Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T16:02:35.017Z Has data issue: false hasContentIssue false

7 - Parameters of Classification: Ordo Ab Chao

from Part III - The Cladistic Programme

Published online by Cambridge University Press:  20 July 2020

David M. Williams
Affiliation:
Natural History Museum, London
Malte C. Ebach
Affiliation:
University of New South Wales, Sydney
Get access

Summary

A cladogram is simply a branching diagram (the word is derived from the Greek klados meaning branch); it is non-reticulate; it summarises current knowledge about organisms (Nelson 1979). A cladogram relates all taxa, fossil and Recent, based on evidence derived from organisms and their parts (homologues) and, ultimately, their interrelationships (monophyly, homology). The branching aspect (the specific relationship) is referred to as its cladistic parameter (Nelson 1979, p. 12; Williams & Ebach 2008).

Type
Chapter
Information
Cladistics
A Guide to Biological Classification
, pp. 153 - 212
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Brower, AVZ. 2016. What is a cladogram and what is not? Cladistics 32: 573576.Google Scholar
Camin, JH. & Sokal, RR. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311326.Google Scholar
Delacour, J. & Mayr, E. 1945. The family Anatidae. Wilson Bulletin 57: 355.Google Scholar
Mayr, E. 1955. Comments on some recent studies of song bird phylogeny. Wilson Bulletin 67: 3344.Google Scholar
Mayr, E. 1965. Numerical phenetics and taxonomic theory. Systematic Zoology 14: 7397.Google Scholar
Mayr, E. 1969. Principles of Systematic Zoology. McGraw-Hill, New York.Google Scholar
Mayr, E. 1978. Origin and history of some terms in systematic and evolutionary biology. Systematic Zoology 27: 8388.Google Scholar
Mayr, E. & Bock, WJ. 2002. Classifications and other ordering systems. Journal of Zoological Systematics and Evolutionary Research 40: 169194.CrossRefGoogle Scholar
Mayr, E. Linsley, G. & Usinger, RL. 1953. Methods and Principles of Systematic Zoology. McGraw-Hill, New York/London.Google Scholar
McGinley, RJ. & Michener, CD. 1980. Dr. Nelson on dendronomics. Systematic Zoology 29(1): 9193.Google Scholar
Milne, MJ. & Milne, LJ. 1939. Evolutionary trends in caddisworm case construction. Annals of the Entomological Society of America 32: 533542.Google Scholar
Nelson, GJ. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Familles des Plantes. Systematic Zoology 28: 121.Google Scholar
Pietsch, TW. 2012. Trees of Life. A Visual History of Evolution. Johns Hopkins University Press, Baltimore, MD.Google Scholar

References

de Queiroz, K. 2013. Nodes, branches, and phylogenetic definitions. Systematic Biology 62: 625632.Google Scholar
Foulds, LR., Hendy, MD. & Penny, D. 1979. A graph theoretic approach to the development of minimal phylogenetic trees. Journal of Molecular Evolution 13: 127149.Google Scholar
Hendy, MD. & Penny, D. 1984. Cladograms should be called trees. Systematic Zoology 33: 245247.Google Scholar
Martin, JL. & Wiley, EO. 2008. Mathematical models and biological meaning: taking trees seriously. Cornell University. https://arxiv.org/abs/0808.0287Google Scholar
Martin, J., Blackburn, D. & Wiley, EO. 2010. Are node-based and stem-based clades equivalent? Insights from graph theory. PLoS Currents 2: RRN1196. http://doi:10.1371/currents.RRN1196Google Scholar
Morrison, DA. 2014. Phylogenetic networks: a review of methods to display evolutionary history. Annual Research & Review in Biology 10: 15181543.Google Scholar
Nelson, GJ. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Familles des Plantes. Systematic Zoology 28: 121.Google Scholar
Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Nixon, KC. & Carpenter, JM. 1996. On consensus, collapsibility, and clade concordance. Cladistics 12: 305321.Google Scholar
Page, RDM. 1989. Comments on component-compatibility in historical biogeography. Cladistics 5: 167182.Google Scholar
Page, RDM. & Holmes, EC. 1998. Molecular Evolution: A Phylogenetic Approach. Wiley-Blackwell, Oxford.Google Scholar
Schuh, RT. & Farris, SJ. 1981. Methods for investigating taxonomic congruence and their application to the Leptopodomorpha. Systematic Zoology 30: 331351.Google Scholar
Semple, C. & Steel, M. 2003. Phylogenetics. Oxford University Press, Oxford.Google Scholar
Wiley, EO. & Lieberman, BS. 2011. Phylogenetics: Theory and Practice of Phylogenetics Systematics. Wiley-Blackwell, Hoboken, NJ.Google Scholar

Reference

Page, RDM. & Holmes, EC. 1998. Molecular Evolution: A Phylogenetic Approach. Wiley-Blackwell, Oxford.Google Scholar

References

Arthur, W. 1997. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Eldredge, N. 1979. Cladism and common sense. In: Cracraft, J. & Eldredge, N. (eds), Phylogenetic Analysis and Paleontology. Columbia University Press, New York, pp. 165197.Google Scholar
Hull, DL. 1979. The limits of cladism. Systematic Zoology 28: 416440.Google Scholar
Hull, DL. 1988. Science as Process: An Evolutionary Account of the Social and Conceptual Development of Science. University of Chicago Press, Chicago.Google Scholar
Lee, MSY. & Doughty, P. 1997. The relationship between evolutionary theory and phylogenetic analysis. Biological Reviews 72: 471495.Google Scholar
Panchen, AL. 1992. Classification, Evolution and the Nature of Biology. Cambridge University Press, Cambridge, UK.Google Scholar
Scott-Ram, NR. 1990. Transformed Cladistics, Taxonomy, and Evolution. Cambridge University Press, New York.Google Scholar
Tattersall, I. & Eldredge, N. 1977. Fact, theory and fantasy in human paleontology. American Scientist 65: 204211.Google Scholar

References

Doyle, JJ. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17: 144163.CrossRefGoogle Scholar
Doyle, JJ. & Davis, JI. 1998. Homology in molecular phylogenetics: a parsimony perspective. In: Soltis, DE., Soltis, PS. & Doyle, JJ. (eds), Molecular Systematics of Plants II. Springer, Boston, MA, pp. 101131.CrossRefGoogle Scholar
Gatesy, J. & Springer, MS. 2017. Phylogenomic red flags: homology errors and zombie lineages in the evolutionary diversification of placental mammals. Proceedings of the National Academy of Sciences USA 114: E9431E9432.Google Scholar
Gauthier, J., Vincent, AT., Charette, SJ. & Derome, N. 2018. A brief history of bioinformatics. Briefings in Bioinformatics 2018: 116.Google Scholar
Gray, GS. & Fitch, WM. 1983. Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Molecular Biology & Evolution 1: 5766.Google Scholar
Hagen, JB. 2000. The origins of bioinformatics. Nature Reviews 1: 231236.Google Scholar
Hagen, JB., 2009. Descended from Darwin? George Gaylord Simpson, Morris Goodman, and primate systematics. In: Cain, J. & Ruse, M. (eds), Descended from Darwin: Insights into the History of Evolutionary Studies, 1900-1970. Transactions of the American Philosophical Society, n.s. 99. American Philosophical Society, Philadelphia, pp. 93109.Google Scholar
Ingram, V. 1961. Gene evolution and the haemoglobins. Nature 139: 704708.Google Scholar
Inkpen, SA. & Doolittle, WF. 2016. Molecular homology and the perennial problem of homology. Journal of Molecular Evolution 83: 184192.Google Scholar
Itano, HA. 1957. The Human hemoglobins: their properties and genetic control. Advances in Protein Chemistry 12: 215268.Google Scholar
Kuraku, S. 2013. Impact of asymmetric gene repertoire between cyclostomes and gnathostomes. Seminars in Cell & Developmental Biology 24: 119127.Google Scholar
Marks, J. 2009. What is the viewpoint of hemoglobin, and does it matter? History and Philosophy of the Life Sciences 31: 241262.Google Scholar
Mindell, DP. & Meyer, A. 2001. Homology evolving. Trends in Ecology & Evolution 16: 434440.CrossRefGoogle Scholar
Morgan, GJ. 1988. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959-1965. Journal of the History of Biology 31: 155178.Google Scholar
Page, RDM. 1989. Comments on component-compatibility in historical biogeography. Cladistics 5: 167182.CrossRefGoogle ScholarPubMed
Page, RDM. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43: 5877.Google Scholar
Patterson, C. 1982. Morphological characters and homology. In: Joysey, KA. & Friday, AE. (eds.), Problems of Phylogenetic Reconstruction. Academic Press, London, pp. 2174.Google Scholar
Patterson, C. 1987. Introduction. In: Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge, UK, pp. 122.Google Scholar
Patterson, C. 1988. Homology in classical and molecular biology. Molecular Biology and Evolution 5: 603625.Google Scholar
Pauling, L. & Zuckerkandl, E. 1963. Chemical paleogenetics: molecular ‘Restoration Studies’ of extinct forms of life. Acta Chemica Scandinavica 17 (suppl.): 916.Google Scholar
Springer, MS. & Gatesy, J. 2016. The gene tree delusion. Molecular Phylogenetics and Evolution 94: 133.Google Scholar
Springer, MS. & Gatesy, J. 2018. On the importance of homology in the age of phylogenomics. Systematics and Biodiversity 16: 210228.Google Scholar
Suárez-Díaz, E. 2009. Molecular evolution: concepts and the origin of disciplines. Studies in the History and Philosophy of the Biological and Biomedical Sciences 40: 4353.Google Scholar
Suárez-Díaz, E. 2010. Making room for new faces. Evolution and the growth of bioinformatics. History and Philosophy of the Life Sciences 32(1):6589.Google Scholar
Suárez-Díaz, E. & Anaya-Muñoz, V. 2008. History, objectivity and the construction of molecular phylogenies. Studies in the History and Philosophy of the Biological and Biomedical Sciences 38: 451468.Google Scholar
Williams, DM. 1993. A note on molecular homology: multiple patterns from single datasets. Cladistics 9: 233245.CrossRefGoogle ScholarPubMed
Zhang, J. 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution 18: 292298.Google Scholar
Zuckerkandl, M. & Pauling, L. 1965. Molecules as documents of evolutionary history. Journal of Theoretical Biology 8: 357366.Google Scholar

References

Abel, O. 1912Grundzüge der palaeobiologie der wirbeltiere. E. Schweizerbart, Stuttgart.Google Scholar
Arber, EAN. & Parkin, J. 1907. On the origin of angiosperms. Journal of the Linnean Society of London, Botany 38: 29–80.Google Scholar
Benton, MJ. 2000. Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews 75: 633648.Google Scholar
Bessey, CE. 1915. The phylogenetic taxonomy of flowering plants. Annals of the Missouri Botanical Garden 2(1/2): 109164.Google Scholar
Brower, AVZ. & Schawaroch, VA. 1996. Three steps of homology assessment. Cladistics 12: 265272.Google Scholar
Candolle, de A-P. 1828. Memoire sur la famine des Crassulacees. Treuttel and Wurtz, Paris.Google Scholar
Crawford, RM., Hinz, F. & Gersonde, R. 2013. Reimer Simonsen (10 March 1931 – 9 July 2012). Diatom Research 28: 329331.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
Dayrat, B. 2005. Ancestor-descendant relationships and the reconstruction of the Tree of Life. Paleobiology 31: 347353.Google Scholar
De Beer, G. 1954. Archaeopteryx and evolution. Advances in Science 11: 160–170.Google Scholar
Delacour, J. & Mayr, E. 1945. The family Anatidae. Wilson Bulletin 57: 355.Google Scholar
Dollo, L. 1895. Sur la phylogénie des Dipneustes. Bulletin Sociéte belgique Geologie et Paléontologie et Hydrologie 9: 79–128.Google Scholar
Ebach, MC. & McNamara, KJ. 2002. A systematic revision of the family Harpetidae (Trilobita). Records of the Western Australian Museum 21: 235267.Google Scholar
Eimer, T. 1898. On species-formation, or the segregation of the chain of living organisms into species. The Monist 8: 97122.Google Scholar
Fortey, RA. 1990. Ontogeny, hypostome attachment and trilobite classification. Palaeontology 33: 529576.Google Scholar
Fortey, RA. 1997. Classification. In: Whittington, HB. (ed.) Treatise on Invertebrate Paleontology, Part O: Arthropoda 1. Trilobita. Rev. ed. Geological Society of America/University of Kansas, Boulder, CO/Lawrence, KS, pp. 289302.Google Scholar
Gegenbaur, C. 1870. Grundzüge der vergleichenden Anatomie. Zweite, umgearbeitete Auflage.Wilhelm Engelmann, Leipzig.Google Scholar
GhiselinMT. 1972Models in phylogeny. In:  Schopf, TJM. (ed.), Models in Paleobiology. Freeman, Cooper, San Francisco, pp. 130145.Google Scholar
Ghiselin, MT. 1976. The nomenclature of correspondence: a new look at ‘homology’ and ‘analogy’. In: Masterton, RB., Hodos, W. & Jerison, H. (eds), Evolution, Brain, and Behavior: Persistent Problems. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 129–42.Google Scholar
Ghiselin, MT. 1984. “Definition,” “Character,” and other equivocal terms. Systematic Zoology 33: 104110.Google Scholar
Ghiselin, MT. 2016. Homology, convergence and parallelism. Philosophical Transaction of the Royal Society, B 371: 20150035. http://dx.doi.org/10.1098/rstb.2015.0035Google Scholar
Harper, CW. Jr. & Platnick, NI. 1978. Phylogenetic and cladistic hypotheses: a debate. Systematic Zoology 27: 354362.Google Scholar
Hawkins, JA., Hughes, CE. & Scotland, RW. 1997. Primary homology assessment, characters and character states. Cladistics 13: 275283.CrossRefGoogle ScholarPubMed
Hennig, W. 1936. Über einige Gesetzmassigkeiten der geographischen Variation in der Reptiliengattung Draco L.: “Parallele” und “konvergente” Rassenbildung. Biologisches Zentralblatt 56: 549–559.Google Scholar
Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin.Google Scholar
Hennig, W. 1965. Phylogenetic systematics. Annual Review of Entomology 10: 97116.Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana [reprinted 1979, 1999].Google Scholar
Hughes, NC. 2007. The evolution of trilobite body patterning. Annual Review of Earth and Planetary Sciences 35: 401434.Google Scholar
Kumar, S. Stecher, G. & Tamura, K. 2015. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 18701874.Google Scholar
Lam, H. 1957. What is a taxon? Taxon 6: 213215.Google Scholar
Lankester, ER. 1870. On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annals and Magazine of Natural History 6(4): 3443.Google Scholar
Levkov, Z., Tofilovska, S. & Mitić-Kopanja, D. 2016. Species of the diatom genus Craticula Grunow (Bacillariophyta) from Macedonia. Contributions, Section of Natural, Mathematical and Biotechnical Sciences (MASA) 37: 129165.Google Scholar
Lieberman, BS. & Karim, TS. 2010. Tracing the trilobite tree from the root to the tips: a model marriage of fossils and phylogeny. Arthropod Structure and Development 39(2–3): 111123.Google Scholar
Mavrodiev, EV. 2019. Synapomorphies behind shared derived characters: Examples from the Great Apes’ genomic data. Acta Biotheoretica  doi:10.1007/s10441-019-09368-6.Google Scholar
Mayr, E., Linsley, G. & Usinger, RL. 1953. Methods and Principles of Systematic Zoology. McGraw-Hill, New York/London.Google Scholar
Milne, MJ. & Milne, LJ. 1939. Evolutionary trends in caddisworm case construction. Annals of the Entomological Society of America 32: 533542.Google Scholar
Nelson, GJ. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Familles des Plantes. Systematic Zoology 28: 121.CrossRefGoogle Scholar
Nelson, GJ. 1985. Outgroups and ontogeny. Cladistics 1: 2945.Google Scholar
Nelson, GJ. 2004. Cladistics: its arrested development. In: Williams, DM. & Forey, PL. (eds.), Milestones in Systematics. Taylor and Francis, London, pp. 127—147.Google Scholar
Nelson, GJ. 2011. Resemblance as evidence of ancestry. Zootaxa 2946: 137141.Google Scholar
Nelson, GJ. 2016. What we all learned from Hennig. In: Williams, DM., Schmitt, M. & Wheeler, Q. (eds), The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge University Press, Cambridge, UK, pp. 200212.Google Scholar
Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Nierstrasz, HF. 1936. L’Evolution entre-croisée chez les crustacés. Mémoires de l’Institut Royal des Sciences Naturelles de Belgique, 2é sér. 3: 667–677.Google Scholar
Owen, R. 1843. Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons in 1843. Longman, Brown, Green and Longman, London.Google Scholar
Owen, R. 1847. Report on the archetype and homologies of the vertebrate skeleton. In: Report of the 16th Meeting of the British Association for the Advancement of Science. Murray, London, pp. 169340.Google Scholar
Owen, R. 1848. On the Archetype and Homologies of the Vertebrate Skeleton. John van Voorst, London.CrossRefGoogle Scholar
Owen, R. 1849. On the Nature of Limbs. John van Voorst, London.Google Scholar
Owen, R. 1866. On the Anatomy of Vertebrates, Vol. 1: Fishes and Reptiles. Longmans, Green and Co., London.Google Scholar
Owen, R. 2007. On the Nature of Limbs. University of Chicago Press, Chicago, pp. 119 [Reprint of Owen 1849].Google Scholar
Patterson, C. 1977. The contribution of paleontology to teleostean phylogeny. In: Hecht, MK., Goody, PC. & Hecht, BM. (eds.) Major Patterns in Vertebrate Evolution. Plenum, New York, pp. 579643.Google Scholar
Patterson, C. 1988. Homology in classical and molecular biology. Molecular Biology and Evolution 5: 603625.Google ScholarPubMed
Pavlinov, I. 2013. The Species Problem: Ongoing Issues. Intech Open. www.intechopen.com/books/the-species-problem-ongoing-issues.Google Scholar
Pietsch, TW. 2012. Trees of Life. A Visual History of Evolution. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Pinna de, M. 2014. Species tot sunt diversae quot diversas formas ab initio creavitiv – a dialogue on species. Arquivos de Zoologia 45 (esp.): 2532.Google Scholar
Platnick, NI. 1977. Parallelism in phylogeny reconstruction. Systematic Zoology 26: 9396.Google Scholar
Platnick, NI. & Dupérré, N. 2010. The goblin spider genus Scaphiella (Araneae, Oonopidae). Bulletin of the American Museum of Natural History 332: 1156.Google Scholar
Plutynski, A. 2019. Speciation post synthesis: 1960–2000. Journal of the History of Biology 52: 569–596.Google Scholar
Prum, RO., Berv, JS., Dornburg, A., Field, DJ., Townsend, JP., Lemmon, EM. & Lemmon, AR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526(7574): 569573.Google Scholar
Rieppel, O. 2010. Othenio Abel (1875–1946) and “the phylogeny of the parts”. Cladistics 29: 328335.Google Scholar
Rieppel, O. 2011. The Gegenbaur transformation: a paradigm change in comparative biology. Systematics and Biodiversity 9: 177190.Google Scholar
Rieppel, O. 2013. The series, the network, and the tree: changing metaphors of order in nature. Biology & Philosophy 25: 475496.Google Scholar
Ronquist, F., Huelsenbeck, J. & Teslenko, M. 2011. MrBayes version 3.2 Manual: Tutorials and Model Summaries (November 15, 2011). http://mrbayes.sourceforge.net/mb3.2_manual.pdfGoogle Scholar
Schindewolf, OH. 1937. Beobachtungen und Gedanken zur Deszendenzlehre. Acta Biotheoretica Ser. A 3: 195–212.Google Scholar
Schindewolf, OH. 1993. Basic Questions in Paleontology: Geologic Time, Organic Evolution, Biological Systematics. University of Chicago Press, Chicago, IL.Google Scholar
Schuh, RT. 2000. Biological Systematics: Principles and Applications. Comstock Publishing Associates, Cornell University Press, Ithaca, NY.Google Scholar
Simonsen, R. 1972. Ideas for a more natural system of the centric diatoms. Beihefte zur Nova Hedwigia 39: 37–54.Google Scholar
Simonsen, R. 1979. The diatom system: ideas on phylogeny. Bacillaria 2: 971.Google Scholar
Stamatakis, A. 2016. The RAxML v8.2.X Manual. Heidelberg Institute for Theoretical Studies (July 20, 2016). https://sco.h-its.org/exelixis/resource/download/NewManual.pdfGoogle Scholar
Takhtajan, A. 1959. Die Evolution der Angiospermen. VEB Gustav Fischer, Jena.Google Scholar
Takhtajan, A. 1991. Evolutionary Trends in Flowering Plants. Columbia University Press, New York.Google Scholar
Theriot, EC., Cannone, JJ., Gutell, RR. & Alverson, AJ. 2009. The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. European Journal of Phycology 44: 277–290.Google Scholar
Thomas, EW., Stepanek, JG. & Kociolek, JP. 2016. Historical and current perspectives on the systematics of the ‘enigmatic’ diatom genus Rhoicosphenia (Bacillariophyta), with single and multi-molecular marker and morphological analyses and discussion on the monophyly of ‘monoraphid’ diatoms. PLoS One 11(4): e0152797. http://doi:10.1371/journal.pone.0152797Google Scholar
Tschulok, S. 1922. Deszendenzlehre. Gustav Fischer, Jena.Google Scholar
Wiley, EO. 1981. Phylogenetics: The Theory and Practice of Phylogentic Systematics. John Wiley & Sons, New York.Google Scholar
Wiley, EO. 2008. Homology, identity and transformation. In: Arriata, G., Schulze, H-P., Wilson, MVH. (eds), Mesozoic Fishes 4 – Homology and Phylogeny. Verlag Dr. Friedrich Pfeil, Munich, pp. 921.Google Scholar
Wiley, EO. & Lieberman, BS. 2011. Phylogenetics: Theory and Practice of Phylogenetics Systematics. Wiley-Blackwell, Hoboken, NJ.Google Scholar
Wilkins, JS. 2009. Species: A History of the Idea. University of California Press, Berkeley.Google Scholar
Wilkins, JS. 2011. Philosophically speaking, how many species concepts are there? Zootaxa 2765: 5860.Google Scholar
Wilkins, JS. 2018. Species: A History of the Idea, 2nd ed. CRC Press, Berkeley.Google Scholar
Williams, DM. 2007. Classification and diatom systematics: the past, the present and the future. In: Brodie, J. & Lewis, J. (eds), Unravelling the Algae. CRC Press, Berkeley, pp. 5791.Google Scholar
Williams, DM. & Ebach, MC. 2008. Foundations of Systematics and Biogeography. Springer-Verlag New York Inc., New York.Google Scholar
Williams, DM. & Ebach, MC. 2017. What is intuitive taxonomic practice? Systematic Biology 66: 637643.Google Scholar
Zimmermann, W. 1930. Die Phylogenie der Pflanzen: Ein Überblick über Tatsachen und Probleme. Gustav Fischer, Jena.Google Scholar

Further Reading

We cannot recommend this paper enough. It is the first attempt to define cladistics as a field in its own right and the first to situate it in the context of systematics and taxonomy as opposed to the more specialised field of phylogenetics – although over 40 years old, it has lost none of its stimulating power. A similar version can be found in: Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York, xi+567 pp, in the section on ‘Classification and General Cladograms’ in Chapter 4: ‘Systematic Results: Classifications’ (p. 305 et seq.).

Also of interest is a series of papers on homology published in the journal Cladistics, which are worth examination, as some of the contributions (Nixon & Carpenter contra Brower & de Pinna) bring out differences of interpretation under the same analytical paradigm (that of Wagner parsimony), relative to our own viewpoint, which has no commitment to any particular methodology. We present the papers below in chronological sequence:

1. Brower, AVZ. 2011. The meaning of ‘‘phenetic’’. Cladistics 28: 113114.

2. Nixon, KC. & Carpenter, JM. 2011. On homology. Cladistics 28: 160169.

3. Williams, DM. & Ebach, MC. 2012. Confusing homologs as homologies: A reply to “On homology”. Cladistics 28: 223224.

4. Nixon, KC. & Carpenter, JM. 2012. More on homology. Cladistics 28: 225226.

5. Williams, DM. & Ebach, MC. 2012. “Phenetics” and its application. Cladistics 28: 229230.

6. Brower, AVZ. & de Pinna, MCC. 2012. Homology and errors. Cladistics 28: 529538.

7. Nixon, KC. & Carpenter, JM. 2012. More on errors. Cladistics 28: 539544.

8. Platnick, NI. 2013. Less on homology. Cladistics 29: 1012.

9. Platnick, NI. 2013. Reification, matrices, and the interrelationships of goblin spiders. Zootaxa 3608: 278280.

10. Ebach, MC. & Williams, DM. 2013. E quindi uscimmo a riveder le stelle. Cladistics 29: 227.

Nelson, G. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson’s Familles des Plantes. Systematic Zoology 28: 121.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×