Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T05:08:38.027Z Has data issue: false hasContentIssue false

13 - Formation of Chondrules by Planetesimal Collisions

from Part II - Possible Chondrule-Forming Mechanisms

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Chondrules are the millimeter-scale previously molten droplets found in chondritic meteorites. These pervasive yet enigmatic particles hint at energetic processes at work in the nascent solar system. Chondrules and chondrites are well studied and many of the details about their compositions, ages, and thermal histories are well known. Without the proper context of a formation mechanism, however, we can only imagine what chondrules may reveal about the processes at work in the early solar system. In this chapter, we explore the hypothesis that chondrules were formed by impacts between growing planetary embryos. Specifically, we focus on shock heating associated with accretionary impacts as a means for melting chondrule precursor material. Although we discuss previous work on impact origin for chondrules, much of this chapter focuses on a new incarnation of this old idea, the impact jetting model. We explore the predictions of this model and its implications for our understanding of early solar system history and meteoritics. Throughout the chapter, we discuss potential issues and uncertainties with the model while identifying avenues for further development and testing of the impact origin hypothesis.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 343 - 360
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics & Planetary Science 47, 11571175.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Hewins, R. H. (2004). Mass fractionation of Fe and Ni isotopes in metal in Hammadah al Hamra 237 (abstract). Meteoritics & Planetary Science 39, A13.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences 102, 1375513760.CrossRefGoogle ScholarPubMed
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014). Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications 5, 5451.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015). Pb-Pb dating of individual chondrules from the CB achondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science 50, 11971216.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances 3, e1700407.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences 113, 28862891.CrossRefGoogle ScholarPubMed
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002). Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta 66, 647660.CrossRefGoogle Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences 108, 63866389.CrossRefGoogle Scholar
Cassen, P. (2001). Nebular thermal evolution and the properties of primitive planetary materials. Meteoritics & Planetary Science, 36, 671700.CrossRefGoogle Scholar
Chambers, J. E. (2004). Planetary accretion in the inner Solar System. Earth and Planetary Science Letters 223, 241252.CrossRefGoogle Scholar
Chiang, E., and Youdin, A. N. (2010). Forming planetesimals in solar and extrasolar nebulae. Annual Review of Earth and Planetary Sciences 38, 493522.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655. doi:10.1126/science.1226919.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441, 483485.CrossRefGoogle ScholarPubMed
Dauphas, N., and Pourmand, A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489492.CrossRefGoogle ScholarPubMed
Davis, A. M., Alexander, C. M., Nagahara, H., and Richter, F. M. (2005). Evaporation and condensation during CAI and chondrule formation. Chondrites and the Protoplanetary Disk 341, 432455.Google Scholar
Davison, T. M., O’Brien, D. P., Ciesla, F. J., and Collins, G. S. (2013). The early impact histories of meteorite parent bodies. Meteoritics & Planetary Science 48, 18941918.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science 47, 11391156.CrossRefGoogle Scholar
Dullemond, C. P., Stammler, S. M., and Johansen, A. (2014). Forming chondrules in impact splashes. I. Radiative cooling model. The Astrophysical Journal 794, 9112.CrossRefGoogle Scholar
Dullemond, C. P., Harsono, D., Stammler, S. M., and Johansen, A. (2016). Forming chondrules in impact splashes. II. Volatile retention. The Astrophysical Journal 832, 9119.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta 64, 339366.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters 305, 110.CrossRefGoogle Scholar
Evans, N. J. I., Dunham, M. M., Jørgensen, J. K., et al. (2009). The Spitzer c2d legacy results: Star-formation rates and efficiencies; evolution and lifetimes. The Astrophysical Journal Supplement 181, 321350.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta 112, 226250.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., and Biltz, A. E. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie der Erde - Geochemistry 75, 419443.CrossRefGoogle Scholar
Fu, R. R., and Elkins-Tanton, L. T. (2014). The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters 390, 128137.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 10891092.CrossRefGoogle ScholarPubMed
Glass, B. P., and Simonson, B. M. (2012). Distal impact ejecta layers: spherules and more. Elements 8, 4348.CrossRefGoogle Scholar
Hasegawa, Y., Turner, N. J., Masiero, J., et al. (2016). Forming chondrites in a solar nebula with magnetically induced turbulence. The Astrophysical Journal Letters 820, L12.CrossRefGoogle Scholar
Hasegawa, Y., Wakita, S., Matsumoto, Y., and Oshino, S. (2015). Chondrule formation via impact jetting triggered by planetary accretion. The Astrophysical Journal 816, 114.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters 294, 8593.CrossRefGoogle Scholar
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteoritics & Planetary Science 44, 327342.CrossRefGoogle Scholar
Johansen, A., Blum, J., Tanaka, H., et al. (2014). The multifaceted planetesimal formation process. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 547570. Tucson, AZ: University of Arizona Press.Google Scholar
Johnson, B. C., Bowling, T. J., and Melosh, H. J. (2014). Jetting during vertical impacts of spherical projectiles. Icarus 238, 1322.CrossRefGoogle Scholar
Johnson, B. C., Lisse, C. M., Chen, C. H., et al. (2012). A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. The Astrophysical Journal 761, 45.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2014). Formation of melt droplets, melt fragments, and accretionary impact lapilli during a hypervelocity impact. Icarus 228, 347363.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2012a). Formation of spherules in impact produced vapor plumes. Icarus 217, 416430.CrossRefGoogle Scholar
Johnson, B. C., and Melosh, H. J. (2012b). Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 7577.CrossRefGoogle ScholarPubMed
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N., and Levison, H. F. (2016). Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances 2, e1601658.CrossRefGoogle ScholarPubMed
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J. A., and Benz, W. (2013). The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207210.CrossRefGoogle ScholarPubMed
Kieffer, S. W. (1975). Droplet Chondrules. Science 189, 333340.CrossRefGoogle ScholarPubMed
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. and Weisberg, M. K. (2007). Classification of meteorites and their genetic relationships. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 163. Oxford, UK: Elsevier.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014). Protracted core formation and rapid accretion of protoplanets. Science 344, 11501154.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 312, 201704461–5.Google Scholar
Kurosawa, K., Nagaoka, Y., Senshu, H., et al. (2015). Dynamics of hypervelocity jetting during oblique impacts of spherical projectiles investigated via ultrafast imaging. Journal of Geophysical Research: Planets 120, 12371251.CrossRefGoogle Scholar
Levison, H. F., Duncan, M. J., and Thommes, E. (2012). A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD). The Astronomical Journal 144, 119.CrossRefGoogle Scholar
Levison, H. F., Kretke, K. A., and Duncan, M. J. (2015). Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322324.CrossRefGoogle ScholarPubMed
Lofgren, G. (1989). Dynamic cyrstallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta 53, 461470.CrossRefGoogle Scholar
Minton, D. A., and Malhotra, R. (2010). Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744757.CrossRefGoogle Scholar
O’Brien, D. P., Morbidelli, A., and Bottke, W. F. (2007). The primordial excitation and clearing of the asteroid belt—Revisited. Icarus 191, 434452.CrossRefGoogle Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar system abundances of the elements. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.CrossRefGoogle Scholar
Pierazzo, E., Vickery, A. M., and Melosh, H. J. (1997). A reevaluation of impact melt production. Icarus 127, 408423.CrossRefGoogle Scholar
Richter, F. M., Huss, G. R., and Mendybaev, R. A. (2014). Iron and nickel isotopic fractionation across metal grains from three CBb meteorites. Lunar Planet. Sci. Conf. XLV, #1346.Google Scholar
Roszjar, J., Whitehouse, M. J., Srinivasan, G., et al. (2016). Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon. Earth and Planetary Science Letters 452, 216226.CrossRefGoogle Scholar
Ruden, S. P., and Pollack, J. B. (1991). The dynamical evolution of the protosolar nebula. The Astrophysical Journal, 375, 740760.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science 47, 21702192.CrossRefGoogle Scholar
Schmitz, B., Yin, Q. Z., Sanborn, M. E., et al. (2016). A new type of solar-system material recovered from Ordovician marine limestone. Nature Communications 7, ncomms11851.CrossRefGoogle ScholarPubMed
Schulte, P., Alegret, L., Arenillas, I., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 12141218.CrossRefGoogle ScholarPubMed
Scott, E. R. D. (2007). Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences 35, 577620.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2003). Chondrites and their components. In Holland, H. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Sorby, H. C. (1877). On the structure and origin of meteorites. Nature 15, 495498.Google Scholar
Taylor, G. J., Scott, E. R. D., and Keil, K. (1982). Cosmic setting for chondrule formation. Abstracts of Papers Presented to the Conference on Chrondrules and Their Origins, 493, 58. Houston, TX: Lunar and Planetary Institute.Google Scholar
Urey, H. C. (1952). Chemical fractionation in the meteorites and the abundance of the elements. Geochimica et Cosmochimica Acta 2, 269282.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences 113, 20112016.CrossRefGoogle ScholarPubMed
Vickery, A. M. (1993). The theory of jetting: Application to the origin of tektites. Icarus 105, 441453.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochimica et Cosmochimica Acta 160, 277305.CrossRefGoogle Scholar
Walsh, J. M., Shreffler, R. G., and Willig, F. J. (1953). Limiting conditions for jet formation in high velocity collisions. Journal of Applied Physics 24, 349.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., and O’Brien, D. P. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206209.CrossRefGoogle ScholarPubMed
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters 311, 93100.CrossRefGoogle Scholar
Weidenschilling, S. J. (2011). Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671684.CrossRefGoogle Scholar
Weidenschilling, S. J., Marzari, F., and Hood, L. L. (1998). The origin of chondrules at jovian resonances. Science 279, 681684.CrossRefGoogle ScholarPubMed
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (2001). A new metal-rich chondrite grouplet. Meteoritics & Planetary Science 36, 401418.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×