from Part I - Observations of Chondrules
Published online by Cambridge University Press: 30 June 2018
Chondrules and matrix from carbonaceous chondrites exhibit complementary nucleosynthetic W isotope anomalies that result from the depletion of a metallic s-process carrier in the chondrules, and the enrichment of this carrier in the matrix. The complementarity is difficult to reconcile with an origin of chondrules in protoplanetary impacts and also with models in which chondrules and matrix formed independently of each other in distinct regions of the disk. Instead, the complementarity indicates that chondrules formed by localized melting of dust aggregates in the solar nebula. The Hf–W ages for metal-silicate fractionation in CV and CR chondrites are 2.2 ± 0.8 Ma and 3.6 ± 0.6 Ma after formation of Ca-Al-rich inclusions, and are indistinguishable from Al–Mg ages for CV and CR chondrules. The good agreement between these ages strongly suggests that 26Al was homogeneously distributed in the solar protoplanetary disk and that therefore Al–Mg ages are chronologically meaningful. The concordant Al–Mg and Hf–W ages reveal that chondrule formation (as dated by Al–Mg) was associated with metal-silicate fractionation (as dated by Hf–W), both within a given chondrite but also among the different subgroups of ordinary chondrites. These age data indicate that chondrules from a given chondrite group formed in a narrow time interval of <1 Ma, and that chondrule formation and chondrite accretion were closely linked in time and space. The rapid accretion of chondrules into a chondrite parent body is consistent with the isotopic complementarity, which requires that neither chondrules nor matrix were lost prior to chondrite accretion. Combined, these observations suggest that chondrule formation was an important step in the accretion of planetesimals.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.