Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T13:47:23.587Z Has data issue: false hasContentIssue false

4 - Biodiversity, ecosystem services, and the conservation of seagrass meadows

Published online by Cambridge University Press:  05 June 2014

Richard K. F. Unsworth
Affiliation:
Swansea University
Leanne C. Cullen-Unsworth
Affiliation:
Cardiff University
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Introduction

Seagrass meadows are soft sediment intertidal to subtidal benthic habitats that are comprised of a group of plants adapted to life in the sea (den Hartog, 1970; Hemminga & Duarte, 2000). Seagrasses comprise one of the world’s most widespread habitats in shallow coastal waters; they are found on all of the world’s continents except Antarctica. Seagrass habitat can be patchy, but is more commonly comprised of continuous vegetation, which can be thousands of square kilometers in size. It is these large swaths that are referred to as seagrass beds or meadows (terms that are interchangeable). Seagrass meadows occur in sheltered intertidal and shallow subtidal areas on sand or mud substratum (and occasionally in among boulders). Current documented distributions include 125 000 km2 of seagrass meadows; however, recent estimates suggest that these meadows could cover up to 600 000 km2 of the coastal ocean (Duarte et al., 2010).

Seagrasses are marine angiosperms belonging to the order Helobiae and comprising two families – Potamogetonaceae and Hydrocharitaceae (den Hartog, 1970). Seagrass plants are rhizomatous (they have stems extending horizontally below the sediment surface) and modular, composed of repeating units (ramets) that exhibit clonal growth (Hemminga & Duarte, 2000). In contrast to other submerged marine plants (e.g. seaweeds or algae), seagrasses flower, develop fruit, and produce seeds (Ackerman, 2006). They have true roots and internal gaseous and nutrient transport systems (Kuo & den Hartog, 2006). The functional definition for seagrass plants encompasses only 72 species. Three seagrass species are considered endangered and 10 are at elevated risk of extinction; however, the gross majority of species are considered common (Short et al., 2011). It is the common abundance of these species, rather than their rarity, that makes them important. Seagrasses provide habitat, meaning they have a major functional role in supporting various stages in the life cycles of other organisms. For this reason, and with their extensive root–rhizome system and well-developed canopy, seagrasses, like reef-building organisms, are termed foundation species (Hughes et al., 2009).

Type
Chapter
Information
Coastal Conservation , pp. 95 - 130
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, J. D. (2006). Seagrass reproduction of seagrasses: Pollination in the marine context. In Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds.), Seagrasses: Biology, Ecology and Their Conservation. London: Springer, pp. 89–109.Google Scholar
AgawinSr., N. & Duarte, C. M. (2002). Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries, 25(6), 1205–1209.CrossRefGoogle Scholar
Ainsworth, C. H., Pitcher, J. & Rotinsulu, C. (2008). Evidence of fishery depletions and shifting cognitive baselines in Eastern Indonesia. Biological Conservation, 141, 848–859.CrossRefGoogle Scholar
Airoldi, L. & Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology, 45, 345–405.Google Scholar
Allen, G. R. & Werner, T. B. (2002). Coral reef fish assessment in the ‘coral triangle’ of southeastern Asia. Environmental Biology of Fishes, 65, 209–214.CrossRefGoogle Scholar
Anderson, E. E. (1989). Economic benefits of habitat restoration: Seagrass and the Virginia hard-shell blue crab fishery. North American Journal of Fisheries Management, 9, 140–149.2.3.CO;2>CrossRefGoogle Scholar
Andrews, H. V. & Whitaker, R. (1994). Status of the saltwater crocodile (Crocodylus porosus) in North Andaman island. Hamadryad, 19, 79–92.Google Scholar
Attum, O., Eason, P., Cobbs, G. & el Din, S. M. B. (2006). Response of a desert lizard community to habitat degradation: Do ideas about habitat specialists/generalists hold?Biological Conservation, 133, 52–62.CrossRefGoogle Scholar
Battley, P. F., Melville, D. S., Schuckard, R. & Ballance, P. F. (2011). Zostera muelleri as a structuring agent of benthic communities in a large intertidal sandflat in New Zealand. Journal of Sea Research, 65, 19–27.CrossRefGoogle Scholar
Beck, M. W., Heck, K. L., Able, K. W., et al. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience, 51, 633–641.CrossRefGoogle Scholar
Bell, I. & Ariel, E. (2011). Dietary shift in green turtles. Seagrass-Watch News, Issue 44, p. 32.Google Scholar
Bell, J. D. & Westoby, M. (1986). Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia (Berlin), 68, 205–209.CrossRefGoogle Scholar
Bell, J. J. & Smith, D. (2004). Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: Richness and abundance. Journal of the Marine Biological Association of the United Kingdom, 84, 581–591.CrossRefGoogle Scholar
Bentley, J. M., Catterall, C. P. & Smith, G. C. (2000.) Effects of fragmentation of araucarian vine forest on small mammal communities. Conservation Biology, 14, 1075–1087.CrossRefGoogle Scholar
Blake, R. E. & Duffy, J. E. (2010). Grazer diversity affects resistance to multiple stressors in an experimental seagrass ecosystem. Oikos, 119, 1625–1635.CrossRefGoogle Scholar
Bologna, P. A. X. & Heck, K. L. (1999). Macrofaunal associations with seagrass epiphytes: Relative importance of trophic and structural characteristics. Journal of Experimental Marine Biology and Ecology, 242, 21–39.CrossRefGoogle Scholar
Bostrom, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. (2011). Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Marine Ecology Progress Series, 427, 191–217.CrossRefGoogle Scholar
Cardoso, P. G., Pardal, M. A., Lillebo, A. I., et al. (2004). Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. Journal of Experimental Marine Biology and Ecology, 302, 233–248.CrossRefGoogle Scholar
Carr, J., D’odorico, P., Mcglathery, K. & Wiberg, P. (2010). Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. Journal of Geophysical Research-Biogeosciences, 115, G03011, .CrossRefGoogle Scholar
Christianen, M. J. A., Govers, L. L., Bouma, T. J., et al. (2011). Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology, 100, 546–560.CrossRefGoogle Scholar
Christiansen, C., Christoffersen, H., Dalsgaard, J. & Nornberg, P. (1981). Coastal and near-shore changes correlated with die-back in eel-grass (Zostera marina, L). Sedimentary Geology, 28, 163–173.CrossRefGoogle Scholar
Coles, R. G., Grech, A., Rasheed, M. A., et al. (2011). Seagrass ecology and threats in the tropical Indo-Pacific bioregion. In Pirog, R. S. (ed.), Seagrass: Ecology, Uses and Threats. Hauppauge: Nova Science Publishers, pp. 225–240.Google Scholar
Connolly, R. (1994). The role of seagrass as preferred habitat for juvenile Sillaginodes punctata (cuv. & val.) (sillaginidae, pisces): Habitat selection or feeding?Journal of Experimental Marine Biology and Ecology, 180, 39–47.CrossRefGoogle Scholar
Costanza, R., D’arge, R., de Groot, R., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
Cote, I. M., Gill, J. A., Gardner, T. A. & Watkinson, A. R. S. (2005). Measuring coral reef decline through meta-analyses. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 360, 385–395.CrossRefGoogle ScholarPubMed
Cullen, L. C. (2007). Marine resource dependence, resource use patterns and identification of economic performance criteria within a small island community: Kaledupa, Indonesia. PhD Thesis, University of Essex, Colchester, UK.
De Boer, W. F. (2007). Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia, 591, 5–24.CrossRefGoogle Scholar
De la Moriniere, E. C., Pollux, B. J. A., Nagelkerken, I., et al. (2003). Ontogenetic dietary changes of coral reef fishes in the mangrove–seagrass–reef continuum: Sable isotopes and gut-content analysis. Marine Ecology Progress Series, 246, 279–289.CrossRefGoogle Scholar
De la Torre-Castro, M. & Rönnbäck, P. (2004). Links between humans and seagrasses – An example from tropical East Africa. Ocean and Coastal Management, 47, 361–387.CrossRefGoogle Scholar
Den Hartog, C. (1970). The Seagrasses of the World. Amsterdam: North Holland Publishing.Google Scholar
Dennison, W. C. (2009). Seagrasses: Biology, ecology and conservation. Botanica Marina, 52, 367.CrossRefGoogle Scholar
Dennison, W. C., Orth, R. J., Moore, K. A., et al. (1993). Assessing water quality with submersed aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health. Bioscience, 43, 86–94.CrossRefGoogle Scholar
Deudero, S., Box, A., Alos, J., Arroyo, N. L. & Marba, N. (2011). Functional changes due to invasive species: Food web shifts at shallow Posidonia oceanica seagrass beds colonized by the alien macroalga Caulerpa racemosa. Estuarine, Coastal and Shelf Science, 93, 106–116.CrossRefGoogle Scholar
Dirhamsyah, . (2007). Economic valuation of the seagrass beds of East Bintan, Riau Archipelago. Oseanologi dan Limnologi di Indonesia, 33, 257–270.Google Scholar
Dorenbosch, M., Grol, M. G. G., Christianen, M. J. A., Nagelkerken, I. & van der Velde, G. (2005). Indo-Pacific seagrass beds and mangroves contribute to fish density coral and diversity on adjacent reefs. Marine Ecology Progress Series, 302, 63–76.CrossRefGoogle Scholar
Duarte, C. M. (1991). Allometric scaling of seagrass form and productivity. Marine Ecology Progres Series, 77, 289–300.CrossRefGoogle Scholar
Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation, 29, 192–206.CrossRefGoogle Scholar
Duarte, C. M. & Cebrian, J. (1996). The fate of marine autotrophic production. Limnology and Oceanography, 41, 1758–1766.CrossRefGoogle Scholar
Duarte, C. M., Dennison, W. C., Orth, R. J. W. & Carruthers, T. J. B. (2008). The charisma of coastal ecosystems: Addressing the imbalance. Estuaries and Coasts, 31, 233–238.CrossRefGoogle Scholar
Duarte, C. M., Marba, N., Gacia, E., et al. (2010). Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24, GB4032, .CrossRefGoogle Scholar
Duffy, J. E. (2006). Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series, 311, 233–250.CrossRefGoogle Scholar
Duffy, J. E. (2009). Why biodiversity is important to the functioning of real-world ecosystems: Managing ecosystems to promote biodiversity can have important practical benefits. Frontiers in Ecology and the Environment, 7, 437–444.CrossRefGoogle Scholar
Duffy, J. E., Richardson, J. P. & Canuel, E. A. (2003). Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters, 6, 881.Google Scholar
Duffy, J. E., Richardson, J. P. & France, K. E. (2005). Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters, 8, 301–309.CrossRefGoogle Scholar
Egerton, J. (2011). Management of the Seagrass Bed at Porth Dinllaen. Initial Investigation Into the Use of Alternative Mooring Systems. Report for Gwynedd Council.
Eklof, J. S., Frocklin, S., Lindvall, A., et al. (2009). How effective are MPAs? Predation control and ‘spill-in effects’ in seagrass–coral reef lagoons under contrasting fishery management. Marine Ecology Progress Series, 384, 83–96.CrossRefGoogle Scholar
Engeman, R. M., Duquesnel, J. A., Cowan, E. M., et al. (2008). Assessing boat damage to seagrass bed habitat in a Florida park from a bioeconomics perspective. Journal of Coastal Research, 24, 527–532.CrossRefGoogle Scholar
Exton, D. A. (2009). Nearshore fisheries of the Wakatobi. In Clifton, J. & Unsworth, R. K. F. (eds.), Marine Conservation and Research in the Coral Triangle: The Wakatobi Marine National Park. New York, NY: Nova Scientific, pp. 193–207.Google Scholar
FAO (Food and Agriculture Organization of the United Nations). (2010). The State of World Fisheries and Aquaculture. .
Felger, R. S., Moser, M. B. & Moser, E. W. (1980). Seagrasses in Seri Indian culture. In Phillips, R. C. & Mcroy, C. P. (eds.), Handbook of Seagrass Biology, an Ecosystem Perspective. New York, NY: Garland STPM Press, pp. 260–276.Google Scholar
Fodrie, F. J., Heck, Jr., K. L., Powers, S. P., Graham, W. M. & Robinson, K. L. (2010). Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Global Change Biology, 16, 48–59.CrossRefGoogle Scholar
Fortes, M. D. (1990). Seagrasses: A Resource Unknown in the ASEAN Region. Manila, Philippines: International Center for Living Aquatic Resources Management.Google Scholar
Fortes, M. D. (1991). Seagrass–mangrove ecosystems management: A key to marine coastal conservation in the ASEAN region. Marine Pollution Bulletin, 23, 113–116.CrossRefGoogle Scholar
Frederiksen, M. S. & Glud, R. N. (2006). Oxygen dynamics in the rhizosphere of Xostera marina: A 2-dimensional planar optode study. Limnology and Oceanography, 51, 1072–1083.CrossRefGoogle Scholar
Fromentin, J. M., Stenseth, N. C., Gjosaeter, J., Johannessen, T. & Planque, B. (1998). Long-term fluctuations in cod and pollack along the Norwegian Skagerrak coast. Marine Ecology Progress Series, 162, 265–278.CrossRefGoogle Scholar
Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. Science, 301, 958–960.CrossRefGoogle ScholarPubMed
Gaston, K. J. & Fuller, R. A. (2008). Commonness, population depletion and conservation biology. Trends in Ecology and Evolution, 23, 14–19.CrossRefGoogle ScholarPubMed
Gates, J. E. & Gysel, L. W. (1978). Avian nest dispersion and fledging success in field–forest ecotones. Ecology, 59, 871–883.CrossRefGoogle Scholar
Gillanders, B. M. (2006). Seagrasses, fish, and fisheries. In Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds.), Seagrasses: Biology, Ecology and Their Conservation. London: Springer, pp. 503–536.Google Scholar
Green, E. P. & Short, F. (2003). World Atlas of Seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. Berkeley, CA: University of California Press.Google Scholar
Harborne, A., Mumby, P., Micheli, F., et al. (2006). The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Advances in Marine Biology, 50, 57–189.CrossRefGoogle ScholarPubMed
Hauser, A., Attrill, M. J. & Cotton, P. A. (2006). Effects of habitat complexity on the diversity and abundance of macrofauna colonising artificial kelp holdfasts. Marine Ecology Progress Series, 325, 93–100.CrossRefGoogle Scholar
Heck, K. L. & Valentine, J. F. (2007). The primacy of top-down effects in shallow benthic ecosystems. Estuaries and Coasts, 30, 371–381.CrossRefGoogle Scholar
Heck, K. L., Carruthers, T. J. B., Duarte, C. M., et al. (2008). Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems, 11, 1198–1210.CrossRefGoogle Scholar
Hemminga, M. A. & Duarte, C. M. (2000). Seagrass Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Herman, P. M. J., Middleburg, J. J. & Heip, C. H. R. (2001). Benthic community structure and sediment processes on an intertidal flat: Results from the ECOFLAT project. Continental Shelf Research, 21, 2055–2071.CrossRefGoogle Scholar
Hettler, W. F. (1989). Food habits of juveniles of spotted seatrout and gray snapper in Western Florida Bay. Bulletin of Marine Science, 44, 155–162.Google Scholar
Hicks, G. R. F. (1985). Biomass and production estimates for an estuarine meiobenthic copepod, with an instantaneous assessment of exploitation by flatfish predators. New Zealand Journal of Ecology, 8, 125–127.Google Scholar
Hiddink, J. G. (2003). Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Marine Ecology Progress Series, 252, 173–185.CrossRefGoogle Scholar
Hirst, J. A. & Attrill, M. J. (2008). Small is beautiful: An inverted view of habitat fragmentation in seagrass beds. Estuarine, Coastal and Shelf Science, 78, 811–818.CrossRefGoogle Scholar
Holmer, M., Marba, N., Lamote, M. & Duarte, C. M. (2009). Deterioration of sediment quality in seagrass meadows (Posidonia oceanica) invaded by macroalgae (Caulerpa sp.). Estuaries and Coasts, 32, 456–466.CrossRefGoogle Scholar
Hovel, K. A. & Lipcius, R. N. (2001). Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival. Ecology, 82, 1814–1829.CrossRefGoogle Scholar
Hughes, A. R., Williams, S. L., Duarte, C. M., Heck, K. L. & Waycott, M. (2009). Associations of concern: Declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment, 7, 242–246.CrossRefGoogle Scholar
Irlandi, E. A. & Crawford, M. K. (1997). Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia, 110, 222–230.CrossRefGoogle ScholarPubMed
Irlandi, E. A., Ambrose, W. G. & Orlando, B. A. (1995). Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop. Oikos, 72, 307–313.CrossRefGoogle Scholar
Irving, A. D., Connell, S. D. & Russell, B. D. (2011). Restoring coastal plants to improve global carbon storage: Reaping what we sow. PLoS ONE, 6, e18311.CrossRefGoogle ScholarPubMed
Jackson, E. L., Rowden, A. A., Attrill, M. J., Bossey, S. J. & Jones, M. B. (2001). The imporance of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology, 39, 269–303.Google Scholar
Jackson, E. L., Attrill, M. J. & Jones, M. B. (2006). Habitat characteristics and spatial arrangement affecting the diversity of fish and decapod assemblages of seagrass (Zostera marina) beds around the coast of Jersey (English Channel). Estuarine, Coastal and Shelf Science, 68, 421–432.CrossRefGoogle Scholar
Jackson, J. B. C. (2001). What was natural in the coastal oceans?Proceedings of the National Academy of Sciences of the United States of America, 98, 5411–5418.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–637.CrossRefGoogle ScholarPubMed
Jenkins, G. P., May, H. M. A., Wheatley, M. J. & Holloway, M. G. (1997). Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and Corner Inlet, Victoria, Australia, with emphasis on commercial species. Estuarine, Coastal and Shelf Science, 44, 569–588.CrossRefGoogle Scholar
Joseph, V., Locke, A. & Godin, J. G. J. (2006). Spatial distribution of fishes and decapods in eelgrass (Zostera marina L.) and sandy habitats of a New Brunswick estuary, eastern Canada. Aquatic Ecology, 40, 111–123.CrossRefGoogle Scholar
Kendrick, G. A., Waycott, M., Carruthers, T. J. B., et al. (2012). The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience, 62, 56–65.CrossRefGoogle Scholar
Kirkman, H. & Kirkman, J. A. (2002). The management of seagrasses in Southeast Asia. Bulletin of Marine Science, 71, 1379–1390.Google Scholar
Kneib, R. T. & Wagner, S. L. (1994). Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series, 106, 227–238.CrossRefGoogle Scholar
Koch, E. M. (2001). Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 1–17.CrossRefGoogle Scholar
Kotler, B. P., Brown, J., Mukherjee, S., Berger-tal, O. & Bouskila, A. (2010). Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proceedings of the Royal Society of London, Series B, Biological Sciences, 277, 1469–1474.CrossRefGoogle ScholarPubMed
Kuo, J. & den Hartog, C. (2006). Seagrass morphology, anatomy, and ultrastructure. In Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds.), Seagrasses: Biology, Ecology and Their Conservation. London: Springer, pp. 51–87.Google Scholar
Kuriandewa, T. E., Kiswara, W., Hutomo, M. & Soemodihardjo, S. (2003). The seagrasses of Indonesia. In Green, E. P. & Short, F. T. (eds.), World Atlas of Seagrasses. Prepared by the UNEP World Conservation Monitoring Centre, Berkeley, CA: University of California Press, pp. 171–184.Google Scholar
Laegdsgaard, P. & Johnson, C. R. (2001). Why do fish utilise mangrove habitats?Journal of Experimental Marine Biology and Ecology, 257, 229–253.CrossRefGoogle ScholarPubMed
Laurel, B. J., Gregory, R. S. & Brown, J. A. (2003). Settlement and distribution of age-0 juvenile cod, Gadus morhua and G-ogac, following a large-scale habitat manipulation. Marine Ecology Progress Series, 262, 241–252.CrossRefGoogle Scholar
Lavery, P. S., Mateo, M. A., Serrano, O. & Rozaimi, M. (2013). Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE, 8(9); e73748. .CrossRefGoogle ScholarPubMed
Lenihan, H. S., Peterson, C. H., Byers, J. E., et al. (2001). Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress. Ecological Applications, 11, 764–782.CrossRefGoogle Scholar
Levin, L. A. (2006). Recent progress in understanding larval dispersal: New directions and digressions. Integrative and Comparative Biology, 46, 282–297.CrossRefGoogle ScholarPubMed
Lopez, N. I. & Duarte, C. M. (2004). Dimethyl sulfoxide (DMSO) reduction potential in Mediterranean seagrass (Posidonia oceanica) sediments. Journal of Sea Research, 51, 11–20.CrossRefGoogle Scholar
Malyshev, A. & Quijon, P. A. (2011). Disruption of essential habitat by a coastal invader: New evidence of the effects of green crabs on eelgrass beds. ICES Journal of Marine Science, 68, 1852–1856.CrossRefGoogle Scholar
McArthur, L. C. & Boland, J. W. (2006). The economic contribution of seagrass to secondary production in South Australia. Ecological Modelling, 196, 163–172.CrossRefGoogle Scholar
Moksnes, P. O., Gullstrom, M., Tryman, K. & Baden, S. (2008). Trophic cascades in a temperate seagrass community. Oikos, 117, 763–777.CrossRefGoogle Scholar
Moriarty, D. J. W. & Boon, P. I. (1989). Interactions of seagrasses with sediment and water. In Larkum, A. W. D., Mccomb, A. J. & Shepherd, S. A. (eds.), Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. New York, NY: Elsevier.Google Scholar
Mumby, P. (2006). Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biological Conservation, 128, 215–222.CrossRefGoogle Scholar
Mumby, P. J., Edwards, A. J., Arias-Gonzalez, J. E., et al. (2003). Mangroves enhance the biomass of coral reef communities in the Caribbean. Nature, 427, 533–536.CrossRefGoogle Scholar
Nakaoka, M. (2005). Plant–animal interactions in seagrass beds: Ongoing and future challenges for understanding population and community dynamics. Population Ecology, 47, 167–177.CrossRefGoogle Scholar
Newell, R. G. (1970). The Biology of Intertidal Animals. London: Elek.Google Scholar
Nicolas, D., Chaalali, A., Drouineau, H., et al. (2011). Impact of global warming on European tidal estuaries: Some evidence of northward migration of estuarine fish species. Regional Environmental Change, 11, 639–649.CrossRefGoogle Scholar
Orth, R. J., Heck, K. L. & van Montfrans, J. (1984). Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries, 7, 339–350.CrossRefGoogle Scholar
Orth, R. J., Carruthers, T. J. B., Dennison, W. C., et al. (2006). A global crisis for seagrass ecosystems. Bioscience, 56, 987–996.CrossRefGoogle Scholar
Palumbi, S. R., Sandifer, P. A., Allan, J. D., et al. (2009). Managing for ocean biodiversity: Creating a national biodiversity conservation agenda to sustain marine ecosystem services. Frontiers in Ecology and the Environment, 7, 204–211.CrossRefGoogle Scholar
Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. (2009). Evidence for shifting baseline syndrome in conservation. Conservation Letters, 2, 93–100.Google Scholar
Parrish, J. D. (1989). Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecology Progress Series, 58, 143–160.CrossRefGoogle Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. (1998). Fishing down marine food webs. Science, 279, 860–863.CrossRefGoogle ScholarPubMed
Pauly, D., Christensen, V., Guenette, S., et al. (2002). Towards sustainability in world fisheries. Nature, 418, 689–695.CrossRefGoogle ScholarPubMed
Peterson, B. J. & Heck, K. L. J. (2001). Positive interactions between suspension-feeding bivalves and seagrass – A facultative mutualism. Marine Ecology Progress Series, 213, 143–155.CrossRefGoogle Scholar
Platt, S. G., Tasirin, J. S., Hunowu, I., Siwu, S. & Rainwater, T. R. (2007). Recent distribution records of estuarine crocodiles (Crocodylus porosus) in northern Sulawesi, Indonesia. Herpetological Bulletin, 100, 13–17.Google Scholar
Rasheed, M. & Unsworth, R. K. F. (2011). Long-term climate-associated dynamics of a tropical seagrass meadow: Implications for the future. Marine Ecology Progress Series, 422, 93–103.CrossRefGoogle Scholar
Rice, J. C. & Garcia, S. M. (2011). Fisheries, food security, climate change and biodiversity: Characteristics of the sector and perspectives on emerging issues. ICES Journal of Marine Science, 68, 1343–1353.CrossRefGoogle Scholar
Richards, C. L., Wares, J. P. & Mackie, J. A. (2010). Evaluating adaptive processes for conservation and management of estuarine and coastal resources. Estuaries and Coasts, 33, 805–810.CrossRefGoogle Scholar
Ries, L., Fletcher, R. J., Battin, J. & Sisk, T. D. (2004). Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annual Review of Ecology, Evolution and Systematics, 35, 491–522.CrossRefGoogle Scholar
Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305, 1926–1929.CrossRefGoogle ScholarPubMed
Rose, C. D. (1999). Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Marine Ecology Progress Series, 190, 211–222.CrossRefGoogle Scholar
Salita, J. T., Ekau, W. & Saint-Paul, U. (2003). Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Marine Ecology Progress Series, 247, 183–195.CrossRefGoogle Scholar
Saunders, D. A., Hobbs, R. J. & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation – A review. Conservation Biology, 5, 18–32.CrossRefGoogle Scholar
Schaffelke, B. & Hewitt, C. L. (2007). Impacts of introduced seaweeds. Botanica Marina, 50, 397–417.CrossRefGoogle Scholar
Sheaves, M. (2005). Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series, 302, 293–305.CrossRefGoogle Scholar
Short, F. T. & Wyllie-Echeverria, S. (1996). Natural and human-induced disturbance of seagrasses. Environmental Conservation, 23, 17–27.CrossRefGoogle Scholar
Short, F. T., Polidoro, B., Livingstone, S. R., et al. (2011). Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144, 1961–1971.CrossRefGoogle Scholar
Smith, T. M., Hindell, J. S., Jenkins, G. P., Connolly, R. M. & Keough, M. J. (2011). Fine-scale spatial and temporal variations in diets of the pipefish Stigmatopora nigra within seagrass patches. Journal of Fish Biology, 78, 1824–1832.CrossRefGoogle ScholarPubMed
Stapel, J., Nijboer, R. & Philipsen, B. (1996). Initial estimates of the export of leaf litter from a seagrass bed in the Spermonde Archipelago, South Sulawesi, Indonesia. In Kuo, J., Phillips, R. C., Walker, D. I. & Kirkman, H. (eds.), Seagrass Biology: Proceedings of an International Workshop, Rottnest Island, Western Australia, 25–29 January 1996. Faculty of Sciences, Crawley: The University of Western Australia.Google Scholar
Stephens, S. A., Broekhuizen, N., Macdiarmid, A. B., et al. (2006). Modelling transport of larval New Zealand abalone (Haliotis iris) along an open coast. Marine and Freshwater Research, 57, 519–532.CrossRefGoogle Scholar
Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. (2000). The effects of fishing on sharks, rays and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science, 57, 476–494.CrossRefGoogle Scholar
Thistle, M. E., Schneider, D. C., Gregory, R. S. & Wells, N. J. (2010). Fractal measures of habitat structure: Maximum densities of juvenile cod occur at intermediate eelgrass complexity. Marine Ecology Progress Series, 405, 39–56.CrossRefGoogle Scholar
Thomsen, M. S. (2010). Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquatic Invasions, 5, 341–346.CrossRefGoogle Scholar
Thorhaug, A. (1990). Restoration of mangroves and seagrasses – Economic benefits for fisheries and mariculture. In Berger, J. J. (ed.), Environmental Restoration: Science and Strategies for Restoring the Earth. Washington, DC: Island Press, pp. 265–279.Google Scholar
Tomas, F., Box, A. & Terrados, J. (2011a). Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biological Invasions, 13, 1559–1570.CrossRefGoogle Scholar
Tomas, F., Cebrian, E. & Ballesteros, E. (2011b). Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 92, 27–34.CrossRefGoogle Scholar
Tomascik, T., Mah, J. A., Nontji, A. & Moosa, K. M. (1997). The Ecology of the Indonesian Seas (Part II). Oxford: Oxford University Press, Periplus Editions (HK).Google Scholar
UNEP. (2004). Seagrass in the South China Sea. UNEP/GEF/SCS Technical Publication No. 3.Google Scholar
UNEP-WCMC. (2006). In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs. Cambridge: UNEP-WCMC.Google Scholar
Unsworth, R. K. F. & Cullen, L. C. (2010). Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters, 3, 63–73.CrossRefGoogle Scholar
Unsworth, R. K. F., Bell, J. J. & Smith, D. J. (2007a). Tidal fish connectivity of reef and seagrass habitats in the Indo-Pacific. Journal of the Marine Biological Association of the United Kingdom, 87, 1287–1296.CrossRefGoogle Scholar
Unsworth, R. K. F., de Grave, S., Jompa, J., Smith, D. J. & Bell, J. J. (2007b). Faunal relationships with seagrass habitat structure: A case study using shrimp from the Indo-Pacific. Marine and Freshwater Research, 58, 1008–1018.CrossRefGoogle Scholar
Unsworth, R. K. F., Wylie, E., Smith, D. J. & Bell, J. J. (2007c). Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science, 72, 81–88.CrossRefGoogle Scholar
Unsworth, R. K. F., Salinas de Leon, P., Garrard, S., et al. (2008). High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series, 353, 213–224.CrossRefGoogle Scholar
Unsworth, R. K. F., Garrard, S. L., de Leon, P. S., et al. (2009). Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum. Aquatic Biology, 5, 85–95.CrossRefGoogle Scholar
Unsworth, R. K. F., Cullen, L. C., Pretty, J. N., Smith, D. J. & Bell, J. J. (2010). Economic and subsistence values of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area management. Ocean and Coastal Management, 53, 218–224.CrossRefGoogle Scholar
Unsworth, R. K. F., Collier, C. J., Henderson, G. M. & Mckenzie, L. J. (2012a). Tropical seagrass meadows modify seawater carbon chemistry: Implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7, 024026.CrossRefGoogle Scholar
Unsworth, R. K. F., Rasheed, M. A., Chartbrand, K. M. & Roelofs, A. J. (2012b). Solar radiation and tidal exposure as environmental drivers of Enhalus acoroides dominated seagrass meadows. PLoS ONE, 7(3), e34133.CrossRefGoogle ScholarPubMed
Van der Heide, T., van Nes, E. H., Geerling, G. W., et al. (2007). Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems, 10, 1311–1322.CrossRefGoogle Scholar
Van der Heide, T., Govers, L. L., de Fouw, J., et al. (2012). A three-stage symbiosis forms the foundation of seagrass ecosystems. Science, 336, 1432–1434.CrossRefGoogle ScholarPubMed
Verweij, M. C., Nagelkerken, I., de Graaff, D., et al. (2006). Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment. Marine Ecology Progress Series, 306, 257–268.CrossRefGoogle Scholar
Virnstein, R. W., Nelson, W. G. & Howard, R. K. (1983). Latitudinal gradients in seagrass epifauna, especially amphipods. Estuaries, 6, 254.Google Scholar
Warren, M. A., Gregory, R. S., Laurel, B. J. & Snelgrove, P. V. R. (2010). Increasing density of juvenile Atlantic (Gadus morhua) and Greenland cod (G. ogac) in association with spatial expansion and recovery of eelgrass (Zostera marina) in a coastal nursery habitat. Journal of Experimental Marine Biology and Ecology, 394, 154–160.CrossRefGoogle Scholar
Watson, R. A., Coles, R. G. & Lee Long, W. J. (1993). Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, northern Queensland, Australia. Marine and Freshwater Research, 44, 211–220.CrossRefGoogle Scholar
Waycott, M., Duarte, C. M., Carruthers, T. J. B., et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377–12381.CrossRefGoogle ScholarPubMed
Wernberg, T., Vanderklift, M. A., How, J. & Lavery, P. S. (2006). Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia, 147, 692–701.CrossRefGoogle ScholarPubMed
Wilcox, B. A. & Murphy, D. D. (1985). Conservation strategy: The effects of fragmentation on extinction. American Naturalist, 125, 879–887.CrossRefGoogle Scholar
Williams, S. L. (2007). Introduced species in seagrass ecosystems: Status and concerns. Journal of Experimental Marine Biology and Ecology, 350, 89–110.CrossRefGoogle Scholar
Williams, S. L. & Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution and Systematics, 38, 327–359.CrossRefGoogle Scholar
Wolff, T. (1976). Utilization of seagrass in the deep sea. Aquatic Botany, 2, 161–174.CrossRefGoogle Scholar
Zimmerman, R. C., Reguzzoni, J. L. & Alberte, R. S. (1995). Eelgrass (Zostera marina) transplants in San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquatic Botany, 51, 67–86.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×