Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T11:50:05.002Z Has data issue: false hasContentIssue false

17 - Amisulpride, Asenapine, Lurasidone, Brexpiprazole, Cariprazine

Published online by Cambridge University Press:  19 October 2021

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, Riverside and San Diego
Get access

Summary

The psychopharmacology field is moving toward a mechanism-based nomenclature to replace outmoded descriptors of molecules with multiple pharmacological properties. In addition to publications covering these efforts [15–17], a Neuroscience-Based Nomenclature website was created (https://nbn2r.com) where one can download a free smartphone app, and which posts twice-yearly glossary updates in May and September. For the sake of simplicity, the term second-generation antipsychotic (SGA) will be used in this chapter, but the antipsychotics described herein have a range of pharmacologic properties, and a wide variety of kinetic profiles. Moreover, with the exception of transdermal asenapine and cariprazine, the SGAs presented in this chapter represent a group that are generally available worldwide.

Type
Chapter
Information
The Clinical Use of Antipsychotic Plasma Levels
Stahl's Handbooks
, pp. 337 - 371
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sparshatt, A., Taylor, D., Patel, M. X., et al. (2009). Amisulpride – dose, plasma concentration, occupancy and response: implications for therapeutic drug monitoring. Acta Psychiatr Scand, 120, 416428.Google Scholar
Ishigooka, J., Iwashita, S., Higashi, K., et al. (2018). Pharmacokinetics and safety of brexpiprazole following multiple-dose administration to Japanese patients with schizophrenia. J Clin Pharmacol, 58, 7480.Google Scholar
Periclou, A., Willavize, S., Jaworowicz, D., et al. (2020). Relationship between plasma concentrations and clinical effects of cariprazine in patients with schizophrenia or bipolar mania. Clin Transl Sci, 13, 362371.Google Scholar
Loebel, A., Silva, R., Goldman, R., et al. (2016). Lurasidone dose escalation in early nonresponding patients with schizophrenia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry, 77, 16721680.Google Scholar
FDA Center for Drug Evaluation and Research (2015). Cariprazine pharmacology/toxicology NDA review and evaluation.Google Scholar
Findling, R. L., Goldman, R., Chiu, Y. Y., et al. (2015). Pharmacokinetics and tolerability of lurasidone in children and adolescents with psychiatric disorders. Clin Ther, 37, 27882797.Google Scholar
Schmitt, U., Abou El-Ela, A., Guo, L. J., et al. (2006). Cyclosporine A (CsA) affects the pharmacodynamics and pharmacokinetics of the atypical antipsychotic amisulpride probably via inhibition of P-glycoprotein (P-gp). J Neural Transm (Vienna), 113, 787801.Google Scholar
O’Brien, F. E., Dinan, T. G., Griffin, B. T., et al. (2012). Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol, 165, 289312.Google Scholar
Bartlett, J. A. and van der Voort Maarschalk, K. (2012). Understanding the oral mucosal absorption and resulting clinical pharmacokinetics of asenapine. AAPS PharmSciTech, 13, 11101115.Google Scholar
Allergan USA Inc. (2017). Saphris package insert. Irvine, CA.Google Scholar
Noven Therapeutics LLC (2020). Secuado package insert. Miami, FL.Google Scholar
Otsuka America Pharmaceutical Inc. (2020). Rexulti package insert. Rockville, MD.Google Scholar
Allergan USA Inc. (2019). Vraylar package insert. Madison, NJ.Google Scholar
Nakamura, T., Kubota, T., Iwakaji, A., et al. (2016). Clinical pharmacology study of cariprazine (MP-214) in patients with schizophrenia (12-week treatment). Drug Des Devel Ther, 10, 327338.Google Scholar
Blier, P., Oquendo, M. A., and Kupfer, D. J. (2017). Progress on the Neuroscience-Based Nomenclature (NbN) for Psychotropic Medications. Neuropsychopharmacology, 42, 19271928.Google Scholar
Uchida, H. (2018). Neuroscience-based Nomenclature: what is it, why is it needed, and what comes next? Psychiatry Clin Neurosci, 72, 5051.Google Scholar
Siafis, S., Davis, J. M., and Leucht, S. (2020). Antipsychotic drugs: from ‘major tranquilizers’ to Neuroscience-based-Nomenclature. Psychol Med, 13.Google Scholar
Correll, C. U., Jain, R., Meyer, J. M., et al. (2019). Relationship between the timing of relapse and plasma drug levels following discontinuation of cariprazine treatment in patients with schizophrenia: indirect comparison with other second-generation antipsychotics after treatment discontinuation. Neuropsychiatr Dis Treat, 15, 25372550.Google Scholar
Vanda Pharmaceuticals Inc. (2018). Fanapt package insert. Washington, DC.Google Scholar
Komossa, K., Rummel-Kluge, C., Hunger, H., et al. (2009). Sertindole versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev, CD006752.Google Scholar
Beedham, C., Miceli, J. J., and Obach, R. S. (2003). Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol, 23, 229232.Google Scholar
Roerig Division of Pfizer Inc. (2020). Geodon package insert. New York.Google Scholar
Asmal, L., Flegar, S. J., Wang, J., et al. (2013). Quetiapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev, CD006625.Google Scholar
Vanasse, A., Blais, L., Courteau, J., et al. (2016). Comparative effectiveness and safety of antipsychotic drugs in schizophrenia treatment: a real-world observational study. Acta Psychiatr Scand, 134, 374384.Google Scholar
Intra-Cellular Therapies Inc. (2019). Caplyta package insert. New York.Google Scholar
Vyas, P., Hwang, B. J., and Brasic, J. R. (2019). An evaluation of lumateperone tosylate for the treatment of schizophrenia. Expert Opin Pharmacother, 30, 17.Google Scholar
Meyer, J. M. (2020). Lumateperone for schizophrenia. Curr Psychiatr, 19, 3339.Google Scholar
Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., et al. (2019). Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet, 394, 939951.Google Scholar
Kahn, R. S., Winter van Rossum, I., Leucht, S., et al. (2018). Amisulpride and olanzapine followed by open-label treatment with clozapine in first-episode schizophrenia and schizophreniform disorder (OPTiMiSE): a three-phase switching study. Lancet Psychiatry, 5, 797807.Google Scholar
Delcker, A., Schoon, M. L., Oczkowski, B., et al. (1990). Amisulpride versus haloperidol in treatment of schizophrenic patients – results of a double-blind study. Pharmacopsychiatry, 23, 125130.Google Scholar
Abbas, A. I., Hedlund, P. B., Huang, X.-P., et al. (2009). Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology, 205, 119128.Google Scholar
Meyer, J. M., Loebel, A. D., and Schweizer, E. (2009). Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs, 18, 17151726.Google Scholar
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th edn. Chicago, IL: McGraw-Hill, pp. 279302.Google Scholar
Schoemaker, H., Claustre, Y., Fage, D., et al. (1997). Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther, 280, 8397.Google Scholar
Stahl, S. M. (2017). Drugs for psychosis and mood: unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectr, 22, 375384.Google Scholar
Kahn, R. S., Fleischhacker, W. W., Boter, H., et al. (2008). Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: an open randomised clinical trial. Lancet, 371, 10851097.Google Scholar
Hartter, S., Huwel, S., Lohmann, T., et al. (2003). How does the benzamide antipsychotic amisulpride get into the brain? – An in vitro approach comparing amisulpride with clozapine. Neuropsychopharmacology, 28, 19161922.Google Scholar
Wang, R., Sun, X., Deng, Y. S., et al. (2018). ABCB1 1199G > A polymorphism impacts transport ability of P-gp-mediated antipsychotics. DNA Cell Biol, 37, 325329.+A+polymorphism+impacts+transport+ability+of+P-gp-mediated+antipsychotics.+DNA+Cell+Biol,+37,+325–329.>Google Scholar
Arrowtex Pharmaceuticals (2019). Amisulpride package insert. Macquarie Park, NSW, Australia.Google Scholar
Bergemann, N., Kopitz, J., Kress, K. R., et al. (2004). Plasma amisulpride levels in schizophrenia or schizoaffective disorder. Eur Neuropsychopharmacol, 14, 245250.Google Scholar
Muller, M. J., Eich, F. X., Regenbogen, B., et al. (2009). Amisulpride doses and plasma levels in different age groups of patients with schizophrenia or schizoaffective disorder. J Psychopharmacol, 23, 278286.Google Scholar
Schoretsanitis, G., Kane, J. M., Correll, C. U., et al. (2020). Blood levels to optimize antipsychotic treatment in clinical practice: a joint consensus statement of the American Society of Clinical Psychopharmacology (ASCP) and the Therapeutic Drug Monitoring (TDM) Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP). J Clin Psychiatry, 81, https://doi.org/10.4088/JCP.4019cs13169.Google Scholar
Puech, A., Fleurot, O., and Rein, W. (1998). Amisulpride, and atypical antipsychotic, in the treatment of acute episodes of schizophrenia: a dose-ranging study vs. haloperidol. The Amisulpride Study Group. Acta Psychiatr Scand, 98, 6572.Google Scholar
Muller, M. J., Regenbogen, B., Hartter, S., et al. (2007). Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia. J Psychiatr Res, 41, 673679.Google Scholar
Mota, N. E., Lima, M. S., and Soares, B. G. (2002). Amisulpride for schizophrenia. Cochrane Database Syst Rev, 2002, CD001357.Google Scholar
Linden, M., Scheel, T., and Xaver Eich, F. (2004). Dosage finding and outcome in the treatment of schizophrenic inpatients with amisulpride: results of a drug utilization observation study. Hum Psychopharmacol, 19, 111119.Google Scholar
Shahid, M., Walker, G. B., Zorn, S. H., et al. (2009). Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol, 23, 6573.Google Scholar
Citrome, L. (2014). Asenapine review, part I: chemistry, receptor affinity profile, pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol, 10, 893903.Google Scholar
Vieta, E. and Montes, J. M. (2018). A review of asenapine in the treatment of bipolar disorder. Clin Drug Investig, 38, 8799.Google Scholar
El-Mallakh, R. S., Nuss, S., Gao, D., et al. (2020). Asenapine in the treatment of bipolar depression. Psychopharmacol Bull, 50, 818.Google Scholar
Koytchev, R., Alken, R. G., McKay, G., et al. (1996). Absolute bioavailability of oral immediate and slow release fluphenazine in healthy volunteers. Eur J Clin Pharmacol, 51, 183187.Google Scholar
Andree, B., Halldin, C., Vrijmoed-de Vries, M., et al. (1997). Central 5-HT2A and D2 dopamine receptor occupancy after sublingual administration of ORG 5222 in healthy men. Psychopharmacology, 131, 339345.Google Scholar
Carrithers, B. and El-Mallakh, R. S. (2020). Transdermal asenapine in schizophrenia: a systematic review. Patient Prefer Adherence, 14, 15411551.Google Scholar
Seager, H. (1998). Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol, 50, 375382.Google Scholar
Pillinger, T., McCutcheon, R. A., Vano, L., et al. (2020). Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry, 7, 6477.Google Scholar
Citrome, L. (2014). Asenapine review, part II: clinical efficacy, safety and tolerability. Expert Opin Drug Saf, 13, 803830.Google Scholar
Dogterom, P., Riesenberg, R., de Greef, R., et al. (2018). Asenapine pharmacokinetics and tolerability in a pediatric population. Drug Des Develop Ther, 12, 26772693.Google Scholar
de Greef, R., Maloney, A., Olsson-Gisleskog, P., et al. (2011). Dopamine D2 occupancy as a biomarker for antipsychotics: quantifying the relationship with efficacy and extrapyramidal symptoms. AAPS Journal, 13, 121130.Google Scholar
Food and Drug Administration Center for Drug Evaluation and Research (2009). Asenapine medical review.Google Scholar
Hiemke, C., Bergemann, N., Clement, H. W., et al. (2018). Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry, 51, 962.Google Scholar
Chapel, S., Hutmacher, M. M., Haig, G., et al. (2009). Exposure-response analysis in patients with schizophrenia to assess the effect of asenapine on QTc prolongation. J Clin Pharmacol, 49, 12971308.Google Scholar
Ward, H. B., Yudkoff, B. L., and Fromson, J. A. (2019). Lurasidone malabsorption following bariatric surgery: a case report. J Psychiatr Pract, 25, 313317.Google Scholar
Baldessarini, R. J., Tondo, L., and Vazquez, G. H. (2019). Pharmacological treatment of adult bipolar disorder. Mol Psychiatry, 24, 198217.Google Scholar
Sunovion Pharmaceuticals Inc. (2019). Latuda package insert. Marlborough, MA.Google Scholar
Wong, D. F., Kuwabara, H., Brašicć, J. R., et al. (2013). Determination of dopamine D2 receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology, 229, 245252.Google Scholar
Potkin, S. G., Keator, D. B., Kesler-West, M. L., et al. (2014). D2 receptor occupancy following lurasidone treatment in patients with schizophrenia or schizoaffective disorder. CNS Spectr, 19, 176181.Google Scholar
Maeda, K., Lerdrup, L., Sugino, H., et al. (2014). Brexpiprazole II: antipsychotic-like and procognitive effects of a novel serotonin–dopamine activity modulator. J Pharmacol Exp Ther, 350, 605614.Google Scholar
Maeda, K., Sugino, H., Akazawa, H., et al. (2014). Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin–dopamine activity modulator. J Pharmacol Exp Ther, 350, 589604.Google Scholar
Tadori, Y., Forbes, R. A., McQuade, R. D., et al. (2011). In vitro pharmacology of aripiprazole, its metabolite and experimental dopamine partial agonists at human dopamine D2 and D3 receptors. Eur J Pharmacol, 668, 355365.Google Scholar
McEvoy, J. and Citrome, L. (2016). Brexpiprazole for the treatment of schizophrenia: a review of this novel serotonin–dopamine activity modulator. Clin Schizophr Relat Psychoses, 9, 177186.Google Scholar
Ward, K. and Citrome, L. (2019). Brexpiprazole for the maintenance treatment of adults with schizophrenia: an evidence-based review and place in therapy. Neuropsychiatr Dis Treat, 15, 247257.Google Scholar
Girgis, R. R., Forbes, A., Abi-Dargham, A., et al. (2020). A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology, 45, 786792.Google Scholar
Takeuchi, H. and Remington, G. (2013). A systematic review of reported cases involving psychotic symptoms worsened by aripiprazole in schizophrenia or schizoaffective disorder. Psychopharmacology (Berl), 228, 175185.Google Scholar
Wong, D. F., Malikaarjun, S., Raoufinia, A., et al. (2011). 619. A phase I, open-label PET study of the pharmacokinetics, tolerability and D2/D3 striatal occupancy of single-dose oral OPC-34712 in healthy subjects. Biol Psychiatry, 69, 187s.Google Scholar
Food and Drug Administration Center for Drug Evaluation and Research (2015). Cariprazine pharmacology/toxicology NDA review and evaluation.Google Scholar
Girgis, R. R., Slifstein, M., D’Souza, D., et al. (2016). Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology (Berl), 233, 35033512.Google Scholar
Otsuka America Pharmaceutical Inc. (2020). Abilify package insert. Rockville, MD.Google Scholar
Németh, G., Laszlovszky, I., Czobor, P., et al. (2017). Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. Lancet, 389, 11031113.Google Scholar
Ragguett, R. M. and McIntyre, R. S. (2019). Cariprazine for the treatment of bipolar depression: a review. Expert Rev Neurother, 19, 317323.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×