Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T15:54:36.342Z Has data issue: false hasContentIssue false

1 - Clays and the Minerals Processing Value Chain (MPVC)

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abdrakhimova, E. S. & Abdrakhimov, V. Z. 2006. A Mossbauer spectroscopy study of the transformation of iron compounds in clay materials. Russian Journal of Physical Chemistry, 80 (7), 10771082.CrossRefGoogle Scholar
Abidin, Z., Matsue, N. & Henmi, T. 2008. A new method for nano tube imogolite synthesis. Japanese Journal of Applied Physics, 47, 50795082.CrossRefGoogle Scholar
Abramova, E., Lapides, I. & Yariv, S. 2007. Thermo-XRD investigation of monoionic montmorillonites mechanochemically treated with urea. Journal of Thermal Analysis and Calorimetry, 90 (1), 99106.Google Scholar
Aglietti, E. F., Porto Lopez, J. M. & Pereira, E. 1986. Kinetic aspects of kaolinite acid dissolution: II. Mineral after mechanochemical treatment. Reactivity of Solids, 2 (1–2), 3544.CrossRefGoogle Scholar
Bailey, S. W. 1980. Summary of recommendations of AIPEA Nomenclature Committee. Clay Minerals, 15 (1), 8593.CrossRefGoogle Scholar
Balan, E., Allard, T., Boizot, B., Morin, G. & Muller, J. P. 2000. Quantitative measurement of paramagnetic Fe3+ in kaolinite. Clays and Clay Minerals, 48 (4), 439445.Google Scholar
Balan, E., Calas, G. & Bish, D. L. 2014. Kaolin-group minerals: From hydrogen-bonded layers to environmental recorders. Elements, 10 (3), 183188.CrossRefGoogle Scholar
Balek, V., Benes, M., Subrt, J., et al. 2008. Thermal characterization of montmorillonite clays saturated with various cations. Journal of Thermal Analysis and Calorimetry, 92 (1), 191197.Google Scholar
Bergaya, F. & Lagaly, G. 2006. General introduction: Clays, clay minerals, and clay science. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Berger, B. R., Ayuso, R. A., Wynn, J. C. & Seal, R. R. 2008. Preliminary model of porphyry copper deposits. Open-File Report 2008-1321. U.S. Geological Survey.Google Scholar
Bickmore, B. R., Nagy, K. L., Sandlin, P. E. & Crater, T. S. 2002. Quantifying surface areas of clays by atomic force microscopy. American Mineralogist, 87 (5–6), 780783.Google Scholar
Birch, W. D., Ciriotti, M. E., Downs, R. T., et al. 2012. The new IMA list of minerals: A work in progress. Update: November 2012. International Mineral Association.Google Scholar
Blum, A. E. & Eberl, D. D. 2004. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance. Clays Clay Minerals, 52 (5), 589602.Google Scholar
Blum, A., Lee, L. & Eberl, D. 2011. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption: A new method for quantifying illite and smectite abundance. Clays and Clay Minerals, 59 (2), 212213.Google Scholar
Brigatti, M. F., Galan, E. & Theng, B. K. G. 2006. Structures and mineralogy of clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Carter, D. L., Mortland, M. M. & Kemper, W. D. 1986. Specific surface. In: Klute, A. (ed.) Methods of Soil Analysis, 2nd edition, Madison, WI: American Society of Agronomy and Soil Science Society of America.Google Scholar
Carvalho, A. P., Martins, A., Silva, J. M., et al. 2003. Characterization of the acidity of Al- and Zr-pillared clays. Clays and Clay Minerals, 51 (3), 340349.Google Scholar
Christidis, G. E. & Huff, W. D. 2009. Geological aspects and genesis of bentonites. Elements, 5 (2), 9398.Google Scholar
Christidis, G. E., Blum, A. E. & Eberl, D. D. 2006. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science, 34 (1–4), 125138.Google Scholar
Churakov, S. V. & Dähn, R. 2012. Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environmental Science & Technology, 46 (11), 57135719.Google Scholar
Cihacek, L. J. & Bremner, J. M. 1979. A simplified ethylene glycol monoethyl ether procedure for assessment of soil surface area. Soil Science Society of America Journal, 43 (4), 821822.Google Scholar
Costanzo, P. M. 2001. Baseline studies of the clay minerals society source clays: Introduction. Clays and Clay Minerals, 49 (5), 372373.Google Scholar
Cradwick, P. D. G., Farmer, V. C., Russell, J. D., et al. 1972. Imogolite, a hydrated aluminum silicate of tubular structure. Nature Physical Science, 240 (104), 187189.Google Scholar
Cuadros, J. & Dudek, T. 2006. FTIR investigation of the evolution of the octahedral sheet of kaolinite–smectite with progressive kaolinization. Clays and Clay Minerals, 54 (1), 111.CrossRefGoogle Scholar
Cygan, R. T. & Tazaki, K. 2014. Interactions of kaolin minerals in the environment. Elements, 10 (3), 195200.Google Scholar
de Kretser, R., Scales, P. J. & Boger, D. V. 1997. Improving clay-based tailings disposal: Case study on coal tailings. American Institute of Chemical Engineers Journal, 43 (7), 18941903.Google Scholar
De Souza Santos, P. 1993. The use of clay particle morphology studies to characterize industrial clay deposits: Examples from Brazil. Clay Minerals, 28 (4), 539–53.Google Scholar
Elsass, F. 2006. Transmission electron microscopy. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Elsass, F., Chenu, C. & Tessier, D. 2008. Transmission electron microscopy for soil samples: Preparation methods and use. In: Ulery, A. L. & Richard Drees, L. (eds) Methods of Soil Analysis. Part 5. Mineralogical Methods. Madison, WI: Soil Science Society of America.Google Scholar
Emmerich, K., Wolters, F., Kahr, G. & Lagaly, G. 2009. Clay profiling: The classification of montmorillonites. Clays and Clay Minerals, 57 (1), 104114.Google Scholar
Farmer, V. C., Adams, M. J., Fraser, A. R. & Palmieri, F. 1983. Synthetic imogolite: Properties, synthesis, and possible applications. Clay Minerals, 18 (4), 459472.Google Scholar
Felix, S. P., Savill-Jowitt, C. & Brown, D. R. 2005. Base adsorption calorimetry for characterising surface acidity: A comparison between pulse flow and conventional ‘static’ techniques. Thermochimica Acta, 433 (1–2), 5965.CrossRefGoogle Scholar
Fischer, D., Caseri, W. R. & Hahner, G. 1998. Orientation and electronic structure of ion exchanged dye molecules on mica: An x-ray absorption study. Journal of Colloid and Interface Science, 198 (2), 337346.Google Scholar
Freyssinet, P., Butt, C. R. M., Morris, R. C. & Piantone, P. 2005. Ore-forming processes related to lateritic weathering. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P. (eds) Economic Geology 100th Anniversary, Volume 1905–2005. Littleton, CO: Society of Economic Geologists.Google Scholar
Fripiat, J. J. & Toussaint, F. 1960. Predehydroxylation state of kaolinite. Nature, 186 (4725), 627628.Google Scholar
Frost, R. L. & Vassallo, A. M. 1996. The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay Minerals, 44 (5), 635651.Google Scholar
Gaite, J. M., Ermakoff, P., Allard, T. & Muller, J. P. 1997. Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite. Clays and Clay Minerals, 45 (4), 496505.CrossRefGoogle Scholar
Galán, E. 2006. Genesis of clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Galán, E. & Ferrell, R. E. 2013. Genesis of clay minerals. In: Bergaya, F. & Lagaly, G. (eds) Developments in Clay Science: Volume 5. Handbook of Clay Science, 2nd edition. New York: Elsevier.Google Scholar
Gehring, A. U., Fry, I. V., Luster, J. & Sposito, G. 1993. Vanadium(IV) in a multimineral lateritic saprolite: A thermoanalytical and spectroscopic study. Soil Science Society of America Journal, 57 (3), 868873.Google Scholar
Gil, A., Korili, S. A. & Vicente, M. A. 2008. Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catalysis Reviews-Science and Engineering, 50 (2), 153221.Google Scholar
Gualtieri, A. F., Ferrari, S., Leoni, M., et al. 2008. Structural characterization of the clay mineral illite-1M. Journal of Applied Crystallography, 41 (2), 402415.Google Scholar
Guthrie George, D. & Veblen David, R. 1990. High-resolution transmission electron microscopy applied to clay minerals. In: Coyne, L. M., McKeever, S. W. S. & Blake, D. F. (eds) Spectroscopic Characterization of Minerals and their Surfaces. Washington, DC: American Chemical Society.Google Scholar
Guven, N. 2009. Bentonites: Clays for molecular engineering. Elements, 5 (2), 8992.Google Scholar
Habashi, F. & van Deventer, J. S. J. 2001. Correspondence. Minerals Engineering, 14 (9), 11211122.Google Scholar
Haest, M., Cudahy, T., Laukamp, C. & Gregory, S. 2012. Quantitative mineralogy from infrared spectroscopic data: II. Three-dimensional mineralogical characterization of the Rocklea channel iron deposit, Western Australia. Economic Geology, 107 (2), 229249.Google Scholar
Hähner, G., Marti, A., Spencer, N. D. & Caseri, W. R. 1996. Orientation and electronic structure of methylene blue on mica: A near edge x-ray absorption fine structure spectroscopy study. Journal of Chemical Physics, 104 (19), 77497757.Google Scholar
Hatherly, P., Medhurst, T. & Zhou, B. 2013. Geotechnical modelling based on geophysical logging data. In: 13th Coal Operators Conference. University of Wollongong, Australian Institute of Mining and Metallurgy, 2126.Google Scholar
Heilman, M. D., Carter, D. L. & Gonzalez, C. L. 1965. Ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area. Soil Science, 100 (6), 409413.Google Scholar
Helfferich, F. G. 1962. Ion Exchange. New York: McGraw-Hill.Google Scholar
Holuszko, M. E. & Laskowski, J. S. 2004. Use of pelletization to assess the effect of particle–particle interactions on coal handleability. Physicochemical Problems of Mineral Processing, 38 (1), 2335.Google Scholar
Inoue, A. 1995. Formation of clay minerals in hydrothermal environments. In: Velde, B. (ed.) Origin and Mineralogy of Clays. Berlin: Springer.Google Scholar
Jagiello, J., Bandosz, T. J., Putyera, K. & Schwarz, J. A. 1995. Determination of proton affinity distributions for chemical systems in aqueous environments using a stable numerical solution of the adsorption integral equation. Journal of Colloid and Interface Science, 172 (2), 341346.Google Scholar
Kahr, G. & Madsen, F. T. 1995. Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9 (5), 327336.Google Scholar
Karathanasis, A. D. & Hajek, B. F. 1982. Revised methods for rapid quantitative determination of minerals in soil clays. Soil Science Society of America Journal, 46 (2), 419425.Google Scholar
Kasperski, K. L. & Mikula, R. J. 2011. Waste streams of oil sands: Characteristics and remediation. Elements, 7 (6), 387392.Google Scholar
Kaufhold, S., Ufer, K., Kaufhold, A., et al. 2010. Quantification of allophane from Ecuador. Clays and Clay Minerals, 58 (5), 707716.Google Scholar
Kelly, S. D., Hesterberg, D. & Ravel, B. 2008. Analysis of soils and minerals using x-ray absorption spectroscopy. In: Ulery, A. L. & Drees, L. R. (eds) Methods of Soil Analysis. Part 5. Mineralogical Methods. Madison, WI: Soil Science Society of America.Google Scholar
Kelm, U., Helle, S., Jerez, O. & Pincheira, M. 2013. What are copper clays? Geometallurgical implications. Copper Cobre, 2013. Santiago, Chile.Google Scholar
Kim, W., Jeon, H., Shin, H., Rim, J. & Kim, S. 2004. Dry and wet grinding effect on kaolinite and its zeolite formation in NaOH solution. Geosystem Engineering, 7 (1), 2732.CrossRefGoogle Scholar
Kloprogge, J. T. 2005. The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides. Aurora, CO: Clay Minerals Society.Google Scholar
Kloprogge, J. T. & Frost, R. L. 2005. Infrared emission spectroscopy of clay minerals. In: Kloprogge, J. T. (ed.) The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides. Aurora, CO: Clay Minerals Society.CrossRefGoogle Scholar
Kohyama, N. 1992. Development of multi-functional transmission electron microscope and its application to clay science. Nendo Kagaku, 32 (4), 247258.Google Scholar
Komadel, P. & Madejová, J. 2006. Acid activation of clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Kostka, J. E., Wu, J., Nealson, K. H. & Stucki, J. W. 1999. The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63 (22), 37053713.Google Scholar
Lagaly, G. 1994. Bentonites: Adsorbents of toxic substances. In: Schwuger, M. J. & Haegel, F. H. (eds) Surfactants and Colloids in the Environment. Darmstadt: Steinkopff.Google Scholar
Lee, S. Y. & Kim, S. J. 2002. Transmission electron microscopy of hexadecyltrimethylammonium-exchanged smectite. Clay Minerals, 37 (3), 465471.Google Scholar
Lim, J., de Kretser, R. G. & Scales, P. J. 2009. Investigating the influence of total electrolyte concentration and sodium–calcium ion competition on controlled dispersion of swelling clays. International Journal of Mineral Processing, 93 (2), 95102.CrossRefGoogle Scholar
Liu, C., Shi, B., Zhou, J. & Tang, C. 2011. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials. Applied Clay Science, 54 (1), 97106.Google Scholar
Ma, C. & Eggleton, R. A. 1999. Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47 (2), 174180.Google Scholar
Macht, F., Eusterhues, K., Pronk, G. J. & Totsche, K. U. 2011. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N-2) and -liquid (EGME) adsorption methods. Applied Clay Science, 53 (1), 2026.Google Scholar
MacKenzie, K. J. D., Okada, K. & Temuujin, J. 2004. Nanoporous inorganic materials from mineral templates. Current Applied Physics, 4 (2), 167170.Google Scholar
McBride, M. B. 1994. Environmental Chemistry of Soils. New York: Oxford University Press.Google Scholar
McFarlane, A. J., Bremmell, K. E. & Addai-Mensah, J. 2005. Optimising the dewatering behaviour of clay tailings through interfacial chemistry, orthokinetic flocculation and controlled shear. Powder Technology, 160 (1), 2734.Google Scholar
Mermut, A. R. & Lagaly, G. 2001. Baseline studies of the Clay Minerals Society source clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays and Clay Minerals, 49 (5), 393397.Google Scholar
Mestdagh, M. M., Vielvoye, L. & Herbillon, J. 1980. Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15 (1), 113.Google Scholar
Meunier, A. 2006. Why are clay minerals small? Clay Minerals, 41 (2), 551566.Google Scholar
Morris, H. D., Bank, S. & Ellis, P. D. 1990. Aluminum-27 NMR spectroscopy of iron-bearing montmorillonite clays. Journal of Physical Chemistry, 94 (7), 31213129.Google Scholar
Murad, E. 2006. Mössbauer spectroscopy of clays and clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Murray, H. H. 2006. Structure and composition of the clay minerals and their physical and chemical properties. In: Developments in Clay Science. Volume 2. Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays. Amsterdam: Elsevier.Google Scholar
Murray, H. H. & Lyons, S. C. 1955. Correlation of paper-coating quality with degree of crystal perfection of kaolinite. Clays and Clay Minerals, 4(1), 3140.Google Scholar
Murray, H. H. & Lyons, S. C. 1960. Further correlations of kaolinite crystallinity with chemical and physical properties. Clays and Clay Minerals, 8 (1), 1117.Google Scholar
Omotoso, O., McCarty, D. K., Hillier, S. & Kleeberg, R. 2006. Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54 (6), 748760.Google Scholar
Parfitt, R. L. 2009. Allophane and imogolite: Role in soil biogeochemical processes. Clay Minerals, 44 (1), 135155.Google Scholar
Pevear, D. R. 1999. Illite and hydrocarbon exploration. Proceedings of the National Academy of Science USA, 96, 34403446.Google Scholar
Quigley, R. M., Inculet, I. I. & Beisser, E. M. J. 1982. Clay–coal charge transfer and beneficiation by dry mineral removal. Canadian Geotechnical Journal, 19 (4), 508511.Google Scholar
Quirk, J. P. 1955. Significance of surface areas calculated from water vapor sorption isotherms by use of the BET equation. Soil Science, 80 (6), 423430.Google Scholar
Quirk, J. P. & Murray, R. S. 1999. Appraisal of the ethylene glycol monoethyl ether method for measuring hydratable surface area of clays and soils. Soil Science Society of America Journal, 63 (4), 839849.CrossRefGoogle Scholar
Rábago, K. R., Lovins, A. B. & Feiler, T. E. 2001. Energy and Sustainable Development in the Mining and Minerals Industries. London: International Institute for Environment and Development.Google Scholar
San Miguel, G., Lambert, S. D. & Graham, N. J. D. 2006. A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters. Journal of Chemical Technology and Biotechnology, 81 (10), 16851696.Google Scholar
Scherer, H. W. & Zhang, Y. 2002. Mechanisms of fixation and release of ammonium in paddy soils after flooding: III. Effect of the oxidation state of octahedral Fe on ammonium fixation. Journal of Plant Nutrition and Soil Science, 165 (2), 185189.Google Scholar
Schoonheydt, R. A. 1994. Organization and spectroscopy of dyes on submicron-sized crystalline solids. In: Masuhara, H., De Shryver, F. C., Kitamura, N. & Tamai, N. (eds) Microchemistry: Spectroscopy and Chemistry in Small Domains. Amsterdam: North Holland, Elsevier Science B.V.Google Scholar
Schoonheydt, R. A. & Johnston, C. T. 2006. Surface and interface chemistry of clay minerals. In: Bergaya, F., Theng, B. K. G. & Lagaly, G. (eds) Developments in Clay Science: Volume 1. Handbook of Clay Science. New York: Elsevier.Google Scholar
Schroeder, P. A. & Erickson, G. 2014. Kaolin: From ancient porcelains to nanocomposites. Elements, 10 (3), 177182.Google Scholar
Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57 (4), 603619.Google Scholar
Sparks, D. L. 2003. Environmental Soil Chemistry. San Diego, CA: Academic Press.Google Scholar
Stumm, W. 1992. Chemistry of the Solid–Water Interface: Processes at the Mineral–Water and Particle–Water Interface in Natural Systems. New York: Wiley.Google Scholar
Su, C.-C. & Shen, Y.-H. 2005. Preparation and dispersive behaviors of reduced charge smectite. Colloids and Surfaces A: Physical and Engineering Aspects, 259 (1–3), 173179.Google Scholar
Teh, E.-J., Leong, Y. K., Liu, Y., Fourie, A. B. & Fahey, M. 2009. Differences in the rheology and surface chemistry of kaolin clay slurries: The source of the variations. Chemical Engineering Science, 64 (17), 38173825.Google Scholar
van der Gaast, S. J., Wada, K., Wada, S. I. & Kakuto, Y. 1985. Small-angle x-ray powder diffraction, morphology, and structure of allophane and imogolite. Clays and Clay Minerals, 33 (3), 237243.Google Scholar
Velde, B. 1995. Origin and Mineralogy of Clays: Clays and the Environment. Berlin: Springer-Verlag.Google Scholar
Verburg, K. & Baveye, P. 1994. Hysteresis in the binary exchange of cations on 2:1 clay minerals: A critical review. Clays and Clay Minerals, 42 (2), 207220.Google Scholar
Ward, C. R., Nunt-Jaruwong, S. & Swanson, J. 2005. Use of mineralogical analysis in geotechnical assessment of rock strata for coal mining. International Journal of Coal Geology, 64 (1–2), 156171.Google Scholar
Wolters, F., Lagaly, G., Kahr, G., Nueesch, R. & Emmerich, K. 2009. A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57 (1), 115133.Google Scholar
Yermiyahu, Z., Lapides, I. & Yariv, S. 2002. Thermo-XRD analysis of the adsorption of Congo-red by montmorillonite saturated with different cations. Journal of Thermal Analysis and Calorimetry, 69 (1), 317332.Google Scholar
Yu, C.-H., Newton, S. Q., Norman, M. A., et al. 2000. Molecular dynamics simulations of the adsorption of methylene blue at clay mineral surfaces. Clays and Clay Minerals, 48 (6), 665681.Google Scholar
Zbik, M. 2006. Micro-structural explanation for differences in gelation properties of kaolinites from Birdwood (S. Australia) and Georgia (U.S.A.). Clay Science, 12 (Supplement 2), P31P36.Google Scholar
Zbik, M. & Frost, R. L. 2009. Micro-structural differences in kaolinite suspensions. Journal of Colloid and Interface Science, 339 (1), 110116.CrossRefGoogle Scholar

References

1.Bhattacharyya, K. G. & Sen Gupta, S. 2007. Adsorption of Co(II) from aqueous medium on natural and acid activated Kaolinite and montmorillonite. Separation Science and Technology, 42, 33913418.Google Scholar
2.Nagy, N. M., Konya, J. & Urbin, Z. 1997. The competitive exchange of hydrogen and cobalt ions on calcium- montmorillonite. Colloids and Surfaces A- Physicochemical and Engineering Aspects, 121, 117124.Google Scholar
3.Koppelman, M. H. & Dillard, J. G. 1978. X-ray photoelectron spectroscopic (XPS) study of cobalt adsorbed on clay mineral chlorite. Journal of Colloid and Interface Science, 66, 345351.Google Scholar
4.Angove, M. J., Johnson, B. B. & Wells, J. D. 1998. The influence of temperature on the adsorption of cadmium(II) and cobalt(II) on kaolinite. Journal of Colloid and Interface Science, 204, 93103.Google Scholar
5.Yavuz, O., Altunkaynak, Y. & Guzel, F. 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948952.Google Scholar
6.Ikhsan, J., Wells, J. D., Johnson, B. B. & Angove, M. J. 2004. The effect of aspartic acid on the binding of transition metals to kaolinite. Journal of Colloid and Interface Science, 273, 613.Google Scholar
7.Shahwan, T., Erten, H. N. & Unugur, S. 2006. A characterization study of some aspects of the adsorption of aqueous Co2+ ions on a natural bentonite clay. Journal of Colloid and Interface Science, 300, 447452.Google Scholar
8.Yu, S. M., Ren, A. P., Chen, C. L., Chen, Y. X. & Wang, X. 2006. Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite. Applied Radiation and Isotopes, 64, 455461.Google Scholar
9.Davison, N., Mcwhinnie, W. R. & Hooper, A. 1991. X- ray photoelectron spectroscopic study of cobalt (II) and nickel (II) sorbed on hectorite and montmorillonite. Clays and Clay Minerals, 39, 2227.Google Scholar
10.Kara, M., Yuzer, H., Sabah, E. & Celik, M. S. 2003. Adsorption of cobalt from aqueous solutions onto sepiolite. Water Research, 37, 224232.Google Scholar
11.Da Fonseca, M. G., De Oliveira, M. M., Arakaki, L. N. H., Espinola, J. G. P. & Airoldi, C. 2005. Natural vermiculite as an exchanger support for heavy cations in aqueous solution. Journal of Colloid and Interface Science, 285, 5055.Google Scholar
12.Bhattacharyya, K. G. & Sen Gupta, S. 2008. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study. Chemical Engineering Journal, 136, 113.Google Scholar
13.Sathyanarayana, B. & Seshaiah, K. 2011. Kinetics and equilibrium studies on the sorption of manganese(II) and nickel(II) onto kaolinite and bentonite. E-Journal of Chemistry, 8, 373385.Google Scholar
14.Tan, X. L., Hu, J., Montavon, G. & Wang, X. K. 2011. Sorption speciation of Nickel(II) onto Ca-montmorillonite: Batch, EXAFS techniques and modelling. Dalton Transactions, 40, 10953–10960.Google Scholar
15.Riza, K. A., Tolga, D., Ihsan, A., Salih, A. & Yunus, O. 2011. Equilibrium, kinetic and thermodynamic studies of nickel adsorption onto natural and modified kaolinites. Fresenius Environmental Bulletin, 20, 11551166.Google Scholar
16.Puls, R. W. & Bohn, H. L. 1988. Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions. Soil Science Society of America Journal, 52, 12891292.Google Scholar
17.Ijagbemi, C. O., Baek, M. H. & Kim, D. S. 2009. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 166, 538546.CrossRefGoogle ScholarPubMed
18.Greenpedersen, H., Jensen, B. T. & Pind, N. 1997. Nickel adsorption on MnO2, Fe(OH)3, montmorillonite, humic acid and calcite: A comparative study. Environmental Technology, 18, 807815.Google Scholar
19.Gu, X. & Evans, L. J. 2007. Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite. Journal of Colloid and Interface Science, 307, 317325.Google Scholar
20.Marcussen, H., Holm, P. E., Strobel, B. W. & Hansen, H. C. B. 2009. Nickel sorption to goethite and montmorillonite in presence of citrate. Environmental Science & Technology, 43, 11221127.Google Scholar
21.Baeyens, B. & Bradbury, M. H. 1997. A mechanistic description of Ni and Zn sorption on Na-montmorillonite:1. Titration and sorption measurements. Journal of Contaminant Hydrology, 27, 199222.Google Scholar
22.Abollino, O., Giacomino, A., Malandrino, M. & Mentasti, E. 2008. Interaction of metal ions with montmorillonite and vermiculite. Applied Clay Science, 38, 227236.Google Scholar
23.Eloussaief, M., Jarraya, I. & Benzina, M. 2009. Adsorption of copper ions on two clays from Tunisia: pH and temperature effects. Applied Clay Science, 46, 409413.Google Scholar
24.Eren, E. & Afsin, B. 2008. An investigation of Cu(II) adsorption by raw and acidactivated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151, 682691.Google Scholar
25.Bhattacharyya, K. G. & Sen Gupta, S. 2011. Removal of Cu(II) by natural and acid activated clays: An insight of adsorption isotherm, kinetic and thermodynamics. Desalination, 272, 6675.Google Scholar
26.Zhang, G. K., Xia, Y., Ying, L., Jia, Y. Y., Yu, G. W. & Ouyang, S. X. 2004. Copper(II) adsorption on Ca-rectorite, and effect of static magnetic field on the adsorption. Journal of Colloid and Interface Science, 278, 265269.Google Scholar
27.Farquhar, M. L., Vaughan, D. J., Hughes, C. R., Charnock, J. M. & England, K. E. R. 1997. Experimental studies of the interaction of aqueous metal cations with mineral substrates: Lead, cadmium, and copper with perthitic feldspar, muscovite, and biotite. Geochimica et Cosmochimica Acta, 61, 30513064.Google Scholar
28.Du, Q., Sun, Z. X., Forsling, W. & Tang, H. X. 1997. Adsorption of copper at aqueous illite surfaces. Journal of Colloid and Interface Science, 187, 232242.Google Scholar
29.Farrah, H. & Pickering, W. F. 1976a. Sorption of copper species by clays: 2. Illite and montmorillonite. Australian Journal of Chemistry, 29, 11771184.Google Scholar
30.Bhattacharyya, K. G. & Sen Gupta, S. 2006. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology, 50, 388397.Google Scholar
31.Farrah, H. & Pickering, W. F. 1976b. Sorption of copper species by clays:1. Kaolinite. Australian Journal of Chemistry, 29, 11671176.Google Scholar
32.Vico, L. I. 2003. Acid- base behaviour and Cu2+ and Zn2+ complexation properties of the sepiolite/water interface. Chemical Geology, 198, 213222.Google Scholar
33.El- Bayaa, A. A., Badawy, N. A. & Alkhalik, E. A. 2009. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials, 170, 12041209.Google Scholar
34.Malandrino, M., Abollino, O., Giacomino, A., Aceto, M. & Mentasti, E. 2006. Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537546.Google Scholar
35.Kul, A. R. & Caliskan, N. 2009. Equilibrium and kinetic studies of the adsorption of Zn(II) ions onto natural and activated kaolinites. Adsorption Science & Technology, 27, 85105.Google Scholar
36.Reddy, M. R. & Perkins, H. F. 1974. Fixation of zinc by clay-minerals. Soil Science Society of America Journal, 38, 229231.Google Scholar
37.Garcia-Miragaya, J. & Davalos, M. 1986. Sorption and desorption of Zn on Ca-kaolinite. Water Air Soil Pollution, 27, 217224.Google Scholar
38.Spark, K. M., Wells, J. D. & Johnson, B. B. 1995. Characterizing trace metal adsorption on kaolinite. European Journal of Soil Science, 46, 633640.Google Scholar
39.Dimirkou, A., Ioannou, A., Papadopoulos, P. & Paschalidou, C. 2002. Zinc sorption by kaolinite: Influence of pH, electrolyte, and initial Zn concentrations with simultaneous release of Mg, Ca, Mn, and Cu ions. Communications in Soil Science and Plant Analysis, 33, 29172934.Google Scholar
40.Gu, X. & Evans, L. J. 2008. Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica Et Cosmochimica Acta, 72, 267276.CrossRefGoogle Scholar
41.Kaya, A. & Oren, A. H. 2005. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, 125, 183189.Google Scholar
42.Garcia-Miragaya, J., Cardenas, R. & Page, A. L. 1983. Sorption of Cd and Zn on kaolinite and montmorillonite. Heavy Metals in the Environment, 2, 12441248.Google Scholar
43.Maes, A. & Cremers, A. 1975. Cation-exchange hysteresis in montmorillonite: pHdependent effect. Soil Science, 119, 198202.Google Scholar
44.Weiss, Z., Klika, Z., Capkova, P., Janeba, D. & Kozubova, S. 1998. Sodium-cadmium and sodium-zinc exchangeability in montmorillonite. Physics and Chemistry of Minerals, 25, 534540.Google Scholar
45.Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C. & Mentasti, E. 2003. Adsorption of heavy metals on Na- montmorillonite: Effect of pH and organic substances. Water Research, 37, 16191627.Google Scholar
46.Tremolada, J., Dzioba, R., Bernardo- Sanchez, A. & Menendez- Aguado, J. M. 2010. The preg- robbing of gold and silver by clays during cyanidation under agitation and heap leaching conditions. International Journal of Mineral Processing, 94, 6771.Google Scholar
47.Nechaev, Y. A. & Nikolenko, N. 1986. Adsorption of chloride complexes of gold(III)-oxide compounds of iron. Kolloidn. Zhurnal USSR, 48, 11961201.Google Scholar
48.Cohen, D. R. & Waite, T. D. 2004. Interaction of aqueous Au species with goethite, smectite and kaolinite. Geochemistry: Exploration Environment Analysis, 4, 279287.Google Scholar
49.Hong, H. L., Sun, Z. Y., Fu, Z. Y. & Min, X. M. 2003. Adsorption of AuCl4- by kaolinites: Effect of pH, temperature and kaolinite crystallinity. Clays and Clay Minerals, 51, 493501.Google Scholar
50.Mohammadnejad, S., Provis, J. L. & Van Deventer, J. S. J. 2011. Gold sorption by silicates in acidic and alkaline chloride media. International Journal of Mineral Processing, 100, 149156.Google Scholar
51.Bhattacharyya, K. G. & Sen Gupta, S. 2006. Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: Influence of acid activation of the clays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277, 191200.Google Scholar
52.Donat, R., Akdogan, A., Erdem, E. & Cetisli, H. 2005. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286, 4352.Google Scholar
53.Inglezakis, V. J., Stylianou, M. & Loizidou, M. 2010. Ion exchange and adsorption equilibrium studies on clinoptilolite, bentonite and vermiculite. Journal of Physics and Chemistry of Solids, 71, 279284.Google Scholar
54.Xu, D., Tan, X. L., Chen, C. L. & Wang, X. K. 2008. Adsorption of Pb(II) from aqueous solution to MX- 80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 3746.Google Scholar
55.Echeverria, J. C., Zarranz, I., Estella, J. & Garrido, J. J. 2005. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Applied Clay Science, 30, 103115.Google Scholar
56.Heidmann, I., Christl, I., Leu, C. & Kretzschmar, R. 2005. Competitive sorption of protons and metal cations onto kaolinite: Experiments and modeling. Journal of Colloid and Interface Science, 282, 270282.Google Scholar
57.Ikhsan, J., Wells, J. D., Johnson, B. B. & Angove, M. J. 2004. The effect of aspartic acid on the binding of transition metals to kaolinite. Journal of Colloid and Interface Science, 273, 613.Google Scholar
58.Sari, A., Tuzen, M., Citak, D. & Soylak, M. 2007. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 149, 283291.Google Scholar
59.Akafia, M. M., Reich, T. J. & Koretsky, C. M. 2011. Assessing Cd, Co, Cu, Ni, and Pb sorption on montmorillonite using surface complexation models. Applied Geochemistry, 26, S154–S157.Google Scholar
60.Gu, X., Evans, L. J. & Barabash, S. J. 2007. Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica Et Cosmochimica Acta, 74, 57185728.Google Scholar
61.Griffin, R. A. & Au, A. K. 1977. Lead adsorption by montmorillonite using a competitive Langmuir equation. Soil Science Society of America Journal, 41, 880882.Google Scholar
62.Das, N. C. & Bandyopadhyay, M. 1991. Selectivity sequence of adsorption of heavy metals by vermiculite. Asian Environment, 13, 1320.Google Scholar
63.Morris, D. E., Chisholm-Brause, C. J., Barr, M. E., Conradson, S. D. & Eller, P. G. 1994. Optical spectroscopic studies of the sorption of UO22+ species on a reference smectite. Geochimica et Cosmochimica Acta, 58, 36133623.Google Scholar
64.Chisholm-Brause, C. J., Conradson, S. D., Buscher, C. T., Eller, P. G. & Morris, D. E. 1994. Speciation of uranyl sorbed at multiple binding sites on montmorillonite. Geochimica et Cosmochimica Acta, 58, 36253631.Google Scholar
65.Sylvester, E. R., Hudson, E. A. & Allen, P. G. 2000. The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochimica et Cosmochimica Acta, 64, 24312438.Google Scholar
66.Krawcyk-Barsch, E., Arnold, T., Reuther, H., Brandt, F., Bosbach, D. & Bernhard, G. 2004. Formation of secondary Fe-oxyhydroxide phases during the dissolution of chlorite: Effects on uranium sorption. Applied Geochemistry, 19, 14031412.Google Scholar
67.Turner, G. D., Zachara, J. M., Mckinley, J. P. & Smith, S. C. 1996. Surface-charge properties of UO22+ adsorption of a subsurface smectite. Geochimica et Cosmochimica Acta, 60, 33993414.Google Scholar
68.Ames, L. L., McGarrah, J. E. & Walker, B. A. 1983. Sorption of trace constituents from aqueous solutions onto secondary minerals: I. Uranium. Clays and Clay Minerals, 31, 321334.Google Scholar
69.Schlegel, M. L. & Descostes, M. 2009. Uranium uptake by hectorite and montmorillonite: A solution chemistry and polarized EXAFS study. Environmental Science and Technology, 43, 85938598.Google Scholar
70.Hudson, E. A., Terminello, L. J., Viani, B. E., Denecke, M., Reich, T., Allen, P. G., Bucher, J. J., Shuh, D. K. & Edelstein, N. M. 1999. The structure of U6+ sorption complexes on vermiculite and hydrobiotite. Clays and Clay Minerals, 47, 439457.Google Scholar
71.Dent, A. J., Ramsay, J. D. F. & Swanton, S. W. 1992. An EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clay colloids. Journal of Colloid and Interface Science, 150, 4560.Google Scholar
72.McKinley, J. P., Zachara, J. M., Smith, S. C. & Turner, G. D. 1995. The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montomorillonite. Clays and Clay Minerals, 43, 586598.Google Scholar
73.Pshinko, G. N., Kobets, S. A., Bogolepov, A. A. & Goncharuk, V. V. 2010. Treatment of waters containing uranium with saponite clay. Journal of Water Chemistry and Technology, 32, 1016.Google Scholar
74.Donat, R. 2009. The removal of uranium (VI) from aqueous solution onto natural sepiolite. Journal of Chemistry and Thermodynamics, 41, 829835.Google Scholar
75.Sikalidis, C. A. & Alexiades, C. 1989. Adsorption of uranium and thorium from aqueous solutions by the clay minerals montmorillonite and vermiculite. Toxicology and Environmental Chemistry, 20–21, 175180.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×