Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Section 1 Introduction
- Section 2 Adaptation, speciation and extinction
- Section 3 Biogeography, migration and ecological niche modelling
- 10 Biodiversity informatics for climate change studies
- 11 Climate envelope models in systematics and evolutionary research: theory and practice
- 12 Biogeography of Cyclamen: an application of phyloclimatic modelling
- 13 Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past
- 14 The impact of climate change on the origin and future of East African rainforest trees
- 15 Hybridisation, introgression and climate change: a case study of the tree genus Fraxinus (Oleaceae)
- Section 4 Conservation
- Index
- Systematics Association Publications
- Plate section
- References
10 - Biodiversity informatics for climate change studies
from Section 3 - Biogeography, migration and ecological niche modelling
Published online by Cambridge University Press: 16 May 2011
- Frontmatter
- Contents
- List of contributors
- Preface
- Section 1 Introduction
- Section 2 Adaptation, speciation and extinction
- Section 3 Biogeography, migration and ecological niche modelling
- 10 Biodiversity informatics for climate change studies
- 11 Climate envelope models in systematics and evolutionary research: theory and practice
- 12 Biogeography of Cyclamen: an application of phyloclimatic modelling
- 13 Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past
- 14 The impact of climate change on the origin and future of East African rainforest trees
- 15 Hybridisation, introgression and climate change: a case study of the tree genus Fraxinus (Oleaceae)
- Section 4 Conservation
- Index
- Systematics Association Publications
- Plate section
- References
Summary
Abstract
Modelling the impacts of climate change on biodiversity in a phylogenetic context combines the disparate disciplines of phylogenetics, geographic information systems, niche ecology and climate change research. Each subject has its own approach, literature and data. The strength of an integrative research, known as ‘phyloclimatic modelling’, is that it provides novel insights into the possible interactions of life and climate over millions of years. However, the risk is that problems associated with each subject area might be compounded if analyses are not conducted with care. The continuous development of analytical approaches and the steady increase in data availability have offered new opportunities for data combination. Modelling techniques and output for climate, ecological niche modelling, phylogeny reconstruction and temporal calibration are becoming stronger, and the reliability of results is quantifiable. In contrast, there is still a desperate lack of fundamental data on organismal distribution and on fossil history of lineages. When theories of taxonomic delimitation change, there are subsequent changes in organismal names. This creates difficulty for name-based data retrieval, but techniques are being developed to reduce this problem. Improvements in theory, associated tools and data availability will broaden the applicability of phyloclimatic modelling.
Background
Modelling the impact of climate change on the world's biota is an aspirational goal dependent on the availability of both large amounts of data and substantial computing resources. These models can be used to help us understand evolutionary relationships and ecological requirements of species, and to estimate their past, present and future distributions.
- Type
- Chapter
- Information
- Climate Change, Ecology and Systematics , pp. 231 - 242Publisher: Cambridge University PressPrint publication year: 2011
References
- 2
- Cited by