Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T18:06:31.458Z Has data issue: false hasContentIssue false

6 - Hydrodynamics of chromatographic columns

Published online by Cambridge University Press:  05 April 2015

Roger-Marc Nicoud
Affiliation:
Ypso-Facto, Nancy, France
Get access

Summary

Delivering unique performance or … seriously struggling.

In previous chapters the hydrodynamics of chromatographic columns has been described with simplified assumptions: fluids and chromatographic beds were assumed to be incompressible, possible temperature effects were neglected, velocity profiles were taken to be radially uniform, axial dispersion presumed to obey a Fickian mechanism, and so on. These assumptions allowed us to model the columns either with the mixing cells in series (MC) model or with the plug flow plus axial dispersion (PD) model. These models have the merits of simplicity and flexibility as they allow a large range of dispersion situations, from perfect mixing to plug flow with only one parameter, to be represented.

The real world can be more complex, because chromatographic beds are not indefinitely stable and can plug, distributors are imperfect, velocities are not always radially uniform, temperature effects can impact dispersion, large differences in density or viscosity between the feed and the eluent can induce instabilities etc. Addressing these matters and understanding their impact on column performance is the subject of this chapter.

Modeling hydrodynamics requires addressing three subjects of specific relevance to the design of chromatographic processes:

  1. • Pressure drop: a key parameter for hardware design (pumps, columns, etc.) and sometimes for protecting the adsorbent

  2. • Zero (total or excluded) retention time: a key reference for chromatogram positioning that can be affected by velocity heterogeneity and fluid compressibility

  3. • Hydrodynamic dispersion: to ensure that the separation ability of the chromatographic medium is not spoiled by undesirable contributions to band broadening.

After presenting the modeling of “ideal” situations, we will relax some assumptions and discuss their influence on the scale-up of real systems.

Ideal systems

As explained in Chapter 1, we define “ideal” systems as chromatographic systems in which:

  1. • the properties of the chromatographic bed (porosity and permeability) are uniform along the axial and radial directions

  2. • the chromatographic bed is incompressible and stable

  3. • the fluid velocity and temperature are radially uniform.

Type
Chapter
Information
Chromatographic Processes
Modeling, Simulation, and Design
, pp. 317 - 387
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris, R. (1956), Proc. Roy. Soc. Lond. A 235, 67–77.CrossRef
Astrath, D.-U., Lottes, F., Vu, D. T., Arlt, W. and Stenby, E. H. (2007), Adsorption 13(1), 9–19.CrossRef
Augier, F., Laroche, C. and Brehon, E. (2008), Sep. Pur. Technol. 63, 466–474.CrossRef
Castells, C. and Castells, R. (1998), J. Chromatogr. A 805, 55.CrossRef
Catchpoole, H., Shalliker, R., Dennis, G. R. and Guiochon, G. (2006), J. Chromatogr. A 1117, 137.CrossRef
Cherrak, D. E., Al-Bokari, M., Drumm, E. C. and Guiochon, G. (2002), J. Chromatogr. A 943(1), 15–31.CrossRef
Cherrak, D. E. and Guiochon, G. (2001), J. Chromatogr. A 911(2), 147–166.CrossRef
Cherrak, D., Guernet, E., Cardot, P., Herrenknecht, C. and Czok, M. (1996), Chromatographia 46, 647.CrossRef
Ching, C., Wu, Y., Liusso, M., Wozny, G., Laiblin, T. and Arlt, W. (2002), J. Chromatogr. A 945, 117–131.CrossRef
Czok, M., Katti, A. and Guiochon, G. (1991), J. Chromatogr. 550, 705.CrossRef
Daneyko, A., Khirevich, S., Holtzel, A., Seidel-Morgenstern, A. and Tallarek, U. (2011), J.Chromatogr. A 1218, 8231–8248.CrossRef
Dapremont, O., Cox, G. B., Martin, M., Hilaireau, P. and Colin, H. (1998), J. Chromatogr. A 796(1), 81–99.CrossRef
Delgado, J. (2006), Heat Mass Transfer 42(4), 279–310.
Desmet, G. (2013), J. Chromatogr. A 1314, 124–137.CrossRef
Dewaele, C. and Verzele, M. (1983), J. Chromatogr. 260, 13–21.CrossRef
Dixon, A. G. and Ma, Y. H. (1988), Chem. Eng. Sci. 43(6), 1297–1302.
Epstein, N. (1989), Chem. Eng. Sci. 44, 777–779.CrossRef
Etienne, C., Nicoud, R. M. and Sardin, M. (1989). In 2ème Congrès Français de Génie des Procédés, vol. 9 of Recents Progrès en Génie des Procédés, Lavoisier Technique et Documentation, p. 417.
Fernandez, E., Norton, T., Jung, W. and Tsavalas, J. (1996), Biotechnol. Prog. 12(4), 480–487.CrossRef
Flodin, P. (1961), J. Chromatogr. 5, 103.CrossRef
Hill, S. (1952), Chem. Eng. Sci. 1, 247.CrossRef
Kaczmarski, K., Gritti, F. and Guiochon, G. (2008), J. Chromatogr. A 1177, 92–104.CrossRef
Keener, R., Fernandez, E., Maneval, J. and Hart, R. (2008), J. Chromatogr. A 1190, 127–140.CrossRef
Koch, D. and Brady, J. (1985), J. Fluid. Mech. 154, 399–427.CrossRef
Kováčik, J. (1999), J. Mater. Sci. Lett. 18(13), 1007–1010.CrossRef
Mishra, M., Martin, M. and De Wit, A. (2007), Phys. Fluids 19, 073101.CrossRef
Mosciarello, J., Purdon, G., Coffman, I., Root, T. and Lightfoot, E. (2001), J. Chromatogr. A 908, 131–141.
Nicoud, R. M. and Perrut, M. (1993). In G., Ganetsos and P. E., Barker, eds., Preparative and Production Scale Chromatography, vol. 61 of Chromatographic Science Series, Marcel Dekker, pp. 47–77.
Östergren, K. and Trägardh, C. (1999), Chem. Eng. J. 72, 153–161.CrossRef
Östergren, K., Trägardh, C., Enstad, G. and Mosby, J. (1998), AIChEJ. 44(1), 2–12.CrossRef
Pathak, N., Norman, C., Kundu, S., Nulu, S., Durst, M. and Fang, Z. (2008), BioProcess Int October, 72–81.
Pazdernik, O. and Schneider, P. (1981), J. Chromatogr. A 207(2), 181–191.CrossRef
Perrut, M. (1987), J. Chromatogr. A 396, 1–17.CrossRef
Poling, B., Prausnitz, J. and O'Connell, J. (2001), The Properties of Gases and Liquids, 5th edn., McGraw-Hill.Google Scholar
Poppe, H. and Kraak, H. (1983), J. Chromatogr. 282, 399–412.CrossRef
Rajendran, A. (2012), J. Chromatogr. A 1250, 227–249.CrossRef
Rajendran, A., Gilkison, T. and Mazzotti, M. (2008), J. Sep. Sci. 31(8), 1279–1289.CrossRef
Rajendran, A., Krauchi, O., Mazzotti, M. and Morbidelli, M. (2005), J. Chromatogr. A 1092, 149–160.
Rousseaux, G., De Wit, G. and Martin, M. (2007), J. Chromatogr. A 1149, 254–273.CrossRef
Rousseaux, G., Martin, M. and De Wit, A. (2011), J. Chromatogr. A 1218, 8353–8361.CrossRef
Shadday, M. A. (2006), Chem. Eng. Sci. 61(8), 2688–2700.CrossRef
Shalliker, R., Broyles, B. and Guiochon, G. (1999), J. Chromatogr. A 865, 73.CrossRef
Shalliker, R., Catchpoole, H., Dennis, G. and Guiochon, G. (2007), BioProcess Int. January, 32–37.
Stickel, J. and Fotopoulos, A. (2001), Biotechnol. Prog. 17(4), 744–751.CrossRef
Tan, C. and Homsy, G. (1986), Phys. Fluids 29, 3549.CrossRef
Taylor, G. I. (1953), Proc. Roy. Soc. Lond. A 219, 186–203.CrossRef
Toumi, A., Dingenen, J., Genolet, J., et al. (2012). In H., Schmidt-Traub, M., Schulte and A., Seidel-Morgenstern, eds., Preparative Chromatography, Wiley-VCH.Google Scholar
Verhoff, F. and Furjanic, J. J. (1983), Ind. Eng. Chem. Process Des. Dev. 22(2), 192–198.CrossRef
Wang, J. C. (1984), J. Mater. Sci. 19(3), 801–808.CrossRef
Wang, X.-S., Jiang, X.-W., Wan, L., Song, G. and Xi, Q. (2009), Int. J. Rock Mech. Min. Sci. 46, 1175–1181.
Welsch, T., Schmid, M., Kutter, J. and Kalman, A. (1996), J. Chromatogr. A 728, 299–306.CrossRef
Yuan, Q., Rosenfeld, A., Root, T., Klingenberg, D. and Lightfoot, E. (1999), J. Chromatogr. A 831, 149–165.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×