ecosystems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello-Lammens, M. E., Chu-Agor, M. L., Convertino, M., et al. (2011). The impact of sea-level rise on Snowy Plovers in Florida: Integrating geomorphological, habitat, and metapopulation models. Global Change Biology, 17, 3644–3654.CrossRefGoogle Scholar
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.CrossRefGoogle ScholarPubMed
Arias, A. & Anadón, N. (2012). First record of Mercenaria mercenaria (Bivalvia: Veneridae) and Ensis directus (Bivalvia: Pharidae) on Bay of Biscay, Iberian Peninsula. Journal of Shellfish Research, 31, 57–60.CrossRefGoogle Scholar
Armonies, W. & Reise, K. (2000). Faunal diversity across a sandy shore. Marine Ecology Progress Series, 196, 49–57.CrossRefGoogle Scholar
Arntz, W. E., Brey, T., Tarazona, J. & Robles, A. (1987). Changes in the structure of a shallow sandy beach community in Peru during an El Nino event. South African Journal of Marine Science, 5, 645–658.CrossRefGoogle Scholar
Auge, A. A., Chilvers, B. L., Mathieu, R. & Moore, A. B. (2012). On-land habitat preferences of female New Zealand sea lions at Sandy Bay, Auckland Islands. Marine Mammal Science, 28, 620–637.CrossRefGoogle Scholar
Avery, G. B., Kieber, R. J., Taylor, K. J. & Dixon, J. L. (2012). Dissolved organic carbon release from surface sand of a high energy beach along the Southeastern Coast of North Carolina, USA. Marine Chemistry, 132–133, 23–27.CrossRefGoogle Scholar
Balvanera, P., Pfisterer, A. B., Buchmann, N., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146–1156.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H. & Sepkoski, J. J. (2002). Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 99, 6854–6859.CrossRefGoogle ScholarPubMed
Barbier, E. B., Hacker, S. D., Kennedy, C., et al. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81, 169–193.CrossRefGoogle Scholar
Barboza, F. R., Gómez, J., Lercari, D. & Defeo, O. (2012). Disentangling diversity patterns in sandy beaches along environmental gradients. PLoS ONE, 7(7), e40468.CrossRefGoogle ScholarPubMed
Barca-Bravo, S., Servia, M. J., Cobo, F. & Gonzalez, M. A. (2008). The effect of human use of sandy beaches on developmental stability of Talitrus saltator (Montagu, 1808) (Crustacea, Amphipoda). A study on fluctuating asymmetry. Marine Ecology – Evolutionary Perspective, 29, 91–98.CrossRefGoogle Scholar
Barnard, P. L., Hubbard, D. M. & Dugan, J. E. (2012). Beach response dynamics of a littoral cell using a 17-year single-point time series of sand thickness. Geomorphology, 139, 588–598.CrossRefGoogle Scholar
Barnett, P. R. O. (1971). Some changes in intertidal sand communities due to thermal pollution. Proceedings of the Royal Society of London. Series B, Biological Sciences, 177, 353–364.CrossRefGoogle ScholarPubMed
Barreiro, F., Gómez, M., López, J., Lastra, M. & de la Huz, R. (2013). Coupling between macroalgal inputs and nutrients outcrop in exposed sandy beaches. Hydrobiologia, 700, 73–84.CrossRefGoogle Scholar
Barth, J. A., Menge, B. A., Lubchenco, J., et al. (2007). Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proceedings of the National Academy of Sciences of the United States of America, 104, 3719–3724.CrossRefGoogle ScholarPubMed
Bascom, W. (1980). Waves and Beaches: The Dynamics of the Ocean Surface. Garden City, NY: Anchor Press.Google Scholar
Beaton, J. M. (1985). Evidence for a coastal occupation time-lag at Princess Charlotte Bay (North Queensland) and implications for coastal colonization and population growth theories for Aboriginal Australia. Archaeology in Oceania, 20, 1–20.CrossRefGoogle Scholar
Bender, E. A., Case, T. J. & Gilpin, M. E. (1984). Perturbation experiments in community ecology: Theory and practice. Ecology, 65, 1–13.CrossRefGoogle Scholar
Bennett, B. A. (1989). The fish community of a moderately exposed beach on the southwestern Cape coast of South Africa and an assessment of this habitat as a nursery for juvenile fish. Estuarine, Coastal and Shelf Science, 28, 293–305.CrossRefGoogle Scholar
Bergamino, L., Lercari, D. & Defeo, O. (2012). Terrestrial trophic subsidy in sandy beaches: Evidence from stable isotope analysis in organic matter sources and isopod Excirolana armata. Aquatic Biology, 14, 129–134.CrossRefGoogle Scholar
Bernabeu, A. M., de la Fuente, M. N., Rey, D., et al. (2006). Beach morphodynamics forcements in oiled shorelines: Coupled physical and chemical processes during and after fuel burial. Marine Pollution Bulletin, 52, 1156–1168.CrossRefGoogle ScholarPubMed
Berner, R. A. (2002). Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences of the United States of America, 99, 4172–4177.CrossRefGoogle ScholarPubMed
Berta, A., Sumich, J. L. & Kovacs, K. M. (2006). Marine Mammals: Evolutionary Biology. San Diego, CA: Academic Press.Google Scholar
Bertolotti, L. & Salmon, M. (2005). Do embedded roadway lights protect sea turtles?Environmental Management, 36, 702–710.CrossRefGoogle ScholarPubMed
Bird, B. L., Branch, L. C. & Miller, D. L. (2004). Effects of coastal lighting on foraging behavior of beach mice. Conservation Biology, 18, 1435–1439.CrossRefGoogle Scholar
Bird, E. C. F. (2000). Coastal Geomorphology: An Introduction. Chichester: John Wiley.Google Scholar
Bonte, D. (2005). Anthropogenic induced changes in nesting densities of the dune-specialised digger wasp Bembix rostrata (Hymenoptera: Sphecidae). European Journal of Entomology, 102, 809–812.CrossRefGoogle Scholar
Boomsma, J. J. & Van Loon, A. J. (1982). Structure and diversity of ant communities in successive coastal dune valleys. Journal of Animal Ecology, 51, 957–974.CrossRefGoogle Scholar
Brewer, P. G. (1997). Ocean chemistry of the fossil fuel CO2 signal: The haline signal of ‘business as usual’. Geophysical Research Letters, 24, 1367–1369.CrossRefGoogle Scholar
Brown, A. C. (1996). Behavioural plasticity as a key factor in the survival and evolution of the macrofauna on exposed sandy beaches. Revista Chilena de Historia Natural, 69, 469–474.Google Scholar
Brown, A. C. (2001). Ecology of sandy beaches. In Steele, J. H., Thorpe, S. A. & Turekian, K. K. (eds.), Encyclopedia of Ocean Sciences. San Diego, CA: Academic Press, pp. 2496–2504.CrossRefGoogle Scholar
Buick, A. M. & Paton, D. C. (1989). Impact of off-road vehicles on the nesting success of hooded plovers Charadrius rubricollis in the Coorong region of South Australia. Emu, 89, 159–172.CrossRefGoogle Scholar
Burkitt, J. & Wootton, L. (2011). Effects of disturbance and age of invasion on the impact of the invasive sand sedge, Carex kobomugi, on native dune plant populations in New Jersey’s coastal dunes. Journal of Coastal Research, 27, 182–193.CrossRefGoogle Scholar
Burnett, R. (1971). DDT residues: Distribution of concentrations in Emerita analoga (Stimpson) along coastal California. Science, 174, 606–608.CrossRefGoogle ScholarPubMed
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3–33.CrossRefGoogle Scholar
Byrne, M. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages. Oceanography and Marine Biology: An Annual Review, 49, 1–42.Google Scholar
Byrnes, J. E., Reed, D. C., Cardinale, B. J., et al. (2011). Climate-driven increases in storm frequency simplify kelp forest food webs. Global Change Biology, 17, 2513–2524.CrossRefGoogle Scholar
Campbell, E. E. (1996). The global distribution of surf diatom accumulations. Revista Chilena de Historia Natural, 69, 495–501.Google Scholar
Carlton, J. T. & Hodder, J. (2003). Maritime mammals: Terrestrial mammals as consumers in marine intertidal communities. Marine Ecology Progress Series, 256, 271–286.CrossRefGoogle Scholar
Castilla, J. C. (1983). Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin, 14, 459–464.CrossRefGoogle Scholar
Cisneros, K. O., Smit, A. J., Laudien, J. & Schoeman, D. S. (2011). Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure. PloS ONE, 6, e23724.CrossRefGoogle Scholar
Claereboudt, M. R. (2004). Shore litter along sandy beaches of the Gulf of Oman. Marine Pollution Bulletin, 49, 770–777.CrossRefGoogle ScholarPubMed
Clark, B., Hauck, M., Harris, J., Salo, K. & Russell, E. (2002). Identification of subsistence fishers, fishing areas, resource use and activities along the South African coast. South African Journal of Marine Science, 24, 425–437.CrossRefGoogle Scholar
Clark, B. M., Bennett, B. A. & Lamberth, S. J. (1996). Factors affecting spatial variability in seine net catches of fish in the surf zone of False Bay, South Africa. Marine Ecology Progress Series, 131, 17–34.CrossRefGoogle Scholar
Cohen, J. B., Houghton, L. M. & Fraser, J. D. (2009). Nesting density and reproductive success of piping plovers in response to storm- and human-created habitat changes. Wildlife Monographs, 173, 1–24.CrossRefGoogle Scholar
Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62, 2588–2597.CrossRefGoogle ScholarPubMed
Colombini, I. & Chelazzi, L. (2003). Influence of marine allochthonous input on sandy beach communities. Oceanography and Marine Biology. An Annual Review, 41, 115–159.Google Scholar
Colombini, I., Mateo, M. A., Serrano, O., et al. (2009). On the role of Posidonia oceanica beach wrack for macroinvertebrates of a Tyrrhenian sandy shore. Acta Oecologica – International Journal of Ecology, 35, 32–44.CrossRefGoogle Scholar
Cooper, J. A. G., Anfuso, G. & Del Rio, L. (2009). Bad beach management: European perspective. Geological Society of America, Special Papers, 460, 167–179.CrossRefGoogle Scholar
Coupland, G. T., Duarte, C. M. & Walker, D. I. (2007). High metabolic rates in beach cast communities. Ecosystems, 10, 1341–1350.CrossRefGoogle Scholar
Davenport, J. & Davenport, J. L. (2006). The impact of tourism and personal leisure transport on coastal environments: A review. Estuarine, Coastal and Shelf Science, 67, 280–292.CrossRefGoogle Scholar
Dawson, M. N., Barber, P. H., Gonzalez-Guzman, L. I., et al. (2011). Phylogeography of Emerita analoga (Crustacea, Decapoda, Hippidae), an eastern Pacific Ocean sand crab with long-lived pelagic larvae. Journal of Biogeography, 38, 1600–1612.CrossRefGoogle Scholar
De la Huz, R., Lastra, M., Junoy, J., Castellanos, C. & Viéitez, J. M. (2005). Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: Preliminary study of the “Prestige” oil spill. Estuarine, Coastal and Shelf Science, 65, 19–29.CrossRefGoogle Scholar
De Matthaeis, E., Cobolli, M., Mattoccia, M. & Scapini, F. (1995) Geographic variation in Talitrus saltator (Crustacea, Amphipoda) – Biochemical evidence. Bollettino di Zoologia, 62, 77–84.CrossRefGoogle Scholar
Defeo, O. (2003). Marine invertebrate fisheries in sandy beaches: An overview. Journal of Coastal Research, SI35, 56–65.Google Scholar
Defeo, O. & de Alava, A. (1995). Effects of human activities on long-term trends in sandy beach populations: The wedge clam Donax hanleyanus in Uruguay. Marine Ecology Progress Series, 123, 73–82.CrossRefGoogle Scholar
Defeo, O. & McLachlan, A. (2005). Patterns, processes and regulatory mechanisms in sandy beach macrofauna: A multi-scale analysis. Marine Ecology Progress Series, 295, 1–20.CrossRefGoogle Scholar
Defeo, O. & McLachlan, A. (2011). Coupling between macrofauna community structure and beach type: A deconstructive meta-analysis. Marine Ecology Progress Series, 433, 29–41.CrossRefGoogle Scholar
Defeo, O., Gomez, J. & Lercari, D. (2001). Testing the swash exclusion hypothesis in sandy beach populations: The mole crab Emerita brasiliensis in Uruguay. Marine Ecology Progress Series, 212, 159–170.CrossRefGoogle Scholar
Defeo, O., McLachlan, A., Schoeman, D. S., et al. (2009). Threats to sandy beach ecosystems: A review. Estuarine, Coastal and Shelf Science, 81, 1–12.CrossRefGoogle Scholar
Degraer, S., Mouton, I., De Neve, L. & Vincx, M. (1999). Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative sandy beach: Summer–winter comparsion. Estuaries and Coasts, 22, 742–752.CrossRefGoogle Scholar
Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44, 842–852.CrossRefGoogle ScholarPubMed
Doherty, P. J. & Heath, J. A. (2011). Factors affecting piping plover hatching success on Long Island, New York. Journal of Wildlife Management, 75, 109–115.CrossRefGoogle Scholar
Dolan, R., Donoghue, C. & Stewart, D. (2006). Long-term impacts of tidal inlet bypassing on the swash zone filter feeder Emerita talpoida at Oregon Inlet and Pea Island, North Carolina. Shore & Beach, 74, 23–27.Google Scholar
Doney, S. C., Ruckelshaus, M., Duffy, J. E., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11–37.CrossRefGoogle ScholarPubMed
Douvere, F. (2008). The importance of marine spatial planning in advancing ecosystem-based sea use management. Marine Policy, 32, 762–771.CrossRefGoogle Scholar
Dovers, S. R., Norton, T. W. & Handmer, J. W. (1996). Uncertainty, ecology, sustainability and policy. Biodiversity and Conservation, 5, 1143–1167.CrossRefGoogle Scholar
Dowling, B. & Weston, M. A. (1999). Managing a breeding population of the hooded plover Thinornis rubricollis in a high-use recreational environment. Bird Conservation International, 9, 255–270.CrossRefGoogle Scholar
Dugan, J. E. & Hubbard, D. M. (2006). Ecological responses to coastal armouring on exposed sandy beaches. Shore & Beach, 74, 10–16.Google Scholar
Dugan, J. E. & Hubbard, D. M. (2010). Loss of coastal strand habitat in southern California: The role of beach grooming. Estuaries and Coasts, 33, 67–77.CrossRefGoogle Scholar
Dugan, J. E., Hubbard, D. M., Engle, J. M., et al. (2000). Macrofauna communities of exposed sandy beaches on the southern California mainland and Channel Islands. In Brown, D. R., Mitchell, K. L. & Chang, H. W. (eds.), Fifth California Islands Symposium, OCS Study, MMS 99–0038, pp. 339–346.
Dugan, J. E., Hubbard, D. M., McCrary, M. D. & Pierson, M. O. (2003). The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science, 58, 25–40.CrossRefGoogle Scholar
Dugan, J. E., Hubbard, D. M., Rodil, I. F., Revell, D. L. & Schroeter, S. (2008). Ecological effects of coastal armoring on sandy beaches. Marine Ecology, 29, 160–170.CrossRefGoogle Scholar
Dugan, J. E., Defeo, O., Jaramillo, E., et al. (2010). Give beach ecosystems their day in the sun. Science, 329, 1146.CrossRefGoogle Scholar
Dugan, J. E., Airoldi, L., Chapman, M. G., Walker, S. J. & Schlacher, T. A. (2011a). Estuarine and coastal structures: Environmental effects, a focus on shore and nearshore structures. In Wolanski, E. & McLusky, D. S. (eds.), Treatise on Estuarine and Coastal Science, vol. 8. Waltham, MA: Academic Press, pp. 17–41.CrossRefGoogle Scholar
Dugan, J. E., Hubbard, D. M., Page, H. M. & Schimel, J. P. (2011b). Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuaries and Coasts, 34, 839–850.CrossRefGoogle Scholar
Duinker, P. N. & Beanlands, G. E. (1986). The significance of environmental impacts: An exploration of the concept. Environmental Management, 10, 1–10.CrossRefGoogle Scholar
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. & Thorndyke, M. (2008). Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285–294.CrossRefGoogle Scholar
El-Ghobashy, A. E., Mahmad, S. Z., Kandeel, S. K. & El-Ghitany, A. H. (2011). Factors associated with the distribution of the invasive bivalve clams Donax variabilis (Say,1822) at the area of the Mediterranean Coast preferred by marine fish larvae, New Damietta, Egypt. Journal of American Science, 7, 1051–1062.Google Scholar
Ellers, O. (1995). Behavioral control of swash-riding in the clam Donax variabilis. Biological Bulletin, 189, 120–127.CrossRefGoogle ScholarPubMed
Engelhard, T. & Withers, K. (1999). Biological effects of mechanical beach raking in the upper intertidal zone on Padre Island National Seashore, Texas. Gulf Research Reports, 10, 73–74.Google Scholar
Erwin, R. M., Galli, J. & Burger, J. (1981). Colony site dynamics and habitat use in Atlantic coast seabirds. Auk, 98, 550–561.Google Scholar
Fairweather, P. G. & Cattell, F. C. R. (1990). Priorities for pollution ecology research: Impact assessment. Bulletin of the Ecological Society of Australia, 20, 37–38.Google Scholar
Fanini, L., Cantarino, C. M. & Scapini, F. (2005). Relationships between the dynamics of two Talitrus saltator populations and the impacts of activities linked to tourism. Oceanologia, 47, 93–112.Google Scholar
Fanini, L., El Gtari, M., Ghlala, A., El Gtari-Chaabkane, T. & Scapini, F. (2007). From researchers to primary school: Dissemination of scientific research results on the beach. An experience of environmental education at Nefza, Tunisia. Oceanologia, 49, 145–157.Google Scholar
Fanini, L., Marchetti, G. M., Scapini, F. & Defeo, O. (2009). Effects of beach nourishment and groynes building on population and community descriptors of mobile arthropodofauna. Ecological Indicators, 9, 167–178.CrossRefGoogle Scholar
Fanini, L., Gecchele, L. V., Gambineri, S., et al. (2012a). Behavioural similarities in different species of sandhoppers inhabiting transient environments. Journal of Experimental Marine Biology and Ecology, 420–421, 8–15.CrossRefGoogle Scholar
Fanini, L., Marchetti, G. M., Baczewska, A., Sztybor, K. & Scapini, F. (2012b). Behavioural adaptation to different salinities in the sandhopper Talitrus saltator (Crustacea: Amphipoda): Mediterranean vs Baltic populations. Marine and Freshwater Research, 63, 275–281.CrossRefGoogle Scholar
FAO. (2010). The State of the World Fisheries and Aquaculture 2010. Rome: FAO.Google Scholar
Feagin, R. A., Sherman, D. J. & Grant, W. E. (2005). Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Frontiers in Ecology and the Environment, 3, 359–364.CrossRefGoogle Scholar
Feely, R. A., Sabine, C. L., Lee, K., et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366.CrossRefGoogle ScholarPubMed
Ferreira, O., Garcia, T., Matias, A., Taborda, R. & Dias, J. A. (2006). An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Continental Shelf Research, 26, 1030–1044.CrossRefGoogle Scholar
Finkl, C. W. & Walker, H. J. (2004). Beach nourishment. In Schwartz, M. (ed.), The Encyclopedia of Coastal Science. Dordrecht: Kluwer Academic, pp. 37–54.Google Scholar
Fish, M. R., Cote, I. M., Gill, J. A., et al. (2005). Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conservation Biology, 19, 482–491.CrossRefGoogle Scholar
Foley, M. M., Halpern, B. S., Micheli, F., et al. (2010). Guiding ecological principles for marine spatial planning. Marine Policy, 34, 955–966.CrossRefGoogle Scholar
Folke, C., Carpenter, S. R., Elmqvist, T., et al. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio, 31, 437–440.CrossRefGoogle Scholar
Foster, C. R., Amos, A. F. & Fuiman, L. A. (2009). Trends in abundance of coastal birds and human activity on a Texas barrier island over three decades. Estuaries and Coasts, 32, 1079–1089.CrossRefGoogle Scholar
Fuentes, M., Dawson, J., Smithers, S., Hamann, M. & Limpus, C. (2010). Sedimentological characteristics of key sea turtle rookeries: Potential implications under projected climate change. Marine and Freshwater Research, 61, 464–473.CrossRefGoogle Scholar
Galbraith, H., Jones, R., Park, R., et al. (2002). Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds, 25, 173–183.CrossRefGoogle Scholar
Garrido, J., Olabarria, C. & Lastra, M. (2008). Colonization of wrack by beetles (Insecta, Coleoptera) on a sandy beach of the Atlantic coast. Vie et Milieu, 58, 223–232.Google Scholar
Gaston, T. F., Schlacher, T. A. & Connolly, R. M. (2006). Flood discharges of a small river into open coastal waters: Plume traits and material fate. Estuarine, Coastal and Shelf Science, 69, 4–9.CrossRefGoogle Scholar
Gheskiere, T., Hoste, E., Kotwicki, L., et al. (2002). The sandy beach meiofauna and free-living nematodes from De Panne. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 72, 43–49.Google Scholar
Gheskiere, T., Vincx, M., Urban-Malinga, B., et al. (2005). Nematodes from wave-dominated sandy beaches: Diversity, zonation patterns and testing of the isocommunities concept. Estuarine, Coastal and Shelf Science, 62, 365–375.CrossRefGoogle Scholar
Gibson, R. N. & Robb, L. (1996). Piscine predation on juvenile fishes on a Scottish sandy beach. Journal of Fish Biology, 49, 120–138.CrossRefGoogle Scholar
Gilburn, A. S. (2012). Mechanical grooming and beach award status are associated with low strandline biodiversity in Scotland. Estuarine, Coastal and Shelf Science, 107, 81–88.CrossRefGoogle Scholar
Godfrey, P. J. & Godfrey, M. (1980). Ecological effects of off-road vehicles on Cape cod. Oceanus, 23, 56–67.Google Scholar
Gómez, J. & Defeo, O. (2012). Predictive distribution modeling of the sandy-beach supralittoral amphipod Atlantorchestoidea brasiliensis along a macroscale estuarine gradient. Estuarine, Coastal and Shelf Science, 98, 84–93.CrossRefGoogle Scholar
Gowans, S., Würsig, B. & Karczmarski, L. (2007). The social structure and strategies of delphinids: Predictions based on an ecological framework. Advances in Marine Biology, 53, 195–294.CrossRefGoogle ScholarPubMed
Gowen, R. J., Mills, D. K., Trimmer, M. & Nedwell, D. B. (2000). Production and its fate in two coastal regions of the Irish Sea: The influence of anthropogenic nutrients. Marine Ecology Progress Series, 208, 51–64.CrossRefGoogle Scholar
Greaver, T. L. & Sternberg, L. S. L. (2007). Fluctuating deposition of ocean water drives plant function on coastal sand dunes. Global Change Biology, 13, 216–223.CrossRefGoogle Scholar
Greene, K. (2002). Beach nourishment: A review of the biological and physical impacts. Atlantic States Marine Fisheries Commission: Habitat Management Series, 7, 1–43.Google Scholar
Griffiths, C. L., Stenton-Dozey, J. M. E. & Koop, K. (1983). Kelp wrack and the flow of energy through a sandy beach ecosystem. Developments in Hydrobiology, 19, 547–556.Google Scholar
Groom, J. D., McKinney, L. B., Ball, L. C. & Winchell, C. S. (2007). Quantifying off-highway vehicle impacts on density and survival of a threatened dune-endemic plant. Biological Conservation, 135, 119–134.CrossRefGoogle Scholar
Gurran, N. & Blakely, E. (2007). Suffer a sea change? Contrasting perspectives towards urban policy and migration in coastal Australia. Australian Geographer, 38, 113–131.CrossRefGoogle Scholar
Halpern, B. S., Walbridge, S., Selkoe, K. A., et al. (2008). A global map of human impact on marine ecosystems. Science, 319, 948–952.CrossRefGoogle ScholarPubMed
Harley, C. D. G., Hughes, A. R., Hultgren, K. M., et al. (2006). The impacts of climate change in coastal marine systems. Ecology Letters, 9, 228–241.CrossRefGoogle ScholarPubMed
Harris, L., Nel, R., Smale, M. & Schoeman, D. (2011). Swashed away? Storm impacts on sandy beach macrofaunal communities. Estuarine, Coastal and Shelf Science, 94, 210–221.CrossRefGoogle Scholar
Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. (2007). Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13, 923–932.CrossRefGoogle Scholar
Haynes, D., Leeder, J. & Rayment, P. (1997). A comparison of the bivalve species Donax deltoides and Mytilus edulis as monitors of metal exposure from effluent discharges along the Ninety Mile Beach, Victoria, Australia. Marine Pollution Bulletin, 34, 326–331.CrossRefGoogle Scholar
Haynes, P. S., Brophy, D. & McGrath, D. (2012). Variability in the early life stages of juvenile plaice (Pleuronectes platessa) on west of Ireland nursery grounds: 2000–2007. Journal of the Marine Biological Association of the United Kingdom, 92, 395–406.CrossRefGoogle Scholar
Hays, G. C., Richardson, A. J. & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology and Evolution, 20, 337–344.CrossRefGoogle ScholarPubMed
Helmuth, B., Kingsolver, J. G. & Carrington, E. (2005). Biophysics, physiological ecology, and climate change: Does mechanism matter?Annual Review of Physiology, 67, 177–201.CrossRefGoogle ScholarPubMed
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46, 3060–3075.CrossRefGoogle ScholarPubMed
Higgins, P. J., Peter, J. M., Steele, W. K. & Marchant, S. J. J. F. (1983–2006). The Handbook of Australian, New Zealand and Antarctic Birds. Melbourne: Oxford University Press.Google Scholar
Hockey, P. A. R. (1987). The influence of coastal utilisation by man on the presumed extinction of the Canarian black oystercatcher Haematopus meadewaldoi Bannerman. Biological Conservation, 39, 49–62.CrossRefGoogle Scholar
Hockings, M. & Twyford, K. (1997). Assessment and management of beach camping within Fraser Island World Heritage Area, South East Queensland. Australian Journal of Environmental Management, 4, 25–39.Google Scholar
Houston, J. R. (2008). The economic value of beaches – A 2008 update. Shore & Beach, 76, 22–26.Google Scholar
Hubbard, D. M. & Dugan, J. E. (2003). Shorebird use of an exposed sandy beach in southern California. Estuarine Coastal and Shelf Science, 58, 41–54.CrossRefGoogle Scholar
Inderjit, C. D., Ranelletti, M. & Kaushek, S. (2006). Invasive marine algae: An ecological perspective. Botanical Reviews, 72, 153–178.Google Scholar
Inoue, T., Suda, Y. & Sano, M. (2008). Surf zone fishes in an exposed sandy beach at Sanrimatsubara, Japan: Does fish assemblage structure differ among microhabitats?Estuarine, Coastal and Shelf Science, 77, 1–11.CrossRefGoogle Scholar
Irmler, U. (2012). Effects of habitat and human activities on species richness and assemblages of staphylinidae (Coleoptera) in the Baltic sea coast. Psyche, 2012, Article ID 879715, .Google Scholar
Iseki, T., Miyauchi, Y. & Fujii, T. (2012). Residence pattern of the ayu Plecoglossus altivelis altivelis larvae and juveniles occurring in the surf zone of a sandy beach, Niigata Prefecture, northern Sea of Japan. Fisheries Science, 78, 55–65.CrossRefGoogle Scholar
James, R. J. (2000a). From beaches to beach environments: Linking the ecology, human-use and management of beaches in Australia. Ocean and Coastal Management, 43, 495–514.CrossRefGoogle Scholar
James, R. J. (2000b). The first step for the environmental management of Australian beaches: Establishing an effective policy framework. Coastal Management, 28, 149–160.CrossRefGoogle Scholar
Jaramillo, E. & McLachlan, A. (1993). Community and population responses of the macroinfauna to physical factors over a range of exposed sandy beaches in South-Central Chile. Estuarine, Coastal and Shelf Science, 37, 615–624.CrossRefGoogle Scholar
Jaramillo, E., Dugan, J. E., Hubbard, D. M., et al. (2012). Ecological implications of extreme events: Footprints of the 2010 earthquake along the Chilean coast. PloS ONE, 7, e35348.CrossRefGoogle ScholarPubMed
Jones, A. (2003a). Ecological recovery of amphipods on sandy beaches following oil pollution: An interim assessment. Journal of Coastal Research, SI35, 66–73.Google Scholar
Jones, A. R., (2003b). Impacts on ecosystem health – What matters? In: Albrecht, G. (ed.), Proceedings of the Airs Waters Places Transdisciplinary Conference on Ecosystem Health in Australia. Newcastle, Australia: University of Newcastle, pp. 208–223.Google Scholar
Jones, A. R. (2012). Climate change and sandy beach ecosystems. In Beever, E. A. & Belant, J. L. (eds.), Ecological Consequences of Climate Change. Boca Raton, FL: CRC Press, pp. 133–162.Google Scholar
Jones, A. R., Gladstone, W. & Hacking, N. J. (2007). Australian sandy-beach ecosystems and climate change: Ecology and management. Australian Zoologist, 34, 190–202.CrossRefGoogle Scholar
Jones, A. R., Murray, A., Lasiak, T. A. & Marsh, R. E. (2008). The effects of beach nourishment on the sandy-beach amphipod Exoediceros fossor: Impact and recovery in Botany Bay, New South Wales, Australia. Marine Ecology – Evolutionary Perspective, 29(S1), 28–36.CrossRefGoogle Scholar
Junoy, J., Castellanos, C., Vieitez, J. M., de la Huz, M. R. & Lastra, M. (2005). The macroinfauna of the Galician sandy beaches (NW Spain) affected by the Prestige oil-spill. Marine Pollution Bulletin, 50, 526–536.CrossRefGoogle ScholarPubMed
Kahn, A. E. & Cahoon, L. B. (2012). Phytoplankton productivity and photophysiology in the surf zone of sandy beaches in North Carolina, USA. Estuaries and Coasts, 35, 1393–1400.CrossRefGoogle Scholar
Klein, Y. L., Osleeb, J. P. & Viola, M. R. (2004). Tourism-generated earnings in the coastal zone: A regional analysis. Journal of Coastal Research, 20, 1080–1088.CrossRefGoogle Scholar
Komar, P. D. (1998). Beach Processes and Sedimentation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Koop, K. & Field, J. G. (1981). Energy transformation by the supralittoral isopod Ligia dilatata Brandt. Journal of Experimental Marine Biology and Ecology, 53, 221–233.CrossRefGoogle Scholar
Koop, K. & Griffiths, C. L. (1982). The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach. Marine Biology, 66, 295–300.CrossRefGoogle Scholar
Kurihara, H. (2008). Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275–284.CrossRefGoogle Scholar
Kyle, R., Robertson, W. D. & Birnie, S. L. (1997). Subsistence shellfish harvesting in the Maputaland Marine Reserve in northern KwaZulu-Natal, South Africa: Sandy beach organisms. Biological Conservation, 82, 173–182.CrossRefGoogle Scholar
Lafferty, K. D. (2001). Disturbance to wintering western snowy plovers. Biological Conservation, 101, 315–325.CrossRefGoogle Scholar
Lafferty, K. D., Goodman, D. & Sandoval, C. P. (2006). Restoration of breeding by snowy plovers following protection from disturbance. Biodiversity and Conservation, 15, 2217–2230.CrossRefGoogle Scholar
Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19, 573–592.CrossRefGoogle Scholar
Landry, C. E. & Hindsley, P. (2011). Valuing beach quality with hedonic property models. Land Economics, 87, 92–108.CrossRefGoogle Scholar
Lastra, M., Page, H. M., Dugan, J. E., Hubbard, D. M. & Rodil, I. F. (2008). Processing of allochthonous macrophyte subsidies by sandy beach consumers: Estimates of feeding rates and impacts on food resources. Marine Biology, 154, 163–174.CrossRefGoogle Scholar
Lastra, M., Schlacher, T. A. & Olabarria, C. (2010). Niche segregation in sandy beach animals: An analysis with surface-active peracarid crustaceans on the Atlantic coast of Spain. Marine Biology, 157, 613–625.CrossRefGoogle Scholar
LeDee, O. E., Cuthbert, F. J. & Bolstad, P. V. (2008). A remote sensing analysis of coastal habitat composition for a threatened shorebird, the piping plover (Charadrius melodus). Journal of Coastal Research, 24, 719–726.CrossRefGoogle Scholar
Lee, M. R. & Riveros, M. (2012). Latitudinal trends in the species richness of free-living marine nematode assemblages from exposed sandy beaches along the coast of Chile (18–42°S). Marine Ecology, 33, 317–325.CrossRefGoogle Scholar
Lettink, M., Norbury, G., Cree, A., et al. (2010). Removal of introduced predators, but not artificial refuge supplementation, increases skink survival in coastal duneland. Biological Conservation, 143, 72–77.CrossRefGoogle Scholar
Levin, L. A. (2006). Recent progress in understanding larval dispersal: New directions and digressions. Integrative and Comparative Biology, 46, 282–297.CrossRefGoogle ScholarPubMed
Llewellyn, P. J. & Shackley, S. E. (1996). The effects of mechanical beach cleaning on invertebrate populations. British Wildlife, 7, 147–155.Google Scholar
Longcore, T. & Rich, C. (2004). Ecological light pollution. Frontiers in Ecology and the Environment, 2, 191–198.CrossRefGoogle Scholar
Lubke, R. A. & Avis, A. M. (1998). A review of the concepts and application of rehabilitation following heavy mineral dune mining. Marine Pollution Bulletin, 37, 546–557.CrossRefGoogle Scholar
Lucrezi, S., Schlacher, T. A. & Walker, S. J. (2009). Monitoring human impacts on sandy shore ecosystems: A test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environmental Monitoring and Assessment, 152, 413–424.CrossRefGoogle ScholarPubMed
Lucrezi, S., Schlacher, T. A. & Robinson, W. (2010). Can storms and shore armouring exert additive effects on sandy-beach habitats and biota?Marine and Freshwater Research, 61, 951–962.CrossRefGoogle Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., et al. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689–710.CrossRefGoogle Scholar
MacMillan, M. R. & Quijon, P. A. (2012). Wrack patches and their influence on upper-shore macrofaunal abundance in an Atlantic Canada sandy beach system. Journal of Sea Research, 72, 28–37.CrossRefGoogle Scholar
Maguire, G. S., Stojanovic, D. & Weston, M. A. (2009). Conditioned taste aversion reduces fox depredation on model eggs on beaches. Wildlife Research, 36, 702–708.CrossRefGoogle Scholar
Maguire, G. S., Duivenvoorden, A. K., Weston, M. A. & Adams, R. (2011a). Provision of artificial shelter on beaches is associated with improved shorebird fledging success. Bird Conservation International, 21, 172–185.CrossRefGoogle Scholar
Maguire, G. S., Miller, K. K., Weston, M. A. & Young, K. (2011b). Being beside the seaside: Beach use and preferences among coastal residents of south-eastern Australia. Ocean and Coastal Management, 54, 781–788.CrossRefGoogle Scholar
Margules, C. R. & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.CrossRefGoogle ScholarPubMed
Martin, K. T., Speer-Blank, R., Pommerening, J., Flannery, K. & Carpenter, K. (2006). Does beach grooming harm grunion eggs?Shore & Beach, 74, 17–22.Google Scholar
Maslo, B. & Lockwood, J. L. (2009). Evidence-based decisions on the use of predator exclosures in shorebird conservation. Biological Conservation, 142, 3213–3218.CrossRefGoogle Scholar
Maslo, B., Handel, S. N. & Pover, T. (2011). Restoring beaches for Atlantic coast piping plovers (Charadrius melodus): A classification and regression tree analysis of nest-site selection. Restoration Ecology, 19, 194–203.CrossRefGoogle Scholar
Maslo, B., Burger, J. & Handel, S. N. (2012). Modeling foraging behavior of piping plovers to evaluate habitat restoration success. Journal of Wildlife Management, 76, 181–188.CrossRefGoogle Scholar
Masters, P. M. (2006). Holocene sand beaches of southern California: ENSO forcing and coastal processes on millennial scales. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 73–95.CrossRefGoogle Scholar
McArdle, S. B. & McLachlan, A. (1992). Sand beach ecology: Swash features relevant to the macrofauna. Journal of Coastal Research, 8, 398–407.Google Scholar
McGwynne, L. E., McLachlan, A. & Furstenburg, J. P. (1988). Wrack break-down on sandy beaches. Its impact on interstitial meiofauna. Marine Environmental Research, 25, 213–232.CrossRefGoogle Scholar
McIntyre, A. F. & Heath, J. A. (2011). Evaluating the effects of foraging habitat restoration on shorebird reproduction: The importance of performance criteria and comparative design. Journal of Coastal Conservation, 15, 151–157.CrossRefGoogle Scholar
McLachlan, A. (1983). Sandy beach ecology – A review. In McLachlan, A. & Erasmus, E. (eds.), Sandy Beaches as Ecosystems. Boston, MA: Junk Publishers, pp. 5–44.CrossRefGoogle Scholar
McLachlan, A. (1990). Dissipative beaches and macrofauna communities on exposed intertidal sands. Journal of Coastal Research, 6, 57–71.Google Scholar
McLachlan, A. (1996). Physical factors in benthic ecology: Effects of changing sand particle size on beach fauna. Marine Ecology Progress Series, 131, 205–217.CrossRefGoogle Scholar
McLachlan, A. (2001). Coastal beach ecosystems. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. San Diego, CA: Academic Press, pp. 741–751.CrossRefGoogle Scholar
McLachlan, A. & Brown, A. C. (2006). The Ecology of Sandy Shores. Burlington, MA: Academic Press.Google Scholar
McLachlan, A. & Dorvlo, A. (2005). Global patterns in sandy beach macrobenthic communities. Journal of Coastal Research, 21, 674–687.CrossRefGoogle Scholar
McLachlan, A. & Harty, B. (1982). Effects of crude oil on the supralittoral meiofauna of a sandy beach. Marine Environmental Research, 7, 71–79.CrossRefGoogle Scholar
McLachlan, A. & Turner, I. (1994). The interstitial enivronment of sandy beaches. Marine Ecology – Pubblicazioni della Stazione Zoologica di Napoli I, 15, 177–211.CrossRefGoogle Scholar
McLachlan, A., Jaramillo, E., Donn, Jr., T. E. & Wessels, F. (1993). Sandy beach macrofauna communities and their control by the physical environment: A geographical comparison. Journal of Coastal Research, 15, 27–38.Google Scholar
McLachlan, A., Deruyck, A. & Hacking, N. (1996a). Community structure on sandy beaches – Patterns of richness and zonation in relation to tide range and latitude. Revista Chilena de Historia Natural, 69, 451–467.Google Scholar
McLachlan, A., Dugan, J. E., Defeo, O., et al. (1996b). Beach clam fisheries. Oceanography and Marine Biology – An Annual Review, 34, 163–232.Google Scholar
McLeod, K. & Leslie, H. (eds.) (2009). Ecosystem-based Management for the Oceans. Washington, DC: Island Press.
Mead, A., Carlton, J. T., Griffiths, C. L. & Rius, M. (2011a). Introduced and cryptogenic marine and estuarine species of South Africa. Journal of Natural History, 45, 2463–2524.CrossRefGoogle Scholar
Mead, A., Carlton, J. T., Griffiths, C. L. & Rius, M. (2011b). Revealing the scale of marine bioinvasions in developing regions: A South African re-assessment. Biological Invasions, 13, 1991–2008.CrossRefGoogle Scholar
Meager, J. J., Schlacher, T. A. & Nielsen, T. (2012). Humans alter habitat selection of birds on ocean-exposed sandy beaches. Diversity and Distributions, 18, 294–306.CrossRefGoogle Scholar
Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press.Google Scholar
Moffett, M. D., McLachlan, A., Winter, P. E. D. & De Ruyck, A. M. C. (1998). Impact of trampling on sandy beach macrofauna. Journal of Coastal Conservation, 4, 87–90.CrossRefGoogle Scholar
Moss, D. & McPhee, D. P. (2006). The impacts of recreational four-wheel driving on the abundance of the ghost crab (Ocypode cordimanus) on a subtropical sandy beach in SE Queensland. Coastal Management, 34, 133–140.CrossRefGoogle Scholar
Nicholls, J. L. & Baldassarre, G. A. (1990). Habitat associations of piping plovers wintering in the United Strates. Wilson Bulletin, 102, 581–590.Google Scholar
Nordstrom, K. F. (2000). Beaches and Dunes on Developed Coasts. Cambridge: Cambridge University Press.CrossRefGoogle ScholarPubMed
Nordstrom, K. F. (2005). Beach nourishment and coastal habitats: Research needs to improve compatibility. Restoration Ecology, 13, 215–222.CrossRefGoogle Scholar
Nordstrom, K. F. (2008). Beach and Dune Restoration. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nordstrom, K. F. & Mauriello, M. N. (2001). Restoring and maintaining naturally-functioning landforms and biota on intensively developed barrier islands under a no-retreat alternative. Shore & Beach, 69, 19–28.Google Scholar
Nordstrom, K. F., Lampe, R. & Vandemark, L. M. (2000). Reestablishing naturally functioning dunes on developed coasts. Environmental Management, 25, 37–51.CrossRefGoogle ScholarPubMed
Nordstrom, K. F., Jackson, N. L., Kraus, N. C., et al. (2011). Enhancing geomorphic and biologic functions and values on backshores and dunes of developed shores: A review of opportunities and constraints. Environmental Conservation, 38, 288–302.CrossRefGoogle Scholar
Noriega, R., Schlacher, T. A. & Smeuninx, B. (2012). Reductions in ghost crab populations reflect urbanization of beaches and dunes. Journal of Coastal Research, 28, 123–131.CrossRefGoogle Scholar
Odum, W. E. (1982). Environmental degradation and the tyranny of small decisions. Bioscience, 32, 728–729.CrossRefGoogle Scholar
Olabarria, C., Lastra, M. & Garrido, J. (2007). Succession of macrofauna on macroalgal wrack of an exposed sandy beach: Effects of patch size and site. Marine Environmental Research, 63, 19–40.CrossRefGoogle Scholar
Oliver, J. K. (1995). Is the ‘limits of acceptable change’ concept useful for environmental managers? A case study from the Great Barrier Reef Marine Park. In Grigg, G. C., Hale, P. T. & Lunney, D. (eds.), Conservation Through Sustainable Use of Wildlife. Brisbane: Centre for Conservation Biology, University of Queensland, pp. 131–139.Google Scholar
Orr, J. C., Fabry, V. J., Aumont, O., et al. (2005a). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.CrossRefGoogle ScholarPubMed
Orr, M., Zimmer, M., Jelinski, D. E. & Mews, M. (2005b). Wrack deposition on different beach types: Spatial and temporal variation in the pattern of subsidy. Ecology, 86, 1496–1507.CrossRefGoogle Scholar
Ottaviano, O. & Scapini, F. (2010). Can fluctuating asymmetry in Talitrus saltator (Montagu, 1808) (Crustacea, Amphipoda) populations be used as a bioindicator of stress on sandy beach ecosystems?Oceanologia, 52, 259–280.CrossRefGoogle Scholar
Pattrick, P. & Strydom, N. A. (2008). Composition, abundance, distribution and seasonality of larval fishes in the shallow nearshore of the proposed Greater Addo Marine Reserve, Algoa Bay, South Africa. Estuarine, Coastal and Shelf Science, 79, 251–262.CrossRefGoogle Scholar
Pearse, A. S., Humm, H. J. & Wharton, G. W. (1942). Ecology of sand beaches at Beaufort, NC. Ecological Monographs, 12, 135–190.CrossRefGoogle Scholar
Pelletier, A. J. D., Jelinski, D. E., Treplin, M. & Zimmer, M. (2011). Colonisation of beach-cast macrophyte wrack patches by talitrid amphipods: A primer. Estuaries and Coasts, 34, 863–871.CrossRefGoogle Scholar
Peterson, C. H. & Bishop, M. J. (2005). Assessing the environmental impacts of beach nourishment. Bioscience, 55, 887–896.CrossRefGoogle Scholar
Peterson, C. H. & Estes, J. A. (2001). Conservation and management of marine communities. In Bertness, M. D., Gaines, S. D. & Hay, M. E. (eds.), Marine Community Ecology. Sunderland, MA: Sinauer, pp. 469–507.Google Scholar
Peterson, C. H., Hickerson, D. H. M. & Johnson, G. G. (2000). Short-term consequences of nourishment and bulldozing on the dominant large invertebrates of a sandy beach. Journal of Coastal Research, 16, 368–378.Google Scholar
Peterson, C. H., Bishop, M. J., Johnson, G. A., D’Anna, L. M. & Manning, L. M. (2006). Exploiting beach filling as an unaffordable experiment: Benthic intertidal impacts propagating upwards to shorebirds. Journal of Experimental Marine Biology and Ecology, 338, 205–221.CrossRefGoogle Scholar
Philippart, C. J. M., van Aken, H. M., Beukema, J. J., et al. (2003). Climate-related changes in recruitment of the bivalve Macoma balthica. Limnology and Oceanography, 48, 2171–2185.CrossRefGoogle Scholar
Pilkey, O. H. & Wright, H. L. (1989). Seawalls versus beaches. Journal of Coastal Research, Special Issue, 4, 41–67.Google Scholar
Pilkey, O. H., Neal, W. J., Cooper, J. A. G. & Kelley, J. T. (2011). The World’s Beaches: A Global Guide to the Science of the Shoreline. Berkeley, CA: University of California Press.Google Scholar
Piriz, M. L., Eyras, M. C. & Rostagno, C. M. (2003). Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. Journal of Applied Phycology, 15, 67–74.CrossRefGoogle Scholar
Polis, G. A. & Hurd, S. D. (1995). Extraordinarily high spider densities on islands – Flow of energy from the marine to terrestrial food webs and the absence of predation. Proceedings of the National Academy of Sciences of the United States of America, 92, 4382–4386.CrossRefGoogle ScholarPubMed
Polis, G. A. & Hurd, S. D. (1996). Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist, 147, 396–423.CrossRefGoogle Scholar
Porri, F., Hill, J. M. & McQuaid, C. D. (2011). Associations in ephemeral systems: The lack of trophic relationships between sandhoppers and beach wrack. Marine Ecology Progress Series, 426, 253–262.CrossRefGoogle Scholar
Pörtner, H. O. (2008). Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series, 373, 203–217.CrossRefGoogle Scholar
Pörtner, H. O., Langenbuch, M. & Reipschlager, A. (2004). Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. Journal of Oceanography, 60, 705–718.CrossRefGoogle Scholar
Ramirez, M., Massolo, S., Frache, R. & Correa, J. A. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.CrossRefGoogle ScholarPubMed
Ranwell, D. S. (1972). Ecology of Salt Marshes and Sand Dunes. London: Chapman & Hall.Google Scholar
Rauch, M. & Denis, L. (2008). Spatio-temporal variability in benthic mineralization processes in the eastern English Channel. Biogeochemistry, 89, 163–180.CrossRefGoogle Scholar
Raven, J. (2005). Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. London: The Royal Society.Google Scholar
Revell, D. L., Marra, J. J. & Griggs, G. B. (2007). Sandshed management. Journal of Coastal Research, SI50, 93–98.Google Scholar
Revell, D. L., Dugan, J. E. & Hubbard, D. M. (2011). Physical and ecological responses of sandy beaches to the 1997–98 El Nino. Journal of Coastal Research, 27, 718–730.CrossRefGoogle Scholar
Ricciardi, A. (2007). Are modern biological invasions an unprecedented form of global change?Conservation Biology, 21, 329–336.CrossRefGoogle ScholarPubMed
Rickard, C. A., McLachlan, A. & Kerley, G. I. H. (1994). The effects of vehicular and pedestrian traffic on dune vegetation in South Africa. Ocean and Coastal Management, 23, 225–247.CrossRefGoogle Scholar
Rizkalla, C. E. & Savage, A. (2010). Impact of seawalls on loggerhead sea turtle (Caretta caretta) nesting and hatching success. Journal of Coastal Research, 27, 166–173.CrossRefGoogle Scholar
Rodil, I. F. & Lastra, M. (2004). Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science, 61, 37–44.CrossRefGoogle Scholar
Rodil, I., Lastra, M. & Sánchez-Mata, A. (2006). Community structure and intertidal zonation of the macroinfauna in intermediate sandy beaches in temperate latitudes: North coast of Spain. Estuarine, Coastal and Shelf Science, 67, 267–279.CrossRefGoogle Scholar
Rodil, I. F., Compton, T. J. & Lastra, M. (2012). Exploring macroinvertebrate species distributions at regional and local scales across a sandy beach geographic continuum. PLoS ONE, 7(6), e39609.CrossRefGoogle Scholar
Romer, G. S. (1990). Surf zone fish community and species response to a wave energy gradient. Journal of Fish Biology, 36, 279–287.CrossRefGoogle Scholar
Roob, R., Edmunds, M. & Ball, D. (2000). Victorian oil spill response atlas: Biological resources, macroalgal communities in central Victoria. Australian Marine Ecology, 109, 42 pp.Google Scholar
Rose, M. D. & Polis, G. A. (1998). The distribution and abundance of coyotes: The effects of allochthonous food subsidies from the sea. Ecology, 79, 998–1007.CrossRefGoogle Scholar
Rossi, F., Olabarria, C., Incera, M. & Garrido, J. (2010). The trophic significance of the invasive seaweed Sargassum muticum in sandy beaches. Journal of Sea Research, 63, 52–61.CrossRefGoogle Scholar
Rumbold, D. G., Davis, P. W. & Perretta, C. (2001). Estimating the effect of beach nourishment on Caretta caretta (loggerhead sea turtle) nesting. Restoration Ecology, 9, 304–310.CrossRefGoogle Scholar
Saayman, G. S. & Tayler, C. K. (1973). Social organisation of inshore dolphins (Tursiops aduncus and sousa) in the Indian Ocean. Journal of Mammalogy, 54, 993–996.CrossRefGoogle Scholar
Saba, V. S., Santidrian-Tomillo, P., Reina, R. D., et al. (2007). The effect of the El Nino Southern Oscillation on the reproductive frequency of eastern Pacific leatherback turtles. Journal of Applied Ecology, 44, 395–404.CrossRefGoogle Scholar
Salafsky, N., Margoluis, R., Redford, K. H. & Robinson, J. G. (2002). Improving the practice of conservation: A conceptual framework and research agenda for conservation science. Conservation Biology, 16, 1469–1479.CrossRefGoogle Scholar
Santoro, R., Jucker, T., Prisco, I., et al. (2012). Effects of trampling limitation on coastal dune plant communities. Environmental Management, 49, 534–542.CrossRefGoogle ScholarPubMed
Scapini, F. (ed.) (2002). Baseline Research for the Integrated Sustainable Management of Mediterranean Sensitive Coastal Ecosystems: A Manual for Coastal Managers, Scientists and All Those Studying Coastal Processes and Management in the Mediterranean. Firenze: Istituto Agronomico per l’Oltremare, Società Editrice Fiorentina.
Scapini, F. (2010). Mediterranean coastal areas at risk between conservation and development. In Scapini, F. & Ciampi, G. (eds.), Coastal Water Bodies: Nature and Culture Conflicts in the Mediterranean. Dordrecht: Springer Science, pp. 1–20.CrossRefGoogle Scholar
Scapini, F., Chelazzi, L., Colombini, I., Fallaci, M. & Fanini, L. (2005). Orientation of sandhoppers at different points along a dynamic shoreline in southern Tuscany. Marine Biology, 147, 919–926.CrossRefGoogle Scholar
Schiel, D. R., Steinbeck, J. R. & Foster, M. S. (2004). Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology, 85, 1833–1839.CrossRefGoogle Scholar
Schlacher, T. A. & Connolly, R. M. (2009). Land–ocean coupling of carbon and nitrogen fluxes on sandy beaches. Ecosystems, 12, 311–321.CrossRefGoogle Scholar
Schlacher, T. A. & Hartwig, J. (2013). Bottom-up control in the benthos of ocean-exposed sandy beaches. Austral Ecology, 38, 177–189.CrossRefGoogle Scholar
Schlacher, T. A. & Lucrezi, S. (2010a). Experimental evidence that vehicle traffic changes burrow architecture and reduces population density of ghost crabs on sandy beaches. Vie et Milieu – Life and Environment, 60, 313–320.Google Scholar
Schlacher, T. A. & Lucrezi, S. (2010b). Compression of home ranges in ghost crabs on sandy beaches impacted by vehicle traffic. Marine Biology, 157, 2467–2474.CrossRefGoogle Scholar
Schlacher, T. A. & Lucrezi, S. (2010c). Impacts of off-road vehicles (ORVs) on burrow architecture of ghost crabs (Genus Ocypode) on sandy beaches. Environmental Management, 45, 1352–1362.Google Scholar
Schlacher, T. A. & Morrison, J. M. (2008). Beach disturbance caused by off-road vehicles (ORVs) on sandy shores: Relationship with traffic volumes and a new method to quantify impacts using image-based data acquisition and analysis. Marine Pollution Bulletin, 56, 1646–1649.CrossRefGoogle Scholar
Schlacher, T. A. & Thompson, L. M. C. (2007). Exposure of fauna to off-road vehicle (ORV) traffic on sandy beaches. Coastal Management, 35, 567–583.CrossRefGoogle Scholar
Schlacher, T. A. & Thompson, L. M. C. (2008). Physical impacts caused by off-road vehicles (ORVs) to sandy beaches: Spatial quantification of car tracks on an Australian barrier island. Journal of Coastal Research, 224, 234–242.CrossRefGoogle Scholar
Schlacher, T. A. & Thompson, L. (2012). Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biological Conservation, 147, 123–132.CrossRefGoogle Scholar
Schlacher, T. A., Schoeman, D. S., Lastra, M., et al. (2006). Neglected ecosystems bear the brunt of change. Ethology, Ecology & Evolution, 18, 349–351.CrossRefGoogle Scholar
Schlacher, T. A., Dugan, J., Schoeman, D. S., et al. (2007a). Sandy beaches at the brink. Diversity and Distributions, 13, 556–560.CrossRefGoogle Scholar
Schlacher, T. A., Thompson, L. M. C. & Price, S. (2007b). Vehicles versus conservation of invertebrates on sandy beaches: Quantifying direct mortalities inflicted by off-road vehicles (ORVs) on ghost crabs. Marine Ecology – Evolutionary Perspective, 28, 354–367.CrossRefGoogle Scholar
Schlacher, T. A., Connolly, R. M., Skillington, A. J. & Gaston, T. F. (2008a). Can export of organic matter from estuaries support zooplankton in nearshore, marine plumes?Aquatic Ecology, 43, 383–393.CrossRefGoogle Scholar
Schlacher, T. A., Richardson, D. & McLean, I. (2008b). Impacts of off-road vehicles (ORVs) on macrobenthic assemblages on sandy beaches. Environmental Management, 41, 878–892.CrossRefGoogle ScholarPubMed
Schlacher, T. A., Schoeman, D. S., Dugan, J. E., et al. (2008c). Sandy beach ecosystems: Key features, sampling issues, management challenges and climate change impacts. Marine Ecology – Evolutionary Perspective, 29(S1), 70–90.CrossRefGoogle Scholar
Schlacher, T. A., Skillington, A. J., Connolly, R. M., Robinson, W. & Gaston, T. F. (2008d). Coupling between marine plankton and freshwater flow in the plumes off a small estuaryInternational Review of Hydrobiology, 6, 641–658.CrossRefGoogle Scholar
Schlacher, T. A., Thompson, L. M. C. & Walker, S. J. (2008e). Mortalities caused by off-road vehicles (ORVs) to a key member of sandy beach assemblages, the surf clam Donax deltoides. Hydrobiologia, 610, 345–350.CrossRefGoogle Scholar
Schlacher, T. A., de Jager, R. & Nielsen, T. (2011a). Vegetation and ghost crabs in coastal dunes as indicators of putative stressors from tourism. Ecological Indicators, 11, 284–294.CrossRefGoogle Scholar
Schlacher, T. A., Holzheimer, A., Stevens, T. & Rissik, D. (2011b). Impacts of the ‘Pacific Adventurer’ oil spill on the macrobenthos of subtropical sandy beaches. Estuaries and Coasts, 34, 937–949.CrossRefGoogle Scholar
Schlacher, T. A., Noriega, R., Jones, A. & Dye, T. (2012). The effects of beach nourishment on benthic invertebrates in eastern Australia: Impacts and variable recovery. Science of the Total Environment, 435, 411–417.CrossRefGoogle ScholarPubMed
Schoeman, D. S. & Richardson, A. J. (2002). Investigating biotic and abiotic factors affecting the recruitment of an intertidal clam on an exposed sandy beach using a generalized additive model. Journal of Experimental Marine Biology and Ecology, 276, 67–81.CrossRefGoogle Scholar
Sekercioglu, C. H. (2006). Increasing awareness of avian ecological function. Trends in Ecology and Evolution, 21, 464–471.CrossRefGoogle ScholarPubMed
Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. (2006). Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology, 43, 1049–1055.CrossRefGoogle Scholar
Sheppard, N., Pitt, K. A. & Schlacher, T. A. (2009). Sub-lethal effects of off-road vehicles (ORVs) on surf clams on sandy beaches. Journal of Experimental Marine Biology and Ecology, 380, 113–118.CrossRefGoogle Scholar
Sherman, D. J., Barron, K. M. & Ellis, J. T. (2002). Retention of beach sands by dams and debris basins in southern California. Journal of Coastal Research, SI36, 662–674.CrossRefGoogle Scholar
Siegel, P. & Wenner, A. (1984). Abnormal reproduction of the sand crab Emerita analoga in the vicinity of a nuclear generating station in southern California. Marine Biology, 80, 341–345.CrossRefGoogle Scholar
Simmons, R. E. (2005). Declining coastal avifauna at a diamond-mining site in Namibia: Comparisons and causes. Ostrich, 76, 97–103.CrossRefGoogle Scholar
Slott, J. M., Murray, A. B., Ashton, A. D. & Crowley, T. J. (2006). Coastline responses to changing storm patterns. Geophysical Research Letters, 33, L18404.CrossRefGoogle Scholar
Small, C. & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19, 584–599.Google Scholar
Soares, A. G. (2003). Sandy beach morphodynamics and macrobenthic communities in temperate, subtropical and tropical regions: A macroecological approach. PhD thesis, University of Port Elizabeth, Port Elizabeth, South Africa.
Soares, A. G., McLachlan, A. & Schlacher, T. A. (1996). Disturbance effects of stranded kelp on populations of the sandy beach bivalve Donax serra (Röding). Journal of Experimental Marine Biology and Ecology, 205, 165–186.CrossRefGoogle Scholar
Soares, A. G., Schlacher, T. A. & McLachlan, A. (1997). Carbon and nitrogen exchange between sandy beach clams (Donax serra) and kelp beds in the Benguela Coastal Upwelling Region. Marine Biology, 127, 657–664.CrossRefGoogle Scholar
Soares, A. G., Scapini, F., Brown, A. C. & McLachlan, A. (1999). Phenotypic plasticity, genetic similarity and evolutionary inertia in changing environments. Journal of Molluscan Studies, 65, 136–139.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., et al. (2007). Technical summary. In Solomon, S., Qin, D., Manning, M., et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 19–91.Google Scholar
Speybroeck, J., Bonte, D., Courtens, W., et al. (2006). Beach nourishment: An ecologically sound coastal defence alternative? A review. Aquatic Conservation – Marine and Freshwater Ecosystems, 16, 419–435.CrossRefGoogle Scholar
Stewart, B. S. (1984). Diurnal hauling patterns of harbor seals at San Miguel Island, California. Journal of Wildlife Management, 48, 1459–1461.CrossRefGoogle Scholar
Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science, 301, 65–65.CrossRefGoogle ScholarPubMed
Stockdon, H. F., Sallenger, A. H., Holman, R. A. & Howd, P. A. (2007). A simple model for the spatially-variable coastal response to hurricanes. Marine Geology, 238, 1–20.CrossRefGoogle Scholar
Straughan, D. (1983). Ecological characteristics of sandy beaches in the Southern California Bight. In McLachlan, A. & Erasmus, T. (eds.), Sandy Beaches as Ecosystems: Proceedings of the 1st International Symposium on Sandy Beaches, Port Elizabeth, South Africa, 17–21 January 1983. Developments in Hydrobiology. The Hague: W. Junk, pp. 441–447.CrossRefGoogle Scholar
Tarr, J. G. & Tarr, P. W. (1987). Seasonal abundance and the distribution of coastal birds on the northern Skeleton Coast, South West Africa/Namibia. Madoqua, 15, 63–72.Google Scholar
Teal, J. M. & Howarth, R. W. (1984). Oil spill studies: A review of ecological effects. Environmental Management, 8, 27–43.CrossRefGoogle Scholar
Teck, S. J., Halpern, B. S., Kappel, C. V., et al. (2010). Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecological Applications, 20, 1402–1416.CrossRefGoogle ScholarPubMed
Thompson, L. M. C. & Schlacher, T. A. (2008). Physical damage to coastal foredunes and ecological impacts caused by vehicle tracks associated with beach camping on sandy shores: A case study from Fraser Island, Australia. Journal of Coastal Conservation, 12, 67–82.CrossRefGoogle Scholar
Thornton, E. B., Sallenger, A., Sesto, J. C., et al. (2006). Sand mining impacts on long-term dune erosion in southern Monterey Bay. Marine Geology, 229, 45–58.CrossRefGoogle Scholar
Tsubaki, R. & Kato, M. (2009). Intertidal slope of coral sand beach as a unique habitat for fish: Meiobenthic diet of the transparent sand dart, Kraemeria cunicularia (Gobiidae). Marine Biology, 156, 1739–1749.CrossRefGoogle Scholar
Ungherese, G., Mengoni, A., Somigli, S., et al. (2010). Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environmental Pollution, 158, 1638–1643.CrossRefGoogle Scholar
United Nations Conference on Environment and Development (UNCED). (1992). Protection of the Oceans, All Kinds of Seas, Including Enclosed and Semi-enclosed Seas, and Coastal Areas and the Protection, Rational Use and Development of Their Living Resources. Agenda 21, Chapter 17. New York, NY: United Nations Divison for Sustainable Development.Google Scholar
Van Dam, A. R. & Van Dam, M. H. (2008). Impact of off-road vehicle use on dune endemic Coleoptera. Annals of the Entomological Society of America, 101, 411–417.CrossRefGoogle Scholar
Van der Merwe, D. (1988). The Effects of Off-road Vehicles (ORV’s) on Coastal Ecosystems – A Review. Institute for Coastal Research Report No. 17. Port Elizabeth, South Africa: University of Port Elizabeth.Google Scholar
Van der Merwe, D. (1991). Effects of off-road vehicles on the macrofauna of a sandy beach. South African Journal of Science, 87, 210–213.Google Scholar
Varland, D. E., Powell, L. A., Kenney, M. K. & Fleming, T. L. (2008). Peregrine falcon survival and resighting frequencies on the Washington coast, 1995–2003. Journal of Raptor Research, 42, 161–171.CrossRefGoogle Scholar
Vieira, J. V., Borzone, C. A., Lorenzi, L. & de Carvalho, F. G. (2012). Human impact on the benthic macrofauna of two beach environments with different morphodynamic characteristics in southern Brazil. Brazilian Journal of Oceanography, 60, 135–148.CrossRefGoogle Scholar
Vranjic, J. A., Morin, L., Reid, A. M. & Groves, R. H. (2012). Integrating revegetation with management methods to rehabilitate coastal vegetation invaded by Bitou bush (Chrysanthemoides monilifera ssp rotundata) in Australia. Austral Ecology, 37, 78–89.CrossRefGoogle Scholar
Waayers, D., Newsome, D. & Lee, D. (2006). Observations of non-compliance behaviour by tourists to a voluntary code of conduct: A pilot study of turtle tourism in the Exmouth region, Western Australia. Journal of Ecotourism, 5, 211–222.CrossRefGoogle Scholar
Walker, S. J. & Schlacher, T. A. (2011). Impact of a pulse human disturbance experiment on macrofaunal assemblages on an Australian sandy beach. Journal of Coastal Research, 27, 184–192.CrossRefGoogle Scholar
Walker, S. J., Schlacher, T. A. & Thompson, L. M. C. (2008). Habitat modification in a dynamic environment: The influence of a small artificial groyne on macrofaunal assemblages of a sandy beach. Estuarine Coastal and Shelf Science, 79, 24–34.CrossRefGoogle Scholar
Watt-Pringle, P. & Strydom, N. A. (2003). Habitat use by larval fishes in a temperate South African surf zone. Estuarine, Coastal and Shelf Science, 58, 765–774.CrossRefGoogle Scholar
Webb, L. J. (1973). Environmental Boomerang. Milton: Jacaranda Press.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.CrossRefGoogle Scholar
Weston, M. A. & Elgar, M. A. (2005). Disturbance to brood-rearing hooded plover Thinornis rubricollis: Responses and consequences. Bird Conservation International, 15, 193–209.CrossRefGoogle Scholar
Weston, M. A. & Elgar, M. A. (2007). Responses of incubating hooded plovers (Thinornis rubricollis) to disturbance. Journal of Coastal Research, 23, 569–576.CrossRefGoogle Scholar
Weston, M. A., Dann, P., Jessop, R. et al. (2008). Can oiled shorebirds and their nests and eggs be successfully rehabilitated? A case study involving the threatened hooded plover Thinornis rubricollis in south-eastern Australia. Waterbirds, 31, 127–132.CrossRefGoogle Scholar
Weston, M. A., Ehmke, G. C. & Maguire, G. S. (2009). Manage one beach or two? Movements and space-use of the threatened hooded plover (Thinornis rubricollis) in south-eastern Australia. Wildlife Research, 36, 289–298.CrossRefGoogle Scholar
Weston, M. A., Ehmke, G. C. & Maguire, G. S. (2011). Nest return times in response to static versus mobile human disturbance. Journal of Wildlife Management, 75, 252–255.CrossRefGoogle Scholar
Weston, M. A., Dodge, F., Bunce, A., Nimmo, D. G. & Miller, K. K. (2012). Do temporary beach closures assist in the conservation of breeding shorebirds on recreational beaches?Pacific Conservation Biology, 18, 47–55.CrossRefGoogle Scholar
Wieser, W., Ott, J., Schiemer, F. & Gnaiger, E. (1974). An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Marine Biology, 26, 235–248.CrossRefGoogle Scholar
Williams, J. A., Ward, V. L. & Underhill, L. G. (2004). Waders respond quickly and positively to the banning of off-road vehicles from beaches in South Africa. Wader Study Group Bulletin, 104, 79–81.Google Scholar
Williams, K. J. H., Weston, M. A., Henry, S. & Maguire, G. S. (2009). Birds and beaches, dogs and leashes: Dog owners’ sense of obligation to leash dogs on beaches in Victoria, Australia. Human Dimensions of Wildlife, 14, 89–101.CrossRefGoogle Scholar
Willis, C. M. & Griggs, G. B. (2003). Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. Journal of Geology, 111, 167–182.CrossRefGoogle Scholar
Witherington, B., Hirama, S. & Mosier, A. (2011). Sea turtle responses to barriers on their nesting beach. Journal of Experimental Marine Biology and Ecology, 401, 1–6.CrossRefGoogle Scholar
Wolcott, T. G. & Wolcott, D. L. (1984). Impact of off-road vehicles on macroinvertebrates of a mid-Atlantic beach. Biological Conservation, 29, 217–240.CrossRefGoogle Scholar
Yamazaki, K. (2012). Seasonal changes in seaweed deposition, seaweed fly abundance, and parasitism at the pupal stage along sandy beaches in central Japan. Entomological Science, 15, 28–34.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×