Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:31:49.219Z Has data issue: false hasContentIssue false

3 - Thermal Histories of Chondrules

Petrologic Observations and Experimental Constraints

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Thermal histories of chondrules can be deduced by studying the petrology and mineral chemistry of natural chondrules and their experimental analogs. Dynamic crystallization experiments have successfully reproduced chondrule textures, and provide general but broad constraints on peak temperatures and cooling rates. Porphyritic textures result when a chondrule is heated to a maximum temperature close to, but below, its liquidus, and cooled at initial rates between about 10 and 1,000 °C/h. Typical liquidus temperatures for chondrules range from about 1,400–1,700 °C. Nonporphyritic chondrules are produced when peak temperatures exceed the liquidus slightly (for barred/dendritic textures) and significantly (radiating textures) and chondrules cool at rates around 500–3,000 °C/h. More quantitative constraints on cooling rates can be determined by considering growth and diffusion-related zoning in chondrule minerals. Results of such modeling are consistent with dynamic crystallization experiments. Rapid dissolution rates for relict olivine grains also indicate a limited time at high temperatures, and indicate fast cooling rates of hundreds to thousands of °C/h, close to peak temperatures. Other cooling rate indicators include disequilibrium partition coefficients between minerals and chondrule glass, and consideration of chemical and isotopic diffusion between relict grains and their overgrowths. Interpretation of both these features is currently ambiguous. Several lines of evidence suggest that cooling rates decreased at lower temperatures, as the chondrule approached the solidus, to <50 °C/h. These include slow cooling required to nucleate plagioclase, cooling rates inferred from trace element diffusion profiles in metal grains, and exsolution microstructures in clinopyroxene. In contrast, clinoenstatite microstructures, the presence of chondrule glass, and dislocation densities in chondrule olivine appear to argue for rapid cooling (103–104 °C/h) through the lower temperature regime, and textures in opaque (metal/sulfide) assemblages indicate cooling rates of hundreds of degrees per hour at subsolidus temperatures. Overall, thermal histories of chondrules can provide fundamental constraints for chondrule formation models. While high-temperature thermal histories are reasonably well constrained, there are currently some open questions about the nature of the cooling curve at lower temperatures. A better understanding of chondrule cooling rates at lower temperatures would help to discriminate between chondrule formation models that make quantitative predictions for thermal histories. Within a single chondrite, cooling rates may vary widely. It is also possible that the nature of cooling histories varies within a given population of chondrules. A statistical treatment of chondrule populations in which individual chondrules show distinct thermal histories would help to make predictions about chondrule formation environments, and the diversity of processes that might be represented in a single chondrule-forming region.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 57 - 90
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarède, F., and Bottinga, Y. (1972). Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochimica et Cosmochimica Acta, 36, 141156.CrossRefGoogle Scholar
Alexander, C. M. O’D. (1994). Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochimica et Cosmochimica Acta, 58, 34513467.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Ashworth, J. R. (1980). Chondrite thermal histories: Clues from electron microscopy of orthopyroxene. Earth and Planetary Science Letters, 46, 167177.CrossRefGoogle Scholar
Avramov, I., Zanotto, E. D., and Prado, M. O. (2003). Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration. Journal of Non-Crystalline Solids, 320, 920.CrossRefGoogle Scholar
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017). Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta, 211, 256279.CrossRefGoogle Scholar
Béjina, F., Sautter, V., and Jaoul, O. (2009). Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule. Physics of the Earth and Planetary Interiors, 172, 512.CrossRefGoogle Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1989). Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta, 53, 543556.CrossRefGoogle Scholar
Brearley, A. J., and Jones, R. H. (1993). Chondrite thermal histories from low-Ca pyroxene microstructures: Autometamorphism versus prograde metamorphism revisited. Lunar and Planetary Science Conference, 24, 185186.Google Scholar
Brearley, A. J., and Jones, R. H. (1998). Chondritic meteorites. Reviews in Mineralogy and Geochemistry, 36, 3-13-398.Google Scholar
Cabral, A. A., Cardoso, A. A. D., and Zanotto, E. D. (2003). Glass-forming ability versus stability of silicate glasses. I. Experimental test. Journal of Non-Crystalline Solids, 320, 18.CrossRefGoogle Scholar
Chakraborty, S. (2010). Diffusion coefficients in olivine, wadsleyite and ringwoodite. Reviews in Mineralogy and Geochemistry, 72, 603639.CrossRefGoogle Scholar
Chaumard, N., Humayun, M., Zanda, B. and Hewins, R. H. (2015). Cooling rates of type I chondrules from the Renazzo CR2 chondrite: Implications for chondrule formation. Lunar and Planetary Science Conference #46, Abstract #1907.Google Scholar
Connolly, H. C. Jr., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called chondrules. Chemie der Erde, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Hewins, R. H. (1991). The influence of bulk composition and dynamic melting conditions on olivine chondrule textures. Geochimica et Cosmochimica Acta, 55, 29432950.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within dust-rich nebular environment: An experimental investigation. Geochimica et Cosmochimica Acta, 59, 32313246.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Huss, G. R. (2010). Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites. Geochimica et Cosmochimica Acta, 74, 24732483.CrossRefGoogle Scholar
Connolly, H. C. Jr., Jones, B. D., and Hewins, R. H. (1998). The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors Geochimica et Cosmochimica Acta, 62, 27252735.CrossRefGoogle Scholar
Coogan, L. A., Hain, A., Stahl, S., and Chakraborty, S. (2005). Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochimica et Cosmochimica Acta, 69, 36833694.CrossRefGoogle Scholar
Davidson, J., Schrader, D. L., Lauretta, D. S., et al. (2014). Petrology, geochemistry, stable isotopes, Raman spectroscopy, and presolar components of RBT 04133: A reduced CV3 carbonaceous chondrite. Meteoritics and Planetary Science 49, 21332151.CrossRefGoogle Scholar
DeHart, J. M., and Lofgren, G. E. (1996). Experimental studies of group A1 chondrules. Geochimica et Cosmochimica Acta, 60, 22332242.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rate of chondrules. Meteoritics and Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics and Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Dohmen, R., and Chakraborty, S. (2007). Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficient in natural olivine. Physics and Chemistry of Minerals, 34, 409430.CrossRefGoogle Scholar
Dullemond, C. P., Stammler, S. M., and Johansen, A. (2014). Forming chondrules in impact splashes. I. Radiative cooling model. The Astrophysical Journal, 794, 91.CrossRefGoogle Scholar
Dullemond, C. P., Harsono, D., Stammler, S. M., and Johansen, A. (2016). Forming chondrules in impact splashes. II. Volatile retention. The Astrophysical Journal, 832, 91.CrossRefGoogle Scholar
Faure, F., Trolliard, G., and Soulestin, B. (2003). TEM investigation of forsterite dendrites. American Mineralogist, 88, 12411250.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226250.CrossRefGoogle Scholar
Fedkin, A. V., Grossman, L., Ciesla, F. J., and Simon, S. B. (2012). Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories. Geochimica et Cosmochimica Acta, 87, 81116.CrossRefGoogle Scholar
Greeney, S., and Ruzicka, A. (2004). Relict forsterite in chondrules: Implications for cooling rates. Lunar and Planetary Science Conference #35, Abstract #1426.Google Scholar
Hevey, P. J., and Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics and Planetary Science, 41, 95106.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteoritics and Planetary Science, 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Klein, L. C., and Fasano, B. V. (1981). Conditions of formation of pyroxene excentroradial chondrules. Proceedings of the 12th Lunar and Planetary Science Conference, 448450. Houston, TX: Lunar and Planetary Institute.Google Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 286316. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Ganguly, J., and Mariani, E. (2009). Diffusion modeling of cooling rates of relict olivine in Semarkona chondrules. Lunar and Planetary Science Conference #40, Abstract #1513.Google Scholar
Humayun, M. (2012). Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite, Meteoritics and Planetary Science, 47, 11911208.CrossRefGoogle Scholar
Iezzi, G., Mollo, S., and Ventura, G. (2009). Solidification behaviour of natural silicate melts and volcanological implications. In Lewis, N. and Moretti, A. (Eds.), New Research on Volcanoes: Formation, Eruptions and Modeling, 127151. Hauppauge, NY: Nova Science Publishers, Inc..Google Scholar
Ito, M., and Ganguly, J. (2006). Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochimica et Cosmochimica Acta, 70, 799809.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2012). Chondrule trace element geochemistry at the mineral scale. Meteoritics and Planetary Science, 47, 16951714.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochimica et Cosmochimica Acta, 155, 4767.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H. (1990). Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta, 54, 17851802.CrossRefGoogle Scholar
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochimica et Cosmochimica Acta, 56, 467482.CrossRefGoogle Scholar
Jones, R. H. (1996a). FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 60, 31153138.CrossRefGoogle Scholar
Jones, R. H. (1996b). Relict grains in chondrules: Evidence for chondrule recycling. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 163172. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics and Planetary Science, 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., and Carey, E. R. (2006). Identification of relict forsterite grains in forsterite-rich chondrules from the Mokoia CV3 carbonaceous chondrite. American Mineralogist, 91, 16641674.CrossRefGoogle Scholar
Jones, R. H., and Layne, G. D. (1997). Trace element partitioning between pyroxene and melt in rapidly cooled chondrules. American Mineralogist, 82, 534545.CrossRefGoogle Scholar
Jones, R. H., and Lofgren, G. E. (1993). A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics, 28, 213221.CrossRefGoogle Scholar
Jones, R. H., and Scott, E. R. D. (1989). Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proceedings of the 19th Lunar and Planetary Science Conference, 523536. Houston, TX: Lunar and Planetary Institute.Google Scholar
Jones, R. H., Saxton, J. M., Lyon, I. C., and Turner, G. (2000). Oxygen isotopic compositions of chondrule olivine and isolated olivine grains in the CO3 chondrite, ALHA77307. Meteoritics and Planetary Science, 35, 849857.CrossRefGoogle Scholar
Jurewicz, A. J. G., and Watson, E. B. (1988). Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contributions to Mineralogy and Petrology, 99, 186201.CrossRefGoogle Scholar
Kennedy, A. K., Lofgren, G. E., and Wasserburg, G. J. (1993). An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: Equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177195.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta, 74, 66106635.CrossRefGoogle Scholar
Kitamura, M., Yasuda, M., Watanabe, S., and Morimoto, N. (1983). Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3) – an electron microscopic study. Earth and Planetary Science Letters, 63, 189201.CrossRefGoogle Scholar
Kitamura, M., Watanabe, S., and Morimoto, N. (1986). Pyroxene crystallization in chondrules–Autometamorphic evolution of chondrites. In Antarctic Meteorites XI, Papers presented to the 11th Symposium on Antarctic Meteorites, NIPR, Vol. 11, pp. 71–73.Google Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochimica et Cosmochimica Acta, 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochimica et Cosmochimica Acta, 69, 38313840.CrossRefGoogle Scholar
Lauretta, D. S., Kremser, D. T., and Fegley, B. Jr. (1996). The rate of iron sulphide formation in the solar nebula. Icarus, 122, 288315.CrossRefGoogle Scholar
Lauretta, D. S., Lodders, K., and Fegley, B. Jr. (1997). Experimental simulations of sulphide formation in the solar nebula. Science, 277, 358360.CrossRefGoogle ScholarPubMed
Libourel, G., and Chaussidon, M. (2011). Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters, 301, 921.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. (1989). Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta, 53, 461470.CrossRefGoogle Scholar
Lofgren, G. E. (1996). A dynamic crystallization model for chondrule melts. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 187196. Cambridge, UK: Cambridge University Press.Google Scholar
Lofgren, G. E., and Lanier, A. B. (1990). Dynamic crystallization study of barred olivine chondrules. Geochimica et Cosmochimica Acta, 54, 35373551.CrossRefGoogle Scholar
Lofgren, G. E., and Le, L. (1998). Partial melting of type 1 chondrule precursor aggregates: An experimental and petrographic study. Lunar and Planetary Science Conference #29, contribution #1441.Google Scholar
Lofgren, G. E., and Russell, W. J. (1986). Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition. Geochimica et Cosmochimica Acta, 50, 17151726.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochimica et Cosmochimica Acta, 119, 117136.CrossRefGoogle Scholar
Marrocchi, Y., Chaussidon, M., Piani, L., and Libourel, G. (2016). Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules. Science Advances 2, e1601001.CrossRefGoogle ScholarPubMed
McCanta, M. C., Beckett, J. R., and Stolper, E. M. (2008). Zonation of phosphorus in olivine: Dynamic crystallization experiments and a study of chondrule olivine in unequilibrated ordinary chondrites. Lunar and Planetary Science Conference #39, Abstract #1807.Google Scholar
McCanta, M. C., Beckett, J. R., and Stolper, E. M. (2016). Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona. Meteoritics and Planetary Science, 51, 520546.CrossRefGoogle Scholar
Milman-Barris, M. S., Beckett, J. R., Baker, M. B., et al. (2008). Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology, 155, 739765.CrossRefGoogle Scholar
Miyamoto, M., McKay, D. S., McKay, G. A., and Duke, M. B. (1986). Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules. Journal of Geophysical Research, 91, 1280412816.CrossRefGoogle Scholar
Miyamoto, M., Mikouchi, T., and Jones, R. H. (2009). Cooling rates of porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization. Meteoritics and Planetary Science, 44, 521530.CrossRefGoogle Scholar
Mori, M., Tachibana, S., Piani, L., et al. (2016). Cooling Experiments of Fe-Fes Melts: A Cooling Speedometer of Chondrules. Goldschmidt Abstracts, 2016, 2147.Google Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebular shocks. Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophysical Journal, 752, 2744.CrossRefGoogle Scholar
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula. Meteoritics and Planetary Science, 51, 870883.CrossRefGoogle Scholar
Müller, W. F., Weinbruch, S., Walter, R., and Muller-Beneke, G. (1995). Transmission electron microscopy of chondrule minerals in the Allende meteorite: Constraints on the thermal and deformational history of granular olivine-pyroxene chondrules. Planetary and Space Science, 43, 469483.CrossRefGoogle Scholar
Nagahara, H. (1981). Evidence for secondary origin of chondrules. Nature, 292, 135136.CrossRefGoogle Scholar
Nettles, J. W., Lofgren, G. E., Carlson, W. D., and McSween, H. Y. (2006). Extent of chondrule melting: Evaluation of experimental textures, nominal grain size, and convolution index. Meteoritics and Planetary Science, 41, 10591071.CrossRefGoogle Scholar
Petry, C., Chakraborty, S., and Palme, H. (2004). Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochimica et Cosmochimica Acta, 68, 41794188.CrossRefGoogle Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulphides in the porphyritic chondrules of EH enstatite chondrites. Geochimica et Cosmochimica Acta, 195, 8499.CrossRefGoogle Scholar
Radomsky, P. M., and Hewins, R. H. (1990). Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta, 54, 34753490.CrossRefGoogle Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature, 293, 558561.CrossRefGoogle Scholar
Righter, K., Campbell, A. J., and Humayun, M. (2005). Diffusion of trace elements in FeNi metal: Applications to zoned metal grains in chondrites. Geochimica et Cosmochimica Acta, 69, 31453158.CrossRefGoogle Scholar
Rocha, S. E., and Jones, R. H. (2012). An experimental study of the conditions of type II chondrule formation in ordinary chondrites. Lunar and Planetary Science Conference #43, Abstract #2595.Google Scholar
Roeder, P. L., and Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275289.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 63, 22812298.CrossRefGoogle Scholar
Rubin, A. E., Baecker, B., and Wasson, J. T. (2015). Overgrowth layers on olivine phenocrysts in high-FeO Semarkona chondrules revealed by P, Fe, and Cr X-ray maps: Evidence for multiple melting of chondrules. 78th Annual Meeting of the Meteoritical Society, Abstract #5033.Google Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D., and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta, 75, 75967611.CrossRefGoogle Scholar
Ruzicka, A. (2012). Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals. Meteoritics and Planetary Science, 47, 22182236.CrossRefGoogle Scholar
Ruzicka, A., Hiyagon, H., Hutson, M., and Floss, C. (2007). Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs. Earth and Planetary Science Letters, 257, 274289.CrossRefGoogle Scholar
Ruzicka, A., Floss, C., and Hutson, M. (2008). Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochimica et Cosmochimica Acta, 72, 55305557.CrossRefGoogle Scholar
Ruzicka, A., Floss, C., and Hutson, M. (2012). Agglomeratic olivine (AO) objects and type II chondrules in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules. Geochimica et Cosmochimica Acta, 76, 103124.CrossRefGoogle Scholar
Sanders, I. S., and Taylor, G. J. (2005). Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 915932. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics and Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., and Lauretta, D. S. (2010). High-temperature experimental analogs of primitive meteoric metal-sulfide-oxide assemblages. Geochimica et Cosmochimica Acta, 74, 17191733.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochimica et Cosmochimica Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules. Meteoritics and Planetary Science, 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., and McCoy, T. J. (2016a). Widespread evidence for high temperature formation of pentlandite in chondrites. Geochimica et Cosmochimica Acta, 189, 359376.CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016b). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, subsilicate solidus chondrule cooling rates. Lunar and Planetary Science Conference #47, Abstract #1180.Google Scholar
Smyth, J. R. (1974). Experimental study on the polymorphism of enstatite. American Mineralogist, 59, 345352.Google Scholar
Sorby, H. (1877). On the structure and origin of meteorites. Nature, 15, 495498.Google Scholar
Soulié, C. (2014). Formation des chondres et relation avec leurs auréoles de matrice à grains fins. PhD thesis, Université de Lorraine.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteoritics and Planetary Science, 52, 225250.CrossRefGoogle Scholar
Symes, S. J., and Lofgren, G. E. (1999). Distribution of FeO and MgO between olivine and melt in natural and experimental chondrules. Lunar and Planetary Science Conference #30, Abstract #1869.Google Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., and Mizuno, K. (2006). Constraints on cooling rates of chondrule from metal-troilite assemblages. Lunar and Planetary Science Conference #37, Abstract #2263.Google Scholar
Tachibana, S., Tamada, S., Kawasaki, H., Ozawa, K. and Nagahara, H. (2013). Interdiffusion of Mg-Fe in olivine at 1400–1600 °C and 1 atm total pressure. Physics and Chemistry of Minerals, 40, 511519.CrossRefGoogle Scholar
Taylor, L. A., and Cirlin, E. H. (1986). Olivine/melt Fe/Mg KD’s <0.3: Rapid cooling of olivine-rich chondrules. Lunar and Planetary Science, XVII, 1938.Google Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228250.CrossRefGoogle Scholar
Tronche, E. J., Hewins, R. H., and MacPherson, G. J. (2007). Formation conditions of aluminum-rich chondrules. Geochimica et Cosmochimica Acta, 71, 33613381.CrossRefGoogle Scholar
Tsuchiyama, A., Osada, Y., Nakano, T., and Uesugi, K. (2004). Experimental reproduction of classic barred olivine chondrules: Open-system behavior of chondrule formation. Geochimica et Cosmochimica Acta, 68, 653672.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 76, 242263.CrossRefGoogle Scholar
Ushikubo, T., Nakashima, D., Kimura, M., Tenner, T. J., and Kita, N. T. (2013). Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 109, 280295.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationship between type I and type II chondrules: Implications on chondrule formation processes, Geochimica et Cosmochimica Acta, 160, 277305.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2003). Ubiquitous low-FeO relict grains in type II chondrules and limited overgrowths on phenocrysts following the final melting event. Geochimica et Cosmochimica Acta, 67, 22392250.CrossRefGoogle Scholar
Wasson, J. T., Baecker, B., and Rubin, A. E. (2014). Multiple, hierarchical heating of chondrules and implications for cooling rates. Lunar and Planetary Science Conference #45, Abstract #2883.Google Scholar
Watanabe, S., Kitamura, M., and Morimoto, N. (1985). A transmission electron microscope study of pyroxene chondrules in equilibrated L-group chondrites. Earth and Planetary Science Letters, 72, 8798.CrossRefGoogle Scholar
Watanabe, S., Kitamura, M., and Morimoto, N. (1986). Oscillatory zoning of pyroxenes in ALH-77214 (L3). Papers Presented to the Eleventh Symposium on Antarctic Meteorites, 74–75.Google Scholar
Weinbruch, S., and Müller, W. F. (1995). Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochimica et Cosmochimica Acta, 59, 32213230.CrossRefGoogle Scholar
Weinbruch, S., Müller, W. F., and Hewins, R. H. (2001). A transmission electron microscope study of exsolution and coarsening in iron-bearing clinopyroxene from synthetic analogues of chondrules. Meteoritics and Planetary Science, 36, 12371248.CrossRefGoogle Scholar
Weisberg, M. K., and Prinz, M. (1996). Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 119127. Cambridge, UK: Cambridge University Press.Google Scholar
Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P. (2013). Dendritic crystallization: A single process for all the textures of olivine in basalts? Journal of Petrology, 54, 539574.CrossRefGoogle Scholar
Wick, M., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochimica et Cosmochimica Acta, 98, 140159.CrossRefGoogle Scholar
Yasuda, M., Kitamura, M., and Morimoto, N. (1983). Electron microscopy of clinoenstatite from a boninite and a chondrite. Physics and Chemistry of Minerals, 9, 192196.CrossRefGoogle Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very O-16-rich olivine and a Mg-26-excess. Geochimica et Cosmochimica Acta, 66, 43554363.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×