Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T16:26:34.743Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 August 2018

Paul A. Schroeder
Affiliation:
University of Georgia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez-Silva, M., Mirnezami, M., Uribe-Salas, A., and Finch, J. (2010). “Point of zero charge, isoelectric point and aggregation of phyllosilicate minerals.” Canadian Metallurgical Quarterly 49(4): 405410.CrossRefGoogle Scholar
Anderson, S. P., Dietrich, W. E., and Brimhall, G. H. (2002). “Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment.” Geological Society of America Bulletin 114(9): 11431158.2.0.CO;2>CrossRefGoogle Scholar
Andrade, F. A., Al-Qureshi, H. A., and Hotza, D. (2011). “Measuring the plasticity of clays: A review.” Applied Clay Science 51(1–2): 17.CrossRefGoogle Scholar
Arıkan, B. (2015). “Modeling the paleoclimate (ca. 6000–3200 cal BP) in eastern Anatolia: The method of Macrophysical Climate Model and comparisons with proxy data.” Journal of Archaeological Science 57: 158167.Google Scholar
Arıkan, B., Restelli, F. B., and Masi, A. (2016). “Comparative modeling of Bronze Age land use in the Malatya Plain (Turkey).” Quaternary Science Reviews 136: 122133.Google Scholar
Austin, J. (2011). “Soil CO 2 efflux simulations using Monte Carlo method and implications for recording paleo-atmospheric PCO 2 in pedogenic gibbsite.” Palaeogeography, Palaeoclimatology, Palaeoecology 305(1): 280285.Google Scholar
Austin, J. C., Perry, A., Richter, D. D., and Schroeder, P. A. (2018). “Modifications of 2:1 clay minerals in a kaolinite dominated Ultisol under changing land-use regimes.” Clays and Clay Minerals.Google Scholar
Austin, J. C. and Schroeder, P. A. (2014). “Assessment of pedogenic gibbsite as a paleo-PCO2 proxy using a modern Ultisol.” Clays and Clay Minerals 62(4): 253266.Google Scholar
Bacon, A. R., Billings, S. A., Binkley, D., et al. (2014). “Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest.” In Hayes, D., Stout, S., Crawford, R., and Hoover, A., eds., USDA Forest Service Experimental Forests and Ranges. New York, NY: Springer: 405433.Google Scholar
Bailey, S. (1984). “Crystal chemistry of the true micas.” Reviews in Mineralogy and Geochemistry 13(1): 1360.Google Scholar
Bailey, S. W. (1982). “Nomenclature for regular interstratifications.” American Mineralogist 67(3–4): 394.Google Scholar
Balan, E., Lazzeri, M., Morin, G., and Mauri, F. (2006). “First-principles study of the OH-stretching modes of gibbsite.” American Mineralogist 91(1): 115119.CrossRefGoogle Scholar
Balogh-Brunstad, Z., Keller, C. K., Dickinson, J. T., et al. (2008). “Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments.” Geochimica et Cosmochimica Acta 72(11): 26012618.CrossRefGoogle Scholar
Banfield, J. F. and Eggleton, R. A. (1988). “Transmission electron microscope study of biotite weathering.” Clays and Clay Minerals 36(1): 4760.Google Scholar
Banwart, S., Menon, M., Bernasconi, S. M., et al. (2012). “Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results.” Comptes Rendus Geoscience 344(11–12): 758772.Google Scholar
Barre, P., Velde, B., and Abbadie, L. (2007). “Dynamic role of ‘illite-like’ clay minerals in temperate soils: Facts and hypotheses.” Biogeochemistry 82(1): 7788.CrossRefGoogle Scholar
Beall, G. W. and Powell, C. E. (2011). Fundamentals of Polymer–Clay Nanocomposites, Cambridge: Cambridge University Press.Google Scholar
Becking, L. B., Kaplan, I. R., and Moore, D. (1960). “Limits of the natural environment in terms of pH and oxidation-reduction potentials.” Journal of Geology: 243284.Google Scholar
Bergaya, F., Theng, B. K. G., and Lagaly, G., eds. (2006). Handbook of Clay Science, 1st ed. Amsterdam: Elsevier.Google Scholar
Berner, E. K. and Berner, R. A. (1996). Global Environment: Water, Air, and Geochemical Cycles. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Berner, R. A. (1990). “Atmospheric carbon dioxide levels over Phanerozoic time.” Science (4975): 1382.Google Scholar
Berner, R. A. (1980). Early Diagenesis: A Theoretical Approach. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Berner, R. A., and Maasch, K. A. (1996). “Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J. J. Ebelmen in 1845.” Geochimica et Cosmochimica Acta 60(9): 16331637.Google Scholar
Bethke, C. M. and Reynolds, R. C. (1986). “Recursive method for determining frequency factors in interstratified clay diffraction calculations.” Clays and Clay Minerals 34(2): 224.Google Scholar
Bierman, P. R. and Montgomery, D. R. (2014). Key Concepts in Geomorphology. New York, NY: W. H. Freeman and Co.Google Scholar
Bilmes, L. (1942). “A rheological chart.” Nature 150: 432433.Google Scholar
Bish, D. L. (1993). “Rietveld refinement of the kaolinite structure at 1.5 K.” Clays and Clay Minerals 41(6): 738744.Google Scholar
Bish, D. L. and Johnston, C. T. (1993). “Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature.” Clays and Clay Minerals 41: 297297.Google Scholar
Bish, D. L. and Post, J. E. (1993). “Quantitative mineralogical analysis using the Rietveld full-pattern fitting method.” American Mineralogist 78(9–10): 932940.Google Scholar
Bland, W. and Rolls, D. (1998). Weathering: An Introduction to the Scientific Principles. New York, NY: Arnold.Google Scholar
Blum, A. E. and Lasaga, A. C. (1987). “Monte Carlo simulations of surface reaction rate laws.” In Stumm, W., ed., Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. New York, NY: John Wiley and Sons, 255292, 18 fig, 1 tab, 43 ref.Google Scholar
Blum, A. E. (1991). “The role of surface speciation in the dissolution of albite.” Geochimica et Cosmochimica Acta 55(8): 21932201.Google Scholar
Bragg, W. H. and Bragg, W. L. (1913). “The reflection of X-rays by crystals; II.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 89(610): 246248.Google Scholar
Brantley, S. L., McDowell, W. H., Dietrich, W. E., et al. (2017). “Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth.” Earth Surface Dynamics Discussion Forum 2017: 130.Google Scholar
Brigatti, M. F. and Mottana, A., eds. (2011). Layered Mineral Structures and Their Application in Advanced Technologies. London: European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.CrossRefGoogle Scholar
Brimhall, G. H. and Dietrich, W. E. (1987). “Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis.” Geochimica et Cosmochimica Acta 51(3): 567587.Google Scholar
Brook, G. A., Folkoff, M. E., and Box, E. O. (1983). “A world model of soil carbon dioxide.” Earth Surface Processes and Landforms 8(1): 7988.Google Scholar
Brook, G. A. and Nickmann, R. J. (1996). “Evidence of late Quaternary environments in northwestern Georgia from sediments preserved in Red Spider Cave.” Physical Geography 17(5): 465484.Google Scholar
Brown, G. and Brindley, G. W. (1980). X-Ray Diffraction Procedures for Clay Mineral Identification, new ed. London: Mineralogical Society.Google Scholar
Calas, G. and Hawthorne, F. C. (1988). “Introduction to spectroscopic methods.” Reviews in Mineralogy and Geochemistry 18(1): 19.Google Scholar
Carroll, S. A. and Walther, J. V. (1990). “Kaolinite dissolution at 25, 60 and 80 C.” American Journal of Science 290(7): 797810.Google Scholar
Chadwick, O. A., Brimhall, G. H., and Hendricks, D. M. (1990). “From a black to a gray box – a mass balance interpretation of pedogenesis.” Geomorphology 3(3): 369390.Google Scholar
Chen, P. (1977). “Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks: Geological Survey Occasional Paper 21.” Bloomington: Indiana Geological Survey Report 3: 67.Google Scholar
Chotzen, R. A., Polubesova, T., Chefetz, B., and Mishael, Y. G. (2016). “Adsorption of soil-derived humic acid by seven clay minerals: A systematic study.” Clays and Clay Minerals 64(5): 628638.CrossRefGoogle Scholar
Chung, F. H. (1974a). “Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures.” Journal of Applied Crystallography 7(6): 526531.Google Scholar
Chung, F. H. (1974b). “Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis.” Journal of Applied Crystallography 7(6): 519525.Google Scholar
Chung, F. H. (1975). “Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities.” Journal of Applied Crystallography 8(1): 1719.Google Scholar
Clark, R. C. and MacLean, R. (2004). Nasreddin Hodja: Stories to Read and Retell. Brattleboro, VT: Pro Lingua Associate.Google Scholar
Conway, K. M. (1986). “The geology of the northern two-thirds of the Philomath quadrangle, Georgia.” MS thesis. University of Georgia, Athens, p. 139.Google Scholar
Cornell, R. M. and Schwertmann, U., eds. (1996). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. New York, NY: VCH.Google Scholar
Coughlan, M., Nelson, D., Lonneman, M., and Block, A. (2017). “Historical land use dynamics in the highly degraded landscape of the Calhoun Critical Zone Observatory.” Land 6(2): 32.CrossRefGoogle Scholar
Cullity, B. D. (1978). Elements of X-Ray Diffraction, 2nd ed. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
Cygan, R. T., Liang, J.-J., and Kalinichev, A. G. (2004). “Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field.” Journal of Physical Chemistry B 108(4): 12551266.Google Scholar
Daniels, R. B. (1984). “Soil systems in North Carolina.” North Carolina State University Bulletin, Agricultural Research Service (USA).Google Scholar
Denbigh, K. G. (1981). The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. Cambridge: Cambridge University Press.Google Scholar
De Oliveira, E. and Hase, Y. (2001). “Infrared study and isotopic effect of magnesium hydroxide.” Vibrational Spectroscopy 25(1): 5356.Google Scholar
Diaz, M., Robert, J.-L., Schroeder, P. A., and Prost, R. (2010). “Far-infrared study of the influence of the octahedral sheet composition on the K+-layer interactions in synthetic phlogopites.” Clays and Clay Minerals 58(2): 263271.Google Scholar
Dinauer, R. C., Weed, S. B., and Dixon, J. B., eds. (1989). Minerals in Soil Environments, 2nd ed. Soil Science Society of America Book Series 1. Madison, WI: Soil Science Society of America.Google Scholar
Drever, J. I. (1997). The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Drever, J. I. (2005). Surface and Ground Water, Weathering, and Soils, 1st ed. [electronic resource]. Boston, MA: Elsevier.Google Scholar
Drits, V. A. and McCarty, D. K. (1996). “The nature of diffraction effects from illite and illite-smectite consisting of interstratified trans-vacant and cis-vacant 2: 1 layers: A semiquantitative technique for determination of layer-type content.” American Mineralogist 81(7–8): 852863.Google Scholar
Dudek, T., Cuadros, J., and Fiore, S. (2006). “Interstratified kaolinite-smectite: Nature of the layers and mechanism of smectite kaolinization.” American Mineralogist 91(1): 159170.Google Scholar
Eisenhour, D. D. and Brown, R. K. (2009). “Bentonite and its impact on modern life.” Elements 5(2): 8388.Google Scholar
Emerson, J., Chen, J., and Gates, M. G. (2000). Porcelain Stories: From China to Europe. Seattle: Seattle Art Museum, University of Washington Press.Google Scholar
Eslinger, E. and Pevear, D. R. (1988). Clay Minerals for Petroleum Geologists and Engineers. Tulsa, OK: Society of Economic Paleontologists and Mineralogists.Google Scholar
Farmer, V. (2000). “Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 56(5): 927930.Google Scholar
Farmer, V. C. (1974). Infrared Spectra of Minerals. Monograph No. 4. Middlesex: Mineralogical Society of Great Britain and Ireland.CrossRefGoogle Scholar
Frederikse, H. P. R. (2014). Techniques for Materials Characterization Experimental Techniques Used to Determine the Composition, Structure, and Energy States of Solids and Liquids. Boca Raton, FL: CRC Press.Google Scholar
Feng, B., Lu, Y., Feng, Q., Zhang, M., and Gu, Y. (2012). “Talc–serpentine interactions and implications for talc depression.” Minerals Engineering 32: 6873.Google Scholar
Fisher, G. B. and Ryan, P. C. (2006). “The smectite-to-disordered kaolinite transition in a tropical soil chronosequence, Pacific coast, Costa Rica.” Clays and Clay Minerals 54(5): 571586.Google Scholar
Flint, S. J., Enquist, L. W., Racaniello, V. R., and Skalka, A. M (2009). Principles of Virology. Sterling, VA: ASM Press.Google Scholar
Földvári, M. (2011). “Handbook of thermogravimetric system of minerals and its use in geological practice.” Vol. 213, Budapest, Occasional Papers of the Geological Institute of Hungary.Google Scholar
Frost, L. W. (1991). Soil Survey of Oglethorpe County, Georgia. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service.Google Scholar
Frost, R. (1997). “The structure of the kaolinite minerals – a FT-Raman study.” Clay Minerals 32(1): 6577.Google Scholar
Frost, R. L. (1995). “Fourier transform Raman spectroscopy of kaolinite, dickite and halloysite.” Clays and Clay Minerals 43(2): 191195.Google Scholar
Frost, R. L., Kristof, J., Paroz, G. N., Tran, T. H., and Kloprogge, J. T. (1998). “The role of water in the intercalation of kaolinite with potassium acetate.” Journal of Colloid and Interface Science 204(2): 227236.Google Scholar
Gardner, L. R. (1980). “Mobilization of Al and Ti during weathering – isovolumetric geochemical evidence.” Chemical Geology 30(1–2): 151165.Google Scholar
Garrels, R. M. and Christ, C. L. (1965). Solutions, Minerals, and Equilibria. New York, NY: Harper & Row [1965].Google Scholar
Garrels, R. M. and Mackenzie, F. T. (1971). Evolution of Sedimentary Rocks, 1st ed. New York, NY: Norton.Google Scholar
Golley, F. B. (1996). A History of the Ecosystem Concept in Ecology: More than the Sum of the Parts. New Haven, CT: Yale University Press.Google Scholar
Graham, R. C., Egerton-Warburton, L. M., Hendrix, P. F., et al. (2016). “Wildfire effects on soils of a 55-year-old chaparral and pine biosequence.” Soil Science Society of America Journal 80(2): 376394.Google Scholar
Graham, R. C., Weed, S. B., Bowen, L. H., Amarasiriwardena, D. D., and Buol, S. W.. (1989a) “Weathering of iron-bearing minerals in soils and saprolite on the North Carolina Blue Ridge Front: II. Clay mineralogy.” Clays and Clay Minerals 37(1): 2940.Google Scholar
Graham, R. C., Weed, S. B., Bowen, L. H., and Buol, S. W. (1989b). “Weathering of iron-bearing minerals in soils and saprolite on the North Carolina Blue Ridge Front: I. Sand-size primary minerals.” Clays and Clay Minerals 37(1): 1928.Google Scholar
Grim, R. E. (1988). “The history of the development of clay mineralogy.” Clays and Clay Minerals 36(2): 97101.Google Scholar
Guggenheim, S. (1984). “The brittle micas.” Reviews in Mineralogy and Geochemistry 13(1): 61104.Google Scholar
Guggenheim, S., Adams, J. M., Bain, D. C., et al. (2006). “Summary of recommendations of nomenclature committees relevant to clay mineralogy; report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006.” Clays and Clay Minerals 54(6): 761772.Google Scholar
Guggenheim, S., Adams, J. M., Bergaya, F., et al. (2009). “Nomenclature for stacking in phyllosilicates; report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2008.” Clay Minerals 44(1): 157159.Google Scholar
Guggenheim, S. and Martin, R. T. (1995). “Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees.” Clays and Clay Minerals 43(2): 255556.CrossRefGoogle Scholar
Guggenheim, S. and Van Groos, A. K. (2001). “Baseline studies of the clay minerals society source clays: thermal analysis.” Clays and Clay Minerals 49(5): 433443.Google Scholar
Hack, J. T. (1960). “Interpretation of erosional topography in humid temperate regions.” American Journal of Science 258 -A (Bradley Volume): 8097.Google Scholar
Hack, J. T. (1989). “Geomorphology of the Appalachian highlands.” In Hatcher, R. D., Thomas, W. A., and Viele, G. W., eds., The Geology of North America, Volume F-2: The Appalachian-Ouachita Orogen in the United States. Boulder, CO: Geological Society of America, Inc., 459470.Google Scholar
Harden, J. W. (1987). “Soils developed in granitic alluvium near Merced, CA.” USGS Bulletin 1590-A. Washington, DC: United States Government Printing Office.Google Scholar
Harden, J. W. and Taylor, E. M. (1983). “A quantitative comparison of soil development in four climatic regimes.” Quaternary Research 20(3): 342359.Google Scholar
Harnois, L. (1988). “The CIW index: A new chemical index of weathering.” Sedimentary Geology 55(3–4): 319322.Google Scholar
Harris, D. C. and Bertolucci, M. D. (1978). Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. New York, NY: Dover Publications, Inc.Google Scholar
Hathaway, J. C. (1955). “Procedure for clay mineral analyses used in the sedimentary petrology laboratory of the U.S. Geological Survey.” Clay Minerals Bulletin, 3: 18.Google Scholar
Heaney, P. J. (2015). “At the blurry edge of mineralogy.” American Mineralogist. 100: 3.Google Scholar
Helgeson, H. C., Garrels, R. M., and MacKenzie, F. T. (1969). “Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions – II. Applications.” Geochimica et Cosmochimica Acta 33(4): 455481.Google Scholar
Hem, J. D. and Roberson, C. E. (1967). “Form and stability of aluminium hydroxide complexes in dilute solution.” Geological Survey Water-Supply Paper 182, USGS, United States.Google Scholar
Holland, H. D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton, NJ: Princeton University Press.Google Scholar
Hornberger, G. M. (1998). Elements of Physical Hydrology. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Howard, S. A. and Preston, K. D. (1989). “Profile fitting of powder diffraction patterns.” Reviews in Mineralogy and Geochemistry 20(1): 217.Google Scholar
Hseu, Z., Tsai, H., Hsi, H., and Chen, Y. (2007). “Weathering sequences of clay minerals in soils along a serpentinitic toposequence.” Clays and Clay Minerals 55(4): 389401.Google Scholar
Hurst, V. J., Schroeder, P. A., and Styron, R. W. (1997). “Accurate quantification of quartz and other phases by powder X-ray diffractometry.” Analytica Chimica Acta 337(3): 233252.Google Scholar
Hutchinson, G. E. (1948). “Circular causal systems in ecology.” Annals of the New York Academy of Sciences 50(4): 221246.Google Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., et al. (1984). “The orbital theory of Pleistocene climate: Support from a revised chronology of the Marine Delta18 O record.” In Berger, A. I. et al. (eds.), Milankovitch and Climate: Understanding the Response to Astronomical Forcing, Part I. Dordrecht: D. Reidel Publishing Co.Google Scholar
Ishii, M., Shimanouchi, T., and Nakahira, M. (1967). “Far infra-red absorption spectra of layer silicates.” Inorganica Chimica Acta 1: 387392.CrossRefGoogle Scholar
Jackson, S. T. and Whitehead, D. R. (1993). “Pollen and macrofossils from Wisconsinan interstadial sediments in northeastern Georgia.” Quaternary Research 39(1): 99106.Google Scholar
Jenny, H. (1941). Factors of Soil Formation: A System of Quantitative Pedology. New York, NY: CAB International.Google Scholar
Jenny, H. (1980). The Soil Resource: Origin and Behavior. Vol. 37: New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Jenny, H. (2012). The Soil Resource: Origin and Behavior. New York, NY: Springer-Verlag.Google Scholar
Jenny, H., Arkley, R., and Schultz, A. (1969). “The pygmy forest-podsol ecosystem and its dune associates of the Mendocino coast.” Madroño 20(2), 6074.Google Scholar
Jobbágy, E. G. and Jackson, R. B. (2004). “The uplift of soil nutrients by plants: Biogeochemical consequences across scales.” Ecology 85(9): 23802389.Google Scholar
Jordan, T., Ashley, G., Barton, M., et al. (2001). Basic Research Opportunities in Earth Science. Washington, DC: National Academy Press.Google Scholar
Kim, J. G. (1994). “FTIR, XRD, SEM and chemical study of biotite weathering from the Sparta Granite, Georgia.” MS thesis, University of Georgia.Google Scholar
Klug, H. P. and Alexander, L. E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. New York, NY: Wiley.Google Scholar
Kogel, J. E. (2014). “Mining and processing kaolin.” Elements 10(3): 189193.Google Scholar
Korson, L., Drost-Hansen, W., and Millero, F. J. (1969). “Viscosity of water at various temperatures.” Journal of Physical Chemistry 73(1): 3439.Google Scholar
Kubicki, J. D., Bleam, W. F., Rustad, J. R., et al. (2003). Molecular Modeling of Clays and Mineral Surfaces. Workshop Lecture Series, Vol. 12. Chantilly, VA: Clay Minerals Society.Google Scholar
Kutter, E. and Sulakvelidze, A. (2004). Bacteriophages: Biology and Applications. Boca Raton, FL: CRC Press.Google Scholar
Kyle, J. E. (2005). “Mineral-microbe interactions and biomineralization of siliceous sinters and underlying rock from Jen‘s Pools in the Uzon Caldera, Kamchatka, Russia.” MS thesis, University of Georgia.Google Scholar
Kyle, J. E. (2009). “Viral Mineralization and geochemical interactions.” PhD dissertation, University of Toronto.Google Scholar
Kyle, J. E., Eydal, H. S., Ferris, F. G., and Pedersen, K. (2008). “Viruses in granitic groundwater from 69 to 450 m depth of the Äspö Hard Rock Laboratory, Sweden.” ISME Journal 2(5): 571574.Google Scholar
Kyle, J. E. and Ferris, F. G.. (2013). “Geochemistry of virus–prokaryote interactions in freshwater and acid mine drainage environments, Ontario, Canada.” Geomicrobiology Journal 30(9): 769778.Google Scholar
Langmuir, D. (1997). Aqueous Environmental Geochemistry. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Laperche, V. and Prost, R. (1991). “Assignment of the far-infrared absorption bands of K in micas.” Clays and Clay Minerals 39(3): 281289.Google Scholar
Lasaga, A. C. (2014). Kinetic Theory in the Earth Sciences. Princeton, NJ: Princeton University Press.Google Scholar
Laufer, B. (1930). “Geophagy.” Field Museum of Natural History Publication. Anthropological Series XVIII(280), No. 2.Google Scholar
Le Chatelier, A. (1888). Recherches Expérimentales et Théoriques sur les équilibres Chimiques. Paris: Dunod.Google Scholar
Lee, J. H. and Guggenheim, S. (1981). “Single crystal X-ray refinement of pyrophyllite-1Tc.” American Mineralogist 66(3–4): 350357.Google Scholar
Lee, K. E. and Water, C. L. A. (1998). A History of the CSIRO Division of Soils: 1927–1997. Clayton VIC, Australia: CSIRO.Google Scholar
Leigh, D. S. and Feeney, T. P. (1995). “Paleochannels indicating wet climate and lack of response to lower sea level, southeast Georgia.” Geology 23(8): 687690.Google Scholar
Lindeman, R. L. (1942). “The trophic‐dynamic aspect of ecology.” Ecology 23(4): 399417.Google Scholar
Lovely, D. R. and Chapelle, F. H. (1995). “Deep subsurface microbial processes.” Reviews of Geophysics 33: 365381.Google Scholar
Lovingood, D. (1983). “The geology of the southern one-third of the Philomath and northern one-third of the Crawfordville.” Georgia, quadrangles: Masters’ thesis, University of Georgia, Athens.Google Scholar
Löwenstein, E. (1909). “Über Hydrate, deren Dampfspannung sich kontinuierlich mit der Zusammensetzung ändert.” Zeitschrift für anorganische Chemie 63(1): 69139.Google Scholar
Lutterotti, L., Voltolini, M., Wenk, H.-R., Bandyopadhyay, K., and Vanorio, T. (2010). “Texture analysis of a turbostratically disordered Ca-montmorillonite.” American Mineralogist 95(1): 98103.Google Scholar
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014). “The rise of oxygen in Earth’s early ocean and atmosphere.” Nature 506(7488): 307315.Google Scholar
Madejová, J. and Komadel, P. (2001). “Baseline studies of the Clay Minerals Society source clays: Infrared methods.” Clays and Clay Minerals 49(5): 410.Google Scholar
Madigan, M. T., Martinko, J. M., Dunlap, P. V., and Clark, D. P. (2009). Brock Biology of Microorganisms. San Francisco, CA: Pearson Benjamin Cummings.Google Scholar
Marcano-Martinez, E. and McBride, M. (1989). “Comparison of the titration and ion adsorption methods for surface charge measurement in oxisols.” Soil Science Society of America Journal 53(4): 10401045.Google Scholar
McCutcheon, S. C., Martin, J. L., and Barnwell, T. O. Jr. (1993). “Water quality in Maidment.” D. R. (Editor). Handbook of Hydrology. New York, NY: McGraw-Hill.Google Scholar
McKinley, G. H. (2015). “A hitchhikers guide to complex fluids.” Rheology Bulletin 84(1): 1417.Google Scholar
McMillan, P. F. and Hess, A. C. (1988). “Symmetry, group theory and quantum mechanics.” Reviews in Mineralogy and Geochemistry 18(1): 1161.Google Scholar
Mellini, M. and Zanazzi, P. F. (1987). “Crystal structures of lizardite-1 T and lizardite-2H1 from Coli, Italy.” American Mineralogist 72(9–10): 943948.Google Scholar
Mering, J. (1949). “L’interférence des rayons X dans les systèmes à stratification désordonée.” Acta Crystallographica 2(6): 371377.CrossRefGoogle Scholar
Merritts, D. and Bull, W. B. (1989). “Interpreting Quaternary uplift rates at the Mendocino triple junction, Northern California, from uplifted marine terraces.” Geology 17(11): 10201024.Google Scholar
Merritts, D. J., Chadwick, O. A., Hendricks, D. M., Brimhall, G. H., and Lewis, C. J. (1992). “The mass balance of soil evolution on late Quaternary marine terraces, Northern California.” Geological Society of America Bulletin 104(11): 14561470.Google Scholar
Meunier, A. (2005). , Clays. [electronic resource]. Berlin: Springer, c2005.Google Scholar
Meunier, A., Caner, L., Hubert, F., El Albani, A., and Prêt, D. (2013). “The weathering intensity scale (WIS): An alternative approach of the chemical index of alteration (CIA).” American Journal of Science 313(2): 113143.Google Scholar
Meyer, A. (1926). “Über Einige Zusammenhänge Zwischen Klima Und Boden in Europa.” PhD dissertation. Eidgenössischen Technischen Hochschule, Zurich.Google Scholar
Millot, R., Gaillardet, J., Dupré, B., and Allègre, C. J. (2002). “The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield.” Earth and Planetary Science Letters 196(1): 8398.CrossRefGoogle Scholar
Ming, B. (2002). The Traditional Crafts of Porcelain Making in Jingdezhen. NanChang, China: Jiangxi Fine Arts Publishing House.Google Scholar
Moore, D. M. and Reynolds, R. C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press.Google Scholar
Morad, S. and Worden, R. H. (2003). “Clay mineral cements in sandstones,” edited by Worden, Richard H. and Morad, Sadoon. Special publication No. 34, International Association of Sedimentologists, Malden, MA: Blackwell Publishing.Google Scholar
Mukherjee, S. (2011). Applied Mineralogy: Applications in Industry and Environment. Dordrecht: Springer Netherlands.Google Scholar
Murray, H. H. (2007). Applied Clay Mineralogy: Occurrences Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Developments in Clay Science 2, 1st ed. Amsterdam; Boston, MA: Elsevier.Google Scholar
Nagy, K., Blum, A., and Lasaga, A. (1991). “Dissolution and precipitation kinetics of kaolinite at 80 degrees C and p. 3; the dependence on solution saturation state.” American Journal of Science 291(7): 649686.Google Scholar
Nagy, K. and Lasaga, A. (1992). “Dissolution and precipitation kinetics of gibbsite at 80 C and p. 3: The dependence on solution saturation state.” Geochimica et Cosmochimica Acta 56(8): 30933111.Google Scholar
Nagy, K. L. and Lasaga, A. C. (1993). “Simultaneous precipitation kinetics of kaolinite and gibbsite at 80 C and p. 3.” Geochimica et Cosmochimica Acta 57(17): 43294335.Google Scholar
Nahon, D. (1991). Introduction to the Petrology of Soils and Chemical Weathering. New York, NY: Wiley, c1991.Google Scholar
Nesbitt, I. and Young, G. (1982). “Early Proterozoic climates and plate.” Nature 299: 21.Google Scholar
Newman, A. C. D. (1987). Chemistry of Clays and Clay Minerals. Harlow: Longman Scientific & Technical.Google Scholar
Nickerson, D. and Newhall, S. M. (1941). “Central Notations for ISCC-NBS color names.” Journal of the Optical Society of America 31(9): 587591.Google Scholar
Nitta, I. (1962). “Shoji Nishikawa 1884–1952.” In Ewald, P. P., ed., Fifty Years of X-Ray Diffraction. Boston, MA: Springer, 328334.Google Scholar
Nordstrom, D. K. and Munoz, J. L. (2006). Geochemical Thermodynamics. Caldwell, NJ: Blackburn Press.Google Scholar
Odum, E. P., Odum, H. T., and Andrews, J. (1953). Fundamentals of Ecology. Philadelphia, PA: Saunders.Google Scholar
Olson, C. (2015). “The search for soil hydroxy-interlayered vermiculites: A case for data stewardship.” Oral paper presented at EuroClay 2015, July 8, 2015. Edinburgh: Mineralogical Society.Google Scholar
O’Neill, K. and Black, T. (1993). “A landowner’s guide to USGS investigations in Merced and Stanislaus Counties.” U.S. Department of the Interior, U.S. Geological Survey.Google Scholar
Parker, A. (1970). “An index of weathering for silicate rocks.” Geological Magazine 107(06): 501504.Google Scholar
Parker, A. and Rae, J. E., eds. (1998). Environmental Interactions of Clays. New York, NY: Springer, c1998.Google Scholar
Pauling, L. (1990). Personal recollections. CMS News (September).Google Scholar
Pavich, M. (1989). “Regolith residence time and the concept of surface age of the Piedmont ‘peneplain.’” Geomorphology 2(1–3): 181196.Google Scholar
Pecini, E. M. and Avena, M. J.. (2013). “Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite.” Langmuir 29(48): 1492614934.Google Scholar
Pelletier, M., Michot, L., Barrès, O., et al. (1999). “Influence of KBr conditioning on the infrared hydroxyl-stretching region of saponites.” Clay Minerals 34(3): 439445.Google Scholar
Phillips, T., Loveless, J., and Bailey, S. (1980). “Cr (super 3+) coordination in chlorites: A structural study of ten chromian chlorites.” American Mineralogist 65(1–2): 112122.Google Scholar
Pokrovsky, O. S. and Schott, J. (2004). “Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control.” Geochimica et Cosmochimica Acta 68(1): 3145.Google Scholar
Porder, S., Hilley, G. E., and Chadwick, O. A. (2007). “Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands.” Earth and Planetary Science Letters 258(3): 414427.Google Scholar
Post, J. E. and Bish, D. L.. (1989). “Rietveld refinement of crystal structures using powder X-ray diffraction data.” Reviews in Mineralogy and Geochemistry 20(1): 277308.Google Scholar
Price, J. R. and Velbel, M. A. (2003). “Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks.” Chemical Geology 202(3): 397416.Google Scholar
Prost, R. and Laperche, V. (1990). “Far-infrared study of potassium in micas.” Clays and Clay Minerals 38(4): 351355.Google Scholar
Raich, J. and Schlesinger, W. H. (1992). “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.” Tellus B 44(2): 8199.Google Scholar
Railsback, L. B. (2003). “An Earth scientist’s periodic table of the elements and their ions.” Geology [Boulder] 31(9): 737740.Google Scholar
Railsback, L. B. (2005). “A synthesis of systematic mineralogy.” American Mineralogist 90(7): 10331041.Google Scholar
Railsback, L. B. (2006). “Some fundamentals of mineralogy and geochemistry.” Online resource, quoted from www.gly.uga.edu/railsback.Google Scholar
Railsback, L. B., Bouker, P. A., Feeney, T. P., et al. (1996). “A survey of the major-element geochemistry of Georgia groundwater.” Southeastern Geology 36(3): 99122.Google Scholar
Rayner, J. and Brown, G. (1973). “The crystal structure of talc.” Clays and Clay Minerals 21(2).Google Scholar
Reynolds, R. (1980). “Crystal structures of clay minerals and their X-ray identification.” Mineralogical Society Monograph (5): 249.Google Scholar
Reynolds, R. C. (1986). “The Lorentz-Polarization Factor and preferred orientation in oriented clay aggregates.” Clays and Clay Minerals 34(4): 359367.Google Scholar
Riber, L., Dypvik, H., and Senile, R. (2015). “Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea.” Norwegian Journal of Geology 95(1): 5789.Google Scholar
Richter, D. and Billings, S. A (2015). “‘One physical system’: Tansley’s ecosystem as Earth’s critical zone.” New Phytologist 206(3): 900912.Google Scholar
Richter, D. and Markewitz, D. (1996). “Carbon changes during the growth of loblolly pine on formerly cultivated soil: The Calhoun Experimental Forest, USA.” In Powlson, D. S., Smith, P., and Smith, J. U., Evaluation of Soil Organic Matter Models. Berlin: Springer, 397407.Google Scholar
Richter, D. D. Jr. and Markewitz, D. (2001). Understanding Soil Change: Soil Sustainability over Millennia, Centuries, and Decades. Cambridge: Cambridge University Press.Google Scholar
Rietveld, H. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement.” Acta Crystallographica 22(1): 151152.Google Scholar
Righi, D. and Meunier, A. (1995). “Origin of clays by rock weathering and soil formation.” In Velde, B., ed., Origin and Mineralogy of Clays. Heidelberg: Springer-Verlag, 43161.Google Scholar
Robertson, R. H. S. (1986). Fuller’s Earth: A History of Calcium Montmorillonite. Hythe: Voltura Press.Google Scholar
Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1984). “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures.” U.S. Geological Survey Bulletin 1452. Washington, DC: U.S. Government Printing Office.Google Scholar
Rothbauer, R. and Zigan, F. (1967). “Verfeinerung der Struktur des Bayerits, Al (OH) 3.” Zeitschrift für Kristallographie-Crystalline Materials 125(1–6): 317331.Google Scholar
Rowland, R. A. (1968). “History of the Clay Minerals Society.” Clays and Clay Minerals 16(4): 319321.Google Scholar
Ruan, H., Frost, R., and Kloprogge, J. (2001). “Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite.” Journal of Raman Spectroscopy 32(9): 745750.Google Scholar
Russell, J. D. and Fraser, A. R (1994). “Infrared methods.” In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, ed. Wilson, M. J., Netherlands, Springer: 1167.Google Scholar
Russell, J., Parfitt, R., Fraser, A. and Farmer, V. (1974). “Surface structures of gibbsite goethite and phosphated goethite.” Nature 248: 220221.Google Scholar
Ryan, P., Huertas, F., Hobbs, F., and Pincus, L. (2016). “Kaolinite and halloysite derived from sequential transformation of pedogenic smectite and kaolinite-smectite in a 120 ka tropical soil chronosequence.” Clays and Clay Minerals 64(5): 639667.Google Scholar
Ryan, P. C. and Huertas, F. J. (2013). “Reaction pathways of clay minerals in tropical soils: Insights from kaolinite-smectite synthesis experiments.” Clays and Clay Minerals 61(4): 303318.Google Scholar
Ryskin, Y. I. (1974). “The vibrations of protons in minerals: hydroxyl, water and ammonium.” The Infrared Spectra of Minerals, Vol. 4. London: Mineralogical Society, 137181.Google Scholar
Schlesinger, W. H. (1997). Biogeochemistry: An Analysis of Global Change, 2nd ed. San Diego, CA: Academic Press.Google Scholar
Schroeder, P. A. (1990). “Far infrared, X-ray powder diffraction, and chemical investigation of potassium micas.” American Mineralogist 75.Google Scholar
Schroeder, P. A. (1992). “Far infrared study of the interlayer torsional-vibrational mode of mixed-layer illite-smectites.” Clays and Clay Minerals 40(1): 8191.Google Scholar
Schroeder, P. A., Austin, J. C., and Dowd, J. F. (2006). “Estimating long-term soil respiration rates from carbon isotopes occluded in gibbsite.” Geochimica et Cosmochimica Acta 70(23): 56925697.Google Scholar
Schroeder, P. A and Erickson, G. (2014). “Kaolin: From ancient porcelains to nanocomposites.” Elements 10: 177182.Google Scholar
Schroeder, P. A. and Ingall, E. D. (1994). “A method for the determination of nitrogen in clays, with application to the burial diagenesis of shales: Research method paper.” Journal of Sedimentary Research 64(3).Google Scholar
Schroeder, P. A. and Irby, R. (1998). “Detailed X-ray diffraction characterization of illite-smectite from an Ordovician K-bentonite, Walker County, Georgia, USA.” Clay Minerals 33(4): 671.Google Scholar
Schroeder, P. A., Kim, J. G., and Melear, N. D. (1997). “Mineralogical and textural criteria for recognizing remnant Cenozoic deposits on the Piedmont: Evidence from Sparta and Greene County, Georgia, USA.” Sedimentary Geology 108(1): 195206.Google Scholar
Schroeder, P. A. and Melear, N. D. (1999). “Stable carbon isotope signatures preserved in authigenic gibbsite from a forested granitic–regolith: Panola Mt., Georgia, USA.” Geoderma 91(3): 261279.Google Scholar
Schroeder, P. A., Melear, N. D., Bierman, P., Kashgarian, M., and Caffee, M. W. (2001). “Apparent gibbsite growth ages for regolith in the Georgia Piedmont.” Geochimica et Cosmochimica Acta 65(3): 381386.Google Scholar
Schroeder, P. A., Melear, N. D., West, L. T., and Hamilton, D. A. (2000). “Meta-gabbro weathering in the Georgia Piedmont, USA: Implications for global silicate weathering rates.” Chemical Geology 163(1): 235245.Google Scholar
Schroeder, P. A. and Shiflet, J. (2000). “Ti-bearing phases in the Huber Formation, an east Georgia kaolin deposit.” Clays and Clay Minerals 48(2): 151158.Google Scholar
Schroeder, P. A. and West, L. T. (2005). “Weathering profiles developed on granitic mafic and ultramafic terrains in the area of Elberton, Georgia.” Georgia Geological Society Guidebook 25: 5580.Google Scholar
Sherman, G. D. (1952). “The titanium content of Hawaiian soils and its significance.” Soil Science Society of America Journal 16(1): 1518.Google Scholar
Snyder, R. L. and Bish, D. L. (1989). “Quantitative analysis.” Reviews in Mineralogy and Geochemistry 20(1): 101.Google Scholar
Sposito, G. (1994). Chemical Equilibria and Kinetics in Soils. Oxford: Oxford University Press on Demand.Google Scholar
Srodon, J. and Eberl, D. D. (1984). “Illite.” Reviews in Mineralogy and Geochemistry 13(1): 495544.Google Scholar
Stolt, M., Baker, J., and Simpson, T. (1993). “Soil-landscape relationships in Virginia: I. Soil variability and parent material uniformity.” Soil Science Society of America Journal 57(2): 414421.Google Scholar
Stubican, V. and Roy, R. (1961). “Isomorphous substitution and infra-red spectra of the layer lattice silicates.” American Mineralogist 46: 3251.Google Scholar
Stumm, W. and Morgan, J. J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York, NY: Wiley.Google Scholar
Sumner, M. E., ed. (2000). Handbook of Soil Science. Boca Raton, FL: CRC Press.Google Scholar
Sutter, P. S. (2015). Let Us Now Praise Famous Gullies: Providence Canyon and the Soils of the South. Athens: University of Georgia Press.Google Scholar
Takamura, T. and Koezuka, J. (1965). “Infra-red evidence of the grinding effect on hydrargillite single crystals.” Nature 207: 965966.Google Scholar
Tamura, T., Jackson, M., and Sherman, G. (1953). “Mineral content of low humic, humic and hydrol Humic Latosols of Hawaii.” Soil Science Society of America Journal 17(4): 343346.Google Scholar
Tanner, R. I. and Walters, K. (1998). Rheology: An Historical Perspective. Rheology Series, Vol. 7. New York, NY: Elsevier.Google Scholar
Tansley, A. G. (1935). “The use and abuse of vegetational concepts and terms.” Ecology 16(3): 284307.Google Scholar
Trimble, S. W. (2008). Man-Induced Soil Erosion on the Southern Piedmont, 1700–1970. Ankeny, IA: Soil and Water Conservation Society.Google Scholar
Trimble, S. W. and Crosson, P. (2000). “US soil erosion rates–myth and reality.” Science 289(5477): 248250.Google Scholar
Turekian, K. K. (1996). Global Environmental Change: Past, Present, and Future. Upper Saddle River, NJ: Prentice Hall, c1996.Google Scholar
Vantelon, D., Pelletier, M., Michot, L., Barres, O., and Thomas, F. (2001). “Fe, Mg and Al distribution in the octahedral sheet of montmorillonites: An infrared study in the OH-bending region.” Clay Minerals 36(3): 369379.Google Scholar
Velde, B. (1995). Origin and Mineralogy of Clays. Berlin; New York: Springer, c1995–.Google Scholar
Vincent, H. R., McConnell, K. I., and Perley, P. C. (1990). “Geology of selected mafic and ultramafic rocks of Georgia: A review.” Information Circlular 82. Atlanta: Georgia Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey.Google Scholar
Wahlberg, J. and Fishman, M. J. (1962). Adsorption of Cesium on Clay Minerals. Washington, DC: U.S. Government Printing Office.Google Scholar
Waters, C. N., Zalasiewicz, J., Summerhayes, C., et al. (2016). “The Anthropocene is functionally and stratigraphically distinct from the Holocene.” Science 351(6269): 2622.Google Scholar
White, A. F., Blum, A. E., Schulz, M. S., Bullen, T. D. et al. (1996). “Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates.” Geochimica et Cosmochimica Acta 60(14): 25332550.Google Scholar
White, A. F., Blum, A. E., Schulz, M. S., Vivit, D. V. et al. (1998). “Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes.” Geochimica et Cosmochimica Acta 62(2): 209226.Google Scholar
White, A. F., Schulz, M. S., Lawrence, C. R. et al. (2017). “Long-term flow-through column experiments and their relevance to natural granitoid weathering rates.” Geochimica et Cosmochimica Acta 202: 190214.Google Scholar
Whitney, G. (1983). “Hydrothermal reactivity of saponite.” Clays and Clay Minerals 31(1): 18.Google Scholar
Wilkins, R. W. T. and Ito, J. (1967). “Infrared spectra of some synthetic talcs.” American Mineralogist 52(11–1): 1649.Google Scholar
Williams, L. B. and Hillier, S. (2014). “Kaolins and health: From first grade to first aid.” Elements 10(3): 207211.Google Scholar
Wilson, M. J., ed. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st ed. London: Chapman & Hall, c1994.Google Scholar
Wilson, M. J. (2013). Rock-Forming Minerals Volume 3C – Sheet Silicates: Clay Minerals. 2nd ed. Bath: Geological Society of London.Google Scholar
Wood, B. J. and Fraser, D. G. (1976). Elementary Thermodynamics for Geologists. New York, NY: Oxford University Press USA.Google Scholar
Wright, A. C. (1973). “A compact representation for atomic scattering factors.” Clays and Clay Minerals 21(6): 489490.Google Scholar
Yariv, S. and Cross, H., eds. (2002). Organo-Clay Complexes and Interactions, New York, NY: Marcel Dekker, c2002.Google Scholar
Zigan, F. and Rothbauer, R. (1967). “Neutronenbeugungsmessungen am Brucit.” Neues Jahrb. Mineral. Monatsh. 4: 137142.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×