Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:07:23.808Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2012

Cun-Quan Zhang
Affiliation:
West Virginia University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alon, N., and Tarsi, M. 1985. Covering multigraphs by simple circuits. SIAM J. Algebraic Discrete Methods, 6, 345–350.Google Scholar
[2] Alspach, B., and Godsil, C. 1985. Unsolved problems. Pages 461–467 of: Cycles in Graphs, Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[3] Alspach, B., and Zhang, C.-Q. 1993. Cycle covers of cubic multigraphs. Discrete Math., 111, 11–17.Google Scholar
[4] Alspach, B., Goddyn, L. A., and Zhang, C.-Q. 1994. Graphs with the circuit cover property. Trans. Amer. Math. Soc., 344, 131–154.Google Scholar
[5] Appel, K., and Haken, W. 1977. Every map is four colorable, Part I: Discharging. Illinois J. Math., 21, 429–490.Google Scholar
[6] Appel, K., and Haken,W. 1989. Every Map is Four Colorable. Contemp. Math. AMS, vol. 98. Providence, RI: American Mathematical Society.
[7] Appel, K., Haken, W., and Koch, J. 1977. Every map is four colorable, Part II: Reducibility. Illinois J. Math., 21, 491–567.
[8] Archdeacon, D. 1984. Face coloring of embedded graphs. J. Graph Theory, 8, 387–398.Google Scholar
[9] Ash, P., and Jackson, B. 1984. Dominating cycles in bipartite graph. Pages 81–87 of: Bondy, J. A., and Murty, U. S. R. (eds), Progress in Graph Theory. New York: Academic Press.
[10] Barnette, D. W. 1996. Cycle covers of planar 3-connected graphs. J. Combin. Math. Combin. Comput., 20, 245–253.Google Scholar
[11] Berge, C. 1973. Graph and Hypergraph. New York: North-Holland. (translated by E. Minieka).
[12] Bermond, J. C., Jackson, B., and Jaeger, F. 1983. Shortest coverings of graphs with cycles. J. Combin. Theory Ser. B, 35, 297–308.Google Scholar
[13] Biggs, N. L., Lloyd, E. K., and Wilson, R. J. 1976. Graph Theory 1736–1936. Oxford: Clarendon Press.
[14] Blanuša, D. 1946. Problem ceteriju boja (The problem of four colors). Hrvatsko Prirodoslovno Društvo Glasnik Mat-Fiz. Astr, Ser. II, 1, 31–42.Google Scholar
[15] Bollobás, B. 1978. Extremal Graph Theory. London: Academic Press.
[16] Bondy, J. A. 1990. Small cycle double covers of graphs. Pages 21–40 of: Hahn, G., Sabidussi, G., and Woodrow, R. (eds), Cycles and Rays. NATO ASI Ser. C. Dordrecht: Kluwer Academic Publishers.
[17] Bondy, J. A., and Hell, P. 1990. A note on the star chromatic number. J. Graph Theory, 14, 479–482.Google Scholar
[18] Bondy, J. A., and Murty, U. S. R. 1976. Graph Theory with Applications. London: Macmillan.
[19] Bondy, J. A., and Murty, U. S. R. 2008. Graph Theory. Springer.
[20] Brinkmann, G., and Steffen, E. 1998. Snarks and reducibility. Ars Combin., 50, 292–296.Google Scholar
[21] Brinkmann, G., Goedgebeur, J., Hägglund, J., and Markström, K. 2011. Generation and properties of snarks. Preprint.
[22] Cai, L., and Corneil, D. 1992. On cycle double covers of line graphs. Discrete Math., 102, 103–106.Google Scholar
[23] Carroll, L. 1874. (C. L. Dodgson) The Hunting of the Snark (An Agony in 8 Fits). London: Macmillan.
[24] Catlin, P. A. 1988. A reduction method to find spanning eulerian subgraph. J. Graph Theory, 12, 29–45.Google Scholar
[25] Catlin, P. A. 1989. Double cycle covers and the Petersen graph. J. Graph Theory, 13, 465–483.Google Scholar
[26] Catlin, P. A. 1990. Double cycle covers and the Petersen graph, II. Congr. Numer., 76, 173–181.Google Scholar
[27] Catlin, P. A. 1992. Supereulerian graphs: a survey. J. Graph Theory, 16, 177–196.Google Scholar
[28] Catlin, P. A., Han, Z.-Y., and Lai, H.-J. 1996. Graphs without spanning closed trails. Discrete Math., 160, 81–91.Google Scholar
[29] Cavicchioli, A., Meschiari, M., Ruini, B., and Spaggiari, F. 1998. A survey on snarks and new results: products, reducibility and a computer Search. J. Graph Theory, 28, 57–86.Google Scholar
[30] Cavicchioli, A., Murgolo, T. E., Ruini, B., and Spaggiari, F. 2003. Special classes of snarks. Acta Applicandae Mathematicae, 76, 57–88.Google Scholar
[31] Celmins, U. A. 1984. On cubic graphs that do not have an edge 3-coloring. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[32] Celmins, U. A., Fouquet, J. L., and Swart, E. R. 1980. Construction and characterization of snarks. Research Report, University of Waterloo, Ontario, Canada.
[33] Chan, M. 2009. A survey of the cycle double cover conjecture. Preprint, Princeton University.
[34] Chartrand, G., and Lesniak, L. 1986. Graphs and Digraphs. Second edn. Belmont, CA: Wadsworth and Brooks/Cole.
[35] Chen, C. C., and Quimpo, N. F. 1981. On strongly hamiltonian abelian group graphs. Pages 23–34 of: McAvaney, K. L. (ed), Combinatorial Mathematics VIII. Lecture Notes in Math., vol. 884. Berlin: Springer-Verlag.
[36] Chen, Z.-H., and Lai, H.-J. 1995. Reductions techniques for supereulerian graphs and related topics – a survey. Pages 53–69 of: Ku, T.-H. (ed), Combinatorics and Graph Theory 95. Singapore: World Scientific.
[37] Chetwynd, A. G., and Wilson, R. J. 1981. Snarks and supersnarks. Pages 215–241 of: The Theory and Applications of Graphs. New York: Wiley.
[38] Cutler, J., and Häggkvist, R. 2004. Cycle double covers of graphs with disconnected frames. Research report 6, Department of Mathematics, Umeå University, Sweden.
[39] Descartes, B. 1948. Network-colourings. Math. Gazette, 32, 67–69.Google Scholar
[40] DeVos, M., Johnson, T., and Seymour, P. D.Cut Coloring and Circuit Covering. Submitted for publication, http://www.math.princeton.edu/∼pds/papers/cutcolouring/.
[41] Diestel, R. 2010. Graph Theory. Fourth edn. Springer-Verlag.
[42] Ding, S.-K., Hoede, C., and Vestergaard, P. D. 1990. Strong cycle covers. Ars Combin., 29C, 130–139.Google Scholar
[43] Edmonds, J. 1965. Maximum matching and a polyhedron with (0, 1)- vertices. J. Res. Nat. Bur. Standards B, 69, 125–130.Google Scholar
[44] Edmonds, J., and Johnson, E. L. 1973. Matching, Euler tours and the Chinese postman. Mathematical Programming, 5, 88–124.Google Scholar
[45] Eisenberg, M. 1974. Topology. New York: Holt, Rinehart and Winston, Inc.
[46] Ellingham, M. N. 1984. Petersen subdivisions in some regular graphs. Congr. Numer., 44, 33–40.Google Scholar
[47] Ellingham, M. N., and Zha, X.-Y. 2011. Orientable embeddings and orientable cycle double covers of projective-planar graphs. European J. Combin., 32, 495–509.Google Scholar
[48] Esteva, E. G. M., and Jensen, T. R. 2007. On semiextensions and circuit double covers. J. Combin. Theory Ser. B, 97, 474–482.Google Scholar
[49] Esteva, E. G. M., and Jensen, T. R. 2009. A note on semiextensions of stable circuits. Discrete Math., 309, 4952–4954.Google Scholar
[50] Fan, G.-H. 1992. Covering graphs by cycles. SIAM J. Discrete Math., 5, 491–496.Google Scholar
[51] Fan, G.-H. 1994. Short cycle covers of cubic graphs. J. Graph Theory, 18, 131–141.Google Scholar
[52] Fan, G.-H. 1998. Proofs of two minimum circuit cover conjectures. J. Combin. Theory Ser. B, 74, 353–367.Google Scholar
[53] Fan, G.-H., and Raspaud, A. 1994. Fulkerson's conjecture and circuits covers. J. Combin. Theory Ser. B, 61, 133–138.Google Scholar
[54] Fan, G.-H., and Zhang, C.-Q. 2000. Circuit decompositions of eulerian graphs. J. Combin. Theory Ser. B, 78, 1–23.Google Scholar
[55] Fiorini, S., and Wilson, R. J. 1977. Edge colourings of graphs. Research Notes in Mathematics, vol. 16. Pitman.
[56] Fiorini, S., and Wilson, R. J. 1978. Edge colourings of graphs. Pages 103–126 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory. London: Academic Press.
[57] Fish, J. M., Klimmek, R., and Seyffarth, K. 2002. Line graphs of complete multipartite graphs have small cycle double covers. Discrete Math., 257, 39–61.Google Scholar
[58] Fleischner, H. 1976. Eine gemeinsame Basis für die Theorie der eulerschen Graphen und den Satz von Petersen. Monatsh. Math., 81, 267–278.Google Scholar
[59] Fleischner, H. 1980. Eulersche Linien und Kreisuberdeckungen die vorgegebene Duurchgange inden Kanten vermeiden. J. Combin. Theory Ser. B, 29, 145–167.Google Scholar
[60] Fleischner, H. 1983. Eulerian Graph. Pages 17–53 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory (2). London: Academic Press.
[61] Fleischner, H. 1984. Cycle decompositions, 2-coverings, removable cycles and the four-color disease. Pages 233–246 of: Bondy, J. A., and Murty, U. S. R. (eds), Progress in Graph Theory. New York: Academic Press.
[62] Fleischner, H. 1986. Proof of the strong 2-cover conjecture for planar graphs. J. Combin. Theory Ser. B, 40, 229–230.Google Scholar
[63] Fleischner, H. 1988. Some blood, sweat, but no tears in eulerian graph theory. Congr. Numer., 63, 9–48.Google Scholar
[64] Fleischner, H. 1990. Communication at Cycle Double Cover Conjecture Workshop, Barbados, February 25–March 4.
[65] Fleischner, H. 1991. Eulerian Graphs and Related Topics, Part 1, Vol. 2. Ann. Discrete Math., vol. 50. North-Holland.
[66] Fleischner, H. 1994. Uniqueness of maximal dominating cycles in 3- regular graphs and Hamiltonian cycles in 4-regular graphs. J. Graph Theory, 18, 449–459.Google Scholar
[67] Fleischner, H. 2002. Bipartizing matchings and Sabidussi's compatibility conjecture. Discrete Math., 244, 77–82.Google Scholar
[68] Fleischner, H. 2010. Uniquely hamiltonian (simple) graphs of minimum degree four. 8th French Combinatorial Conference, June 30th 2010. University Paris XI - Sud, Orsay, France.
[69] Fleischner, H. 2011. Personal communication, Vienna.
[70] Fleischner, H., and Frank, A. 1990. On cycle decomposition of eulerian graph. J. Combin. Theory Ser. B, 50, 245–253.Google Scholar
[71] Fleischner, H., and Fulmek, M. 1990. P(D)-compatible eulerian trails in digraphs and a new splitting lemma. Pages 291–303 of: Bodendiek, R. (ed), Contemporary Methods in Graph Theory.Google Scholar
[72] Fleischner, H., and Häggkvist, R. 2009. Circuit double covers in special types of cubic graphs. Discrete Math., 309, 5724–5728.Google Scholar
[73] Fleischner, H., and Kochol, M. 2002. A note about the dominating circuit conjecture. Discrete Math., 259, 307–309.Google Scholar
[74] Fleischner, H., Hilton, A. J. W., and Jackson, B. 1990. On the maximum number of pairwise compatible Euler cycles. J. Graph Theory, 14, 51–63.Google Scholar
[75] Fleischner, H., Genest, F., and Jackson, B. 2007. Compatible circuit decompositions of 4-regular graphs. J. Graph Theory, 56, 227–240.Google Scholar
[76] Ford, L. R., and Fulkerson, D. R. 1962. Flows in Networks. Princeton, NJ: Princeton University Press.
[77] Fouquet, J. 1982. Note sur la non existence d'un snark d'ordre 16. Discrete Math., 38, 163–171.Google Scholar
[78] Fowler, T. G. 1998. Unique Coloring of Planar Graphs. Ph.D. thesis, Georgia Tech.
[79] Franklin, P. 1941. The Four Color Problem. New York: Scripta Mathematica, Yeshiva College.
[80] Fulkerson, D. R. 1971. Blocking and antiblocking pairs of polyhedral. Math. Programming, 1, 168–194.Google Scholar
[81] Gardner, M. 1976. Mathematical Games. Scientific American, 4, 126–130.Google Scholar
[82] Goddyn, L. A. 1985. A girth requirement for the double cycle cover conjecture. Pages 13–26 of: Alspach, B., and Godsil, C. (eds), Cycles in Graphs. Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[83] Goddyn, L. A. 1988. Cycle covers of graphs. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[84] Goddyn, L. A. 1989. Cycle double covers of graphs with Hamilton paths. J. Combin. Theory Ser. B, 46, 253–254.Google Scholar
[85] Goddyn, L. A. 1991. Cycle double covers–current status and new approaches. Contributed lecture at Cycle Double Cover Conjecture Workshop, IINFORM, Vienna, January 1991.
[86] Goddyn, L. A. 1993. Cones, lattices and Hilbert bases of circuits and perfect matching. Contemporary Mathematics, 147, 419–440.Google Scholar
[87] Goddyn, L. A., van den Heuvel, J., and McGuinness, S. 1997. Removable circuits in multigraphs. J. Combin. Theory Ser. B, 71, 130–143.Google Scholar
[88] Goddyn, L. A., Tarsi, M., and Zhang, C.-Q. 1998. On (k, d)-colorings and fractional nowhere zero flows. J. Graph Theory, 28, 155–161.Google Scholar
[89] Goldwasser, J. L., and Zhang, C.-Q. 1996. On minimal counterexamples to a conjecture about unique edge-3-coloring. Congr. Numer., 113, 143–152.Google Scholar
[90] Goldwasser, J. L., and Zhang, C.-Q. 1999. Permutation graphs and Petersen graph. Ars Combin., 51, 240–248.Google Scholar
[91] Goldwasser, J. L., and Zhang, C.-Q. 2000. Uniquely edge-3-colorable graphs and snarks. Graph and Combinatorics, 16, 257–267.Google Scholar
[92] Gould, R. 1988. Graph Theory. Menlo Park, CA: Benjamin/Cummings Publishing Company, Inc.
[93] Greenwell, D., and Kronk, H. V. 1973. Uniquely line-colorable graphs. Canad. Math. Bull., 16, 525–529.Google Scholar
[94] Gross, J. L., and Tucker, T. W. 1987. Topological Graph Theory. New York: John Willey & Sons.
[95] Guan, M.-G., and Fleischner, H. 1985. On the minimum weighted cycle covering problem for planar graphs. Ars Combin., 20, 61–68.Google Scholar
[96] Gusfield, D. 1983. Connectivity and edge-disjoint spanning trees. Inform. Process. Lett., 16, 87–89.Google Scholar
[97] Haggard, G. 1977. Edmonds Characterization of disc embedding. Pages 291–302 of: Proceeding of the 8th Southeastern Conference of Combinatorics, Graph Theory and Computing, Utilitas Mathematica.
[98] Häggkvist, R. 2009. Lollipop Andrew strikes again (abstract). 22nd British Combinatorial Conference, July 5–10, 2009. University of St Andrews, UK.
[99] Häggkvist, R., and Markström, K. 2006a. Cycle double covers and spanning minors I. J. Combin. Theory Ser. B, 96, 183–206.Google Scholar
[100] Häggkvist, R., and Markström, K. 2006b. Cycle double covers and spanning minors II. Discrete Math., 306, 762–778.Google Scholar
[101] Häggkvist, R., and McGuinness, S. 2005. Double covers of cubic graphs with oddness 4. J. Combin. Theory Ser. B, 93, 251–277.Google Scholar
[102] Hägglund, J. 2011. Personal communication.
[103] Hägglund, J., and Markström, K. 2011. On stable cycles and the cycle double covers of graphs with large circumference. Discrete Math. doi:10.1016.j.disc.2011.08.024.
[104] Heawood, P. J. 1898. On the four-color map theorem. Quarterly J. Pure Math. Applied Math., 29, 270–285.Google Scholar
[105] Heinrich, K., Liu, J.-P., and Zhang, C.-Q. 1998. Triangle-free circuit decompositions and Petersen-minor. J. Combin. Theory Ser. B, 72, 197–207.Google Scholar
[106] Hind, H. R. 1988. Restricted edge-colourings, Chapter 5. Ph.D. thesis, Cambridge University, UK.
[107] Hoffman, A. J. 1958. Page 80 of Théorie des Graph (by C. Berge).
[108] Hoffman, A. J. 1960. Some recent applications of the theorem of linear inequalities to extremal combinatorial analysis. Proc. Symp. Appl. Math., 10, 113–127.Google Scholar
[109] Hoffman, F., Locke, S. C., and Meyerowitz, A. D. 1991. A note on cycle double cover in Cayley graphs. Mathematica Pannonica, 2, 63–66.Google Scholar
[110] Hoffmann-Ostenhof, A. 2007. A counterexample to the bipartizing matching conjecture. Discrete Math., 307, 2723–2733.Google Scholar
[111] Hoffmann-Ostenhof, A. 2012. Nowhere-zero flows and structures in cubic graphs. Ph.D. thesis, University of Vienna, Austria.
[112] Holton, D. A., and Sheehan, J. 1993. The Petersen Graph. Australian Mathematical Society Lecture Series, vol. 7. Cambridge University Press.
[113] Holyer, I. 1981. The NP-completeness of edge-coloring. SIAM J. Comput., 10, 718–720.Google Scholar
[114] Huck, A. 1993. On cycle-double covers of bridgeless graphs with hamiltonian paths. Tech. rept. 254. Institute of Mathematics, University of Hannover, Germany.
[115] Huck, A. 2000. Reducible configurations for the cycle double cover conjecture. Discrete Appl. Math., 99, 71–90.Google Scholar
[116] Huck, A. 2001. On cycle-double covers of graphs of small oddness. Discrete Math., 229, 125–165.Google Scholar
[117] Huck, A., and Kochol, M. 1995. Five cycle double covers of some cubic graphs. J. Combin. Theory Ser. B, 64, 119–125.Google Scholar
[118] Isaacs, R. 1975. Infinite families of non-trivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly, 82, 221–239.Google Scholar
[119] Itai, A., and Rodeh, M. 1978. Covering a graph by circuits. Pages 289–299 of: Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 62. Berlin: Springer-Verlag.
[120] Jackson, B. 1990. Shortest circuit covers and postman tours of graphs with a nowhere-zero 4-flow. SIAM J. Comput., 19, 659–665.Google Scholar
[121] Jackson, B. 1993. On circuit covers, circuit decompositions and Euler tours of graphs. Pages 191–210 of: Walker, K. (ed), Surveys in Combinatorics. London Math. Soc. Lecture Note Series, vol. 187. Cambridge: Cambridge University Press.
[122] Jackson, B. 1994. Shortest circuit covers of cubic graphs. J. Combin. Theory Ser. B, 60, 299–307.Google Scholar
[123] Jaeger, F. 1975. On nowhere-zero flows in multigraphs. Proceedings of the Fifth British Combinatorial Conference 1975. Congr. Numer., XV, 373–378.Google Scholar
[124] Jaeger, F. 1976. Balanced valuations and flows in multigraphs. Proc. Amer. Math. Soc., 55, 237–242.Google Scholar
[125] Jaeger, F. 1978a. On interval hypergraphs and nowhere-zero flow in graphs. Research Report of Mathematics Application and Information, Universite Scientifique et Medicale et Institut National Polytechnique de Grenoble, No. 126, Juillet.
[126] Jaeger, F. 1978b. Sue les flots dans les graphes et certaines valuations dans les hypergraphes d'intervalles. Pages 189–193 of: Benzaken, C. (ed), Proc. Colloque Alg`ebre Appliquèe et Combinatoire, Grenoble.
[127] Jaeger, F. 1979. Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B, 26, 205–216.Google Scholar
[128] Jaeger, F. 1980. Tait's theorem for graphs with crossing number at most one. Ars Combin., 9, 283–287.Google Scholar
[129] Jaeger, F. 1984. On circular flows in graphs. Pages 391–402 of: Finite and Infinite Sets, Vol. I, II (Eger, 1981), Colloquia Mathematica Societatis János Bolyai 37. Amsterdam: North Holland.
[130] Jaeger, F. 1985. A survey of the cycle double cover conjecture. Pages 1–12 of: Alspach, B., and Godsil, C. (eds), Cycles in Graphs. Ann. Discrete Math., vol. 27. Amsterdam: North-Holland.
[131] Jaeger, F. 1988. Nowhere-zero flow problems. Pages 71–95 of: Beineke, L. W., and Wilson, R. J. (eds), Selected Topics in Graph Theory (3). London: Academic Press.
[132] Jaeger, F., and Swart, T. 1980. Conjecture 1. Pages 304–305 of: Deza, M., and Rosenberg, I.G. (eds), Combinatorics 79. Ann. Discrete Math., vol. 9. Amsterdam: North-Holland.
[133] Jamshy, U., and Tarsi, M. 1992. Shortest cycle covers and the cycle double cover conjecture. J. Combin. Theory Ser. B, 56, 197–204.Google Scholar
[134] Jamshy, U., Raspaud, A., and Tarsi, M. 1987. Short circuit covers for regular matroids with nowhere-zero, 5-flow. J. Combin. Theory Ser. B, 43, 354–357.Google Scholar
[135] Jensen, T. R. 2010. Splits of circuits. Discrete Math., 310, 3026.–3029.Google Scholar
[136] Jensen, T. R., and Toft, B. 1994. Graph Coloring Problems. John Wiley & Sons.
[137] Kahn, J., Robertson, N., and Seymour, P. D. 1987. Communication at Bellcore.
[138] Kaiser, T., and Raspaud, A. 2010. Perfect matchings with restricted intersection in cubic graphs. European J. Combin., 31, 1307.–1315.Google Scholar
[139] Kaiser, T., and Škrekovski, R. 2008. Cycles intersecting edges-cuts of prescribed sizes. SIAM J. Discrete Math., 22, 861–874.Google Scholar
[140] Kaiser, T., Kràl, D., Lidicky, B., and Nejedly, P. 2010. Short Cycle Covers of Graphs with Minimum Degree Three. SIAM J. Discrete Math., 24, 330–355.Google Scholar
[141] Kilpatrick, P. A. 1975. Tutte's first colour-cycle conjecture. Ph.D. thesis, Cape Town, South Africa.
[142] Knuth, D. E. 2008. The Art of Computer Programming. Vol. 4, Fascicle 0, Introduction to Combinatorial Algorithms and Boolean Function. Addison-Wesley.Google Scholar
[143] Kochol, M. 1993a. Construction of cyclically 6-edge-connected snarks. Technical Report TR-II-SAS-07/93-5, Institute for Information, Slovak Academy of Sciences, Bratislava, Slovakia.
[144] Kochol, M. 1993b. Cycle double covering of graphs. Technical Report TR-II-SAS-08/93-7, Institute for Informatics, Slovak Academy of Sciences, Bratislava, Slovakia.
[145] Kochol, M. 1996a. A cyclically 6-edge-connected snark of order 118. Discrete Math., 161, 297–300.Google Scholar
[146] Kochol, M. 1996b. Snarks without small cycles. J. Combin. Theory Ser. B, 67, 34–47.
[147] Kochol, M. 2000. Equivalence of Fleischner's and Thomassen's conjectures. J. Combin. Theory Ser. B, 78, 277–279.
[148] Kochol, M. 2001. Stable dominating circuits in snarks. Discrete Math., 233, 247–256.Google Scholar
[149] Kochol, M. 2004. Reduction of the 5-flow conjecture to cyclically 6-edgeconnected snarks. J. Combin. Theory Ser. B, 90, 139–145.
[150] Kochol, M. 2010. Smallest counterexample to the 5-flow conjecture has girth at least eleven. J. Combin. Theory Ser. B, 100, 381–389.
[151] Kostochka, A. V. 1995. The 7/5-conjecture strengthens itself. J. Graph Theory, 19, 65–67.
[152] Kotzig, A. 1958. Bemerkung zu den faktorenzerlegungen der endlichen paaren regulren graphen. Cnasopis Pěst. Mat., 83, 348–354.
[153] Kotzig, A. 1962. Construction of third-order Hamiltonian graphs. Časopis Pěst. Mat., 87, 148–168.
[154] Kotzig, A. 1964. Hamilton graphs and Hamilton circuits. Pages 63–82 of: Theory of Graphs and its Applications, Proceedings of the Symposium of Smolenice 1963. Prague: Publ. House Czechoslovak Acad. Sci.Google Scholar
[155] Kotzig, A., and Labelle, J. 1978. Strongly Hamiltonian graphs. Utilitas Mathematica, 14, 99–116.
[156] Kaàl, D., Nejedly, P., and Šámal, R. 2008. Short cycle covers of cubic graphs. KAM-DIMATIA Series 2008.(2008–846) Department of Applied Mathematics, Charles University, Prague, Czech.
[157] Kràl, D., Máčajová, E., Pangràc,, O., Raspaud, A., Sereni, J.-S., and Škoviera, M. 2009. Projective, affine, and abelian colourings of cubic graphs. European J. Combin., 30, 53–69.Google Scholar
[158] Kriesell, M. 2006. Contractions, cycle double covers, and cyclic colorings in locally connected graphs. J. Combin. Theory Ser. B, 96, 881–900.Google Scholar
[159] Kundu, S. 1974. Bounds on the number of disjoint spanning trees. J. Combin. Theory Ser. B, 17, 199–203.Google Scholar
[160] Kuratowski, C. 1930. Sur le problème des courbes gauches en topologie. Fund. Math., 15, 271–283.Google Scholar
[161] Lai, H.-J. 1994. Extension of a 3-coloring result of planar graphs. Unpublished manuscript.
[162] Lai, H.-J. 1995. The size of graphs without nowhere-zero 4-flows. J. Graph Theory, 19, 385–395.Google Scholar
[163] Lai, H.-J., and Lai, H.-Y. 1991a. Cycle covering of plane triangulations. J. Combin. Math. Combin. Comput., 10, 3–21.Google Scholar
[164] Lai, H.-J., and Lai, H.-Y. 1991b. Small cycle covers of planar graphs. Congr. Numer., 85, 203–209.
[165] Lai, H.-J., and Zhang, C.-Q. 2001. Hamilton weight and Petersen minor. J. Graph Theory, 38, 197–219.Google Scholar
[166] Lai, H.-J., Yu, X.-X., and Zhang, C.-Q. 1994. Small circuit double covering of cubic graphs. J. Combin. Theory Ser. B, 60, 177–194.Google Scholar
[167] Little, C. H. C., and Ringeisen, R. D. 1978. On the strong graph embedding conjecture. Pages 479–487 of: Proceeding of the 9th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica.Google Scholar
[168] Little, C. H. C., Tutte, W. T., and Younger, D. H. 1988. A theorem on integer flows. Ars Combin., 26A, 109–112.Google Scholar
[169] Loupekine, F., and Watkins, J. J. 1985. Cubic graphs and the fourcolor theorem. Pages 519–530 of: Alavi, Y., Chartrand, G., Lesniak, L., Lick, D.R., and Wall, C.E. (eds), Graph Theory and its Application to Algorithms and Computer Science. New York: John Wiley & Sons, Inc.
[170] Lovász, L. 1978. Kneser's conjecture chromatic number, and homotopy. J. Combin. Theory Ser. A, 25, 319–324.Google Scholar
[171] MacGillivray, G., and Seyffarth, K. 2001. Classes of line graphs with small cycle double covers. Austral. J. Combin., 24, 91–114.Google Scholar
[172] Markström, K. 2011. Even cycle decompositions of 4-regular graphs and line graphs. Discrete Math., doi:10.1016.j.disc.2011.12.007.Google Scholar
[173] Massey, W. S. 1967. Algebraic Topology: An Introduction. New York: Springer-Verlag.
[174] Matthews, K. R. 1978. On the eulericity of a graph. J. Graph Theory, 2, 143–148.Google Scholar
[175] Máčajová, E., and Škoviera, M. 2005. Fano colourings of cubic graphs and the Fulkerson conjecture. Theor. Comput. Sci., 349, 112–120.Google Scholar
[176] Máčajová, E., and Škoviera, M. 2009. On a Conjecture of Fan and Raspaud. Electronic Notes in Discrete Mathematics, 34, 237–241.Google Scholar
[177] Máčajová, E., Raspaud, A., and Škoviera, M. 2005. Abelian colourings of cubic graphs. Electronic Notes in Discrete Mathematics, 22, 333–339.Google Scholar
[178] Máčajová, E., Raspaud, A., Tarsi, M., and Zhu, X.-D. 2011. Short cycle covers of graphs and nowhere-zero flows. J. Graph Theory, 68, 340–348.Google Scholar
[179] McGuinness, S. 1984. The double cover conjecture. Ph.D. thesis, Queen's University, Kingston, Ontario, Canada.
[180] Menger, K. 1927. Zur allgemeinen Kurventheorie. Fund. Math., 10, 96–115.Google Scholar
[181] Mohar, B. 2010. Strong embeddings of minimum genus. Discrete Math., 310, 2595–2599.Google Scholar
[182] Mohar, B., and Thomassen, C. 2001. Graphs on Surfaces. Baltimore, MD: The Johns Hopkins University Press.
[183] Naserasr, R., and Škrekovski, R. 2003. The Petersen graph is not 3-edge-colorable – a new proof. Discrete Math., 268, 325–326.Google Scholar
[184] Nash-Williams, C.St., J. A. 1961. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., s1–36, 445–450.Google Scholar
[185] Nelson, D., Plummer, M. D., Robertson, N., and Zha, X.-Y. 2011. On a conjecture concerning the Petersen graph. Electronic Journal of Combinatorics, 18, P20.Google Scholar
[186] Nowakowski, R. J., and Seyffarth, K. 2008. Small cycle double covers of products I: Lexicographic product with paths and cycles. J. Graph Theory, 57, 99–123.Google Scholar
[187] Nowakowski, R. J., and Seyffarth, K. 2009. Small cycle double covers of products II: Categorical and strong products with paths and cycles. Graph and Combinatorics, 25, 385–400.Google Scholar
[188] Ore, O. 1967. The Four-Color Problem. New York: Academic Press.
[189] Petersen, J. 1891. Die Theorie der Regulären Graphen. Acta Math., 15, 193–220.Google Scholar
[190] Petersen, J. 1898. FSur le théoreme de Tait. Intermed. Math., 15, 225–227.Google Scholar
[191] Polesskii, V. P. 1971. A lower bound for the reliability of information network. Probl. Peredachi Inf., 7:2, 88–96.Google Scholar
[192] Preissmann, M. 1981. Sur les colorations des arêtes des graphes cubiques, Thèse de Doctorat de 3eme. Ph.D. thesis, Université de Grenoble, France.
[193] Preissmann, M. 1982. Snarks of order 18. Discrete Math., 42, 125–126.Google Scholar
[194] Rizzi, R. 2001. On 4-connected graphs without even cycle decompositions. Discrete Math., 234, 181–186.Google Scholar
[195] Robertson, N., Seymour, P.D., and Thomas, R.Cyclically 5-connected cubic graphs. in preparation.
[196] Robertson, N., Seymour, P.D., and Thomas, R.Excluded minors in cubic graphs. in preparation.
[197] Robertson, N., Sanders, D., Seymour, P. D., and Thomas, R. 1997a. The 4-color theorem. J. Combin. Theory Ser. B, 70, 2–44.Google Scholar
[198] Robertson, N., Seymour, P. D., and Thomas, R. 1997b. The Tutte's 3-edge-coloring conjecture. J. Combin. Theory Ser. B, 70, 166–183.Google Scholar
[199] Sanders, D. P., and Thomas, R.Edge 3-coloring cubic apex graphs. in preparation.
[200] Sanders, D. P., Seymour, P.D., and Thomas, R.Edge 3-coloring cubic doublecross graphs. in preparation.
[201] Seyffarth, K. 1989. Cycle and Path Covers of Graphs. Ph.D. thesis, University of Waterloo, Ontario, Canada.
[202] Seyffarth, K. 1992. Hajós' conjecture and small cycle double covers of planar graphs. Discrete Math., 101, 291–306.Google Scholar
[203] Seyffarth, K. 1993. Small cycle double covers of 4-connected planer. Combinatorica, 13, 477–482.Google Scholar
[204] Seymour, P. D. 1979a. On multi-colorings of cubic graphs and the conjecture of Fulkerson and Tutte. Proc. London Math. Soc., s3–38, 423–460.Google Scholar
[205] Seymour, P. D. 1979b. Sums of circuits. Pages 342–355 of: Bondy, J. A., and Murty, U.S.R. (eds), Graph Theory and Related Topics. New York: Academic Press.
[206] Seymour, P. D. 1981a. Even circuits in planar graphs. J. Combin. Theory Ser. B, 31, 327–338.Google Scholar
[207] Seymour, P. D. 1981b. Nowhere-zero 6-flows. J. Combin. Theory Ser. B, 30, 130–135.Google Scholar
[208] Seymour, P. D. 1981c. On Tutte's extension of the four-color problem. J. Combin. Theory Ser. B, 31, 82–94.Google Scholar
[209] Seymour, P. D. 1990. Communication at Cycle Double Cover Conjecture Workshop, Barbados, February 25–March 4.
[210] Seymour, P. D. 1995. Personal communication.
[211] Seymour, P. D. 2012. Personal communication.
[212] Seymour, P. D., and Truemper, K. 1998. A Petersen on a Pentagon. J. Combin. Theory Ser. B, 72, 63–79.Google Scholar
[213] Shu, J., and Zhang, C.-Q. 2005. A note about shortest cycle covers. Discrete Math., 301, 232–238.Google Scholar
[214] Shu, J., Zhang, C.-Q., and Zhang, T.-Y. 2012. Flows and parity subgraphs of graphs with large odd edge connectivity. J. Combin. Theory Ser. B, (to appear).Google Scholar
[215] Stahl, S. 1998. The multichromatic numbers of some Kneser graphs. Discrete Math., 185, 287–291.Google Scholar
[216] Steinberg, R. 1976. Grötzsch's Theorem dualized. M.Phil. thesis, University of Waterloo, Ontario, Canada.
[217] Steinberg, R. 1984. Tutte's 5-flow conjecture for projective plane. J. Graph Theory, 8, 277–285.Google Scholar
[218] Stephens, D. C., Tucker, T. W., and Zha, X.-Y. 2007. Representativity of Cayley maps. Preprint.
[219] Szekeres, G. 1973. Polyhedral decompositions of cubic graphs. Bull. Austral. Math. Soc., 8, 367–387.Google Scholar
[220] Tait, P. G. 1880. Remarks of the coloring of maps. Proc. R. Soc. Edinburgh, 10, 729.Google Scholar
[221] Tarsi, M. 1986. Semi-duality and the cycle double cover conjecture. J. Combin. Theory Ser. B, 41, 332–340.Google Scholar
[222] Tarsi, M. 2010. Personal communication.
[223] Thomas, R.Generalizations of The Four Color Theorem. http://people.math.gatech.edu/∼thomas/FC/generalize.html.
[224] Thomas, R. 1998. An update on the four-color theorem. Notices of the AMS, 45, 848–859.Google Scholar
[225] Thomason, A. 1978. Hamiltonian Cycles and uniquely edge colorable graphs. Ann. Discrete Math., 3, 259–268.Google Scholar
[226] Thomason, A. 1982. Cubic graphs with three hamiltonian cycles are not always uniquely edge colorable. J. Graph Theory, 6, 219–221.Google Scholar
[227] Thomassen, C. 1997. On the complexity of finding a minimum cycle covers of graphs. SIAM J. Comput., 26, 675–677.Google Scholar
[228] Tutte, W. T. 1946. On Hamilton circuits. J. London Math. Soc., s1–21, 98–101.Google Scholar
[229] Tutte, W. T. 1949. On the imbedding of linear graphs in surfaces. Proc. London Math. Soc., s2–51, 474–483.Google Scholar
[230] Tutte, W. T. 1954. A contribution on the theory of chromatic polynomial. Canad. J. Math., 6, 80–91.Google Scholar
[231] Tutte, W. T. 1956. A class of Abelian groups. Canad. J. Math., 8, 13–28.Google Scholar
[232] Tutte, W. T. 1961. On the problem of decompositing a graph into n connected factors. J. London Math. Soc., s1–36, 221–230.Google Scholar
[233] Tutte, W. T. 1966. On the algebraic theory of graph colourings. J. Combin. Theory, 1, 15–50.Google Scholar
[234] Tutte, W. T. 1967. A geometrical version of the four color problem. In: Bose, R. C., and Dowling, T. A. (eds), Combinatorial Mathematics and its Applications. Chapel Hill, NC: University of North Carolina Press.
[235] Tutte, W. T. 1976. Hamiltonian circuits. Pages 193–199 of: Colloquio Internazional sulle Teorie Combinatorics, Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Roma I.
[236] Tutte, W. T. 1984. Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Cambridge Mathematical Library.
[237] Tutte, W. T. 1987. Personal correspondence with H. Fleischner (July 22, 1987).
[238] Veblen, O. 1912–1913. An application of modular equations in analysis situs. Ann. Math., 12, 86–94.Google Scholar
[239] Vince, A. 1988. Star chromatic number. J. Graph Theory, 12, 551–559.Google Scholar
[240] Watkins, J. J. 1989. Snarks. In: Capobianco, M., Guan, M., Hsu, D. F., and Tian, F. (eds), Graph Theory and Its Applications: East and West, Proceeding of the First China–USA International Graph Theory Conference. New York: New York Academy of Sciences.
[241] Watkins, J. J., and Wilson, R. J. 1991. A survey of snarks. Pages 1129–1144 of: Alavi, Y., Chartrand, G., Oellermann, O.R., and Schwenk, A.J. (eds), Graph Theory, Combinatorics, and Applications, Proceeding of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs. New York: John Wiley & Sons, Inc.Google Scholar
[242] West, D. B. 1996. Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall.
[243] White, A. T. 1984. Graphs, Groups and Surfaces. Revised edn. North-Holland Mathematics Studies, vol. 8. Amsterdam: North-Holland.
[244] Wilson, R. J. 1976. Problem 2. In: Proc. 5th British Comb. Conf., Utilitas Mathematica.
[245] Xie, D.-Z., and Zhang, C.-Q. 2009. Flows, flow-pair covers, cycle double covers. Discrete Math., 309, 4682–4689.Google Scholar
[246] Xu, R. 2009. Note on cycle double covers of graphs. Discrete Math., 309, 1041–1042.Google Scholar
[247] Ye, D. 2010. Personal communication.
[248] Ye, D., and Zhang, C.-Q. 2009. Circumference and Circuit Double Covers. Preprint.
[249] Ye, D., and Zhang, C.-Q. 2012. Cycle Double Covers and Semi-Kotzig Frame. European J. Combin., 33, 624–631.Google Scholar
[250] Younger, D. H. 1983. Integer flows. J. Graph Theory, 7, 349–357.Google Scholar
[251] Zha, X.-Y. 1995. The closed 2-cell embeddings of 2-connected doubly toroidal graphs. Discrete Math., 145, 259–271.Google Scholar
[252] Zha, X.-Y. 1996. Closed 2-cell embeddings of 4 cross-cap embeddable graphs. Discrete Math., 162, 251–266.Google Scholar
[253] Zha, X.-Y. 1997. Closed 2-cell embeddings of 5-crosscap embeddable graphs. European J. Combin., 18, 461–477.Google Scholar
[254] Zhang, C.-Q. 1990. Minimum cycle coverings and integer flows. J. Graph Theory, 14, 537–546.Google Scholar
[255] Zhang, C.-Q. 1994. On even circuit decompositions of eulerian graphs. J. Graph Theory, 18, 51–57.Google Scholar
[256] Zhang, C.-Q. 1995. Hamiltonian weights and unique 3-edge-colorings of cubic graphs. J. Graph Theory, 20, 91–99.Google Scholar
[257] Zhang, C.-Q. 1996a. Nowhere-zero 4-flows and cycle double covers. Discrete Math., 154, 245–253.Google Scholar
[258] Zhang, C.-Q. 1996b. On embeddings of graphs containing no K5-minor. J. Graph Theory, 21, 401–404.Google Scholar
[259] Zhang, C.-Q. 1997. Integer Flows and Cycle Covers of Graphs. New York: Marcel Dekker.
[260] Zhang, C.-Q. 2002. Circular flows of nearly eulerian graphs and vertexsplitting. J. Graph Theory, 40, 147–161.Google Scholar
[261] Zhang, C.-Q. 2010. Cycle covers (I) – minimal contra pairs and Hamilton weights. J. Combin. Theory Ser. B, 100, 419–438.Google Scholar
[262] Zhang, X.-D., and Zhang, C.-Q. 2012. Kotzig frames and circuit double covers. Discrete Math., 312, 174–180.Google Scholar
[263] Zhu, X.-D. 2001. Circular chromatic number: a survey. Discrete Math., 229, 371–410.Google Scholar
[264] Zhu, X.-D. 2006. Recent developments in circular colouring of graphs. Pages 497–550 of: Klazar, M., Kratochvil, J., Matousek, J., Thomas, R., and Valtr, P. (eds), Topics in Discrete Mathematics. Springer.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Cun-Quan Zhang, West Virginia University
  • Book: Circuit Double Cover of Graphs
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863158.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Cun-Quan Zhang, West Virginia University
  • Book: Circuit Double Cover of Graphs
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863158.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Cun-Quan Zhang, West Virginia University
  • Book: Circuit Double Cover of Graphs
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511863158.025
Available formats
×